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Abstract: This paper addresses the vehicle routing problem with driver scheduling, which
involves planning delivery routes while assigning work shifts to drivers whose individual
availability must be respected. The problem extends the classical vehicle routing problem
by incorporating driver availability, reflecting a growing operational concern in the logistics
sector marked by persistent labor shortages and an increased need for flexible work
arrangements. A mathematical model is developed to minimize total operational costs,
including travel, driver shift, and outsourcing costs when some deliveries are assigned to
third-party logistics providers. To handle large instances efficiently, a heuristic based on the
Iterated Local Search algorithm is proposed. The algorithm integrates route optimization
and driver scheduling decisions within a single framework. Computational experiments
show that accounting for driver availability results in significant cost reductions and
operational improvements. Even modest increases in driver availability significantly
decrease the need for outsourcing, while full-day availability yields only marginal additional
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create a balance between operational efficiency and workforce constraints, as well as driver
well-being.
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The vehicle routing problem with driver scheduling

1 Introduction

In Canada, the pressures on last-mile logistics are mounting. The Canadian last-mile
delivery market generated approximately USD 6.1 billion in 2023 and is projected to
reach USD 8.9 billion by 2030 [Grand View Research, 2023]. This growth, driven largely
by e-commerce expansion, has intensified operational pressures on carriers and delivery
networks. However, the sector faces mounting labor constraints: Canada’s trucking and
logistics industry continues to experience chronic driver shortages [The Conference Board
of Canada, 2021], and courier vacancies in some markets have surged by 22 % year over
year [Lee, 2025]. To cope with these challenges, firms are rethinking how they organize

work and deploy drivers.

Traditionally, logistics employees were assigned to fixed, non-flexible shifts; however, per-
sistent labor shortages have encouraged companies to consider more adaptive scheduling
policies to attract and retain employees. Many now rely on a hybrid workforce that
combines full-time employees with contract drivers to increase delivery capacity. Partner-
ships with third-party platforms, such as Instacart and Grubhub, allow businesses to meet
peak demand without maintaining large, permanent fleets. Meanwhile, others, including
grocery chains and restaurants, have developed in-house delivery services to improve reli-
ability and maintain control over service [Liu and Luo, 2023]. Some companies, including
Amazon Flex and Deliv, guarantee a minimum pay per shift to ensure coverage during
periods of fluctuating demand. Although this improves driver stability, it can also lead

to idle capacity when volumes decline [Alnaggar et al., 2021].

Beyond the logistics sector, flexibility has become a defining feature of modern employ-
ment. Workers are increasingly seeking autonomy over their schedules to balance pro-
fessional and personal responsibilities, while companies are using flexible or part-time
arrangements to attract scarce talent. Yet such strategies complicate workforce planning;:

a large permanent workforce can absorb demand variations but entails high fixed costs,
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whereas a smaller one risks overreliance on outsourcing [Mandal et al., 2025]. Manag-
ing this trade-off effectively requires embedding workforce considerations directly into

operational decisions, such as routing and scheduling.

This paper addresses the integration of vehicle routing with driver shift scheduling prob-
lems. Routes are planned considering various constraints, such as time windows and
vehicle capacity limits, as well as the availability of drivers. Each driver is assigned a
shift that aligns with their availability. The main objective is to minimize the total cost,
including shift and travel expenses. Additionally, unassigned demands are outsourced to a
third-party logistics provider (3PL), incurring an additional fee. We refer to this problem
as the Vehicle Routing Problem with Drivers Scheduling (VRPDS). To the best of our
knowledge, this work is among the first to explicitly incorporate driver scheduling within
a vehicle routing framework. We introduce a mixed-integer linear programming model
(MILP) for the VRPDS and propose an Iterated Local Search (ILS) algorithm to solve
large-scale instances. We also provide managerial insights on how changing attributes,

such as drivers’ availability, can affect the solution.

The remainder of this paper is organized as follows. In Section 2, we present an overview of
the related literature and highlight our contributions. We provide the problem description
and the mathematical formulation in Section 3. The proposed solution algorithm is elab-
orated in Section 4. Computational experiments and managerial insights are presented in

Sections 5 and 6, and our conclusions follow in Section 7.

2 Literature review

To better position our study within the existing body of research, the following section
reviews the literature related to the VRPDS, with a particular emphasis on how work

shifts are defined and how shift flexibility is modeled. The review is structured in two
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parts. The first focuses on staff scheduling, examining the literature on pure scheduling
problems where routing is not explicitly considered. The second addresses integrated shift
scheduling and routing, covering studies that jointly focus on shift design and vehicle
routes. The section concludes by identifying the key conceptual and methodological gaps

that motivate the formulation of the VRPDS.

In this context, a personnel scheduling or rostering problem refers to the process of con-
structing work timetables for employees so that an organization can satisfy the demand
for its goods or services [Ernst et al., 2004]. The rostering process typically includes
a shift-scheduling component, which determines which shifts are to be worked and how
many employees should be assigned to each shift to meet operational requirements. Within
such problems, the notion of scheduling flexibility plays a key role. Flexibility can manifest
in various forms, such as varying shift lengths, flexible break placement (breaks starting
within a time window rather than at a fixed time), or flexible start times (shifts beginning
at different times during the day on a predefined grid) [Rekik et al., 2010]. Understanding
how these elements are defined and modeled provides a foundation for examining the more

complex integration of routing and scheduling decisions that characterizes the VRPDS.

2.1 Personnel scheduling

Given the extensive body of literature on personnel scheduling, our review will focus
exclusively on the most pertinent studies that address flexibility within the scheduling
aspect of the problem. Van den Bergh et al. [2013] provide a comprehensive review of
personnel scheduling, highlighting how flexibility has been incorporated in several studies.
They distinguish between fixed parameters, where start times and shift lengths are pre-
determined, and definable parameters, where these values are selected from an allowable
set during the scheduling process. This distinction captures two dominant modeling ap-

proaches to shift flexibility in the literature. For instance, in the staff scheduling problem
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at the United States Postal Service, as cited in Bard et al. [2003], both full-time and
part-time shifts are defined. In the part-time case, twelve possible start times and five
different shift lengths are considered. For full-time employees, nine possible start times
are allowed with a fixed shift length. Similarly, Gutjahr and Rauner [2007] investigated
a nurse scheduling problem in which nurses could propose several alternative start times
and shift lengths that reflected their individual preferences. Other examples include Aick-
elin and Dowsland [2004] and He and Qu [2012], which treat shift structures as given and

focus on assignment and constraint satisfaction rather than modeling flexibility.

A common observation from the above literature is that all models are based on an ex-
plicit representation of a shift. In contrast, some studies adopt implicit shift modeling,
where shifts are not listed upfront but are generated by choosing start times and dura-
tions within specified bounds. Brunner et al. [2009] developed a flexible shift scheduling
model for physicians based on a German university hospital case study. Unlike traditional
approaches, their model employs implicit shift modeling, which allows for flexible start
times and durations within defined constraints. The planning horizon spans multiple
weeks, divided into one-hour periods. Key features include: shifts can start at designated
periods and range from a minimum to a maximum length. Rekik et al. [2010] considered
flexibility in terms of shift starting time and length, as well as the number, duration, and
placement of breaks within each shift. They proposed two implicit models and solved

them using a commercial solver.

Table 1 summarizes how shifts are modeled in personnel scheduling. Shift scheduling is
used in various applications, including postal operations, nursing, physician services, and
airport ground staff. A notable gap in the literature is the limited attention given to
implicit shift modeling and staff-defined shifts, and, to the best of our knowledge, their
combination has not been explored. Few models allow employees to play an active role
in proposing or defining their shifts while the schedule itself is generated implicitly from

bounded start or end-time windows.
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Table 1: Summary of shift modeling structure in personnel scheduling literature

Shift features

Study Shift modeling approach Application

Start time Length Shift definer
Bard et al. [2003] Explicit Definable Definable & fixed — Scheduler Postal service
Aickelin and Dowsland [2004] Explicit Fixed Fixed Scheduler Nurse scheduling
Gutjahr and Rauner [2007] Explicit Definable Definable Staff Nurse scheduling
Brunner et al. [2009] Tmplicit Within bounds  Within bounds Scheduler Physicians scheduling
Rekik et al. [2010] Tmplicit Within bounds Within bounds Scheduler Air-traffic control agency
He and Qu [2012] Explicit Fixed Fixed Scheduler Nurse scheduling
Wang et al. [2023] Implicit Within bounds Within bounds Scheduler Staff scheduling at airports
This paper Implicit No bounds Within bounds Scheduler & staff Last mile delivery

2.2 Shift scheduling and routing

Shift scheduling in the routing literature can be categorized by how shifts are modeled.
It may involve explicitly defined shifts, in which specific shift types are predetermined
and assigned to personnel. Alternatively, it can rely on implicit shift modeling, in which
the shift boundaries (start and/or end times) are treated as decision variables within the
routing process. A combined approach is also possible, where start times are explicitly
set while shift duration or end times remain implicitly determined. When both start and
end times are fixed and there is no predefined set of shifts to select from, the problem
is not considered shift scheduling. Furthermore, existing studies differ in focus: some
explicitly minimize shift-related costs in the objective function, while others prioritize

routing performance or service quality, treating shifts as secondary constraints.

Several studies use a hybrid representation with explicit start times and implicit dura-
tions. For instance, Ren et al. [2010] study a multi-period, multi-shift VRP with overtime
in healthcare logistics, where each vehicle performs a single route per shift with fixed start
times but flexible end times, which may extend through overtime when demand peaks
near shift changes. Their objective function minimizes travel, wages, overtime, and out-

sourcing costs. Similarly, Frohner and Raidl [2021] address a dynamic, stochastic VRP
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with delivery deadlines, in which drivers may run multiple closed routes per day. Here,
shift start times are fixed, while shift end times remain flexible. The primary objective
is to avoid tardiness, and the secondary objective is to reduce labor and travel costs. In
both cases, the objective does not explicitly minimize shift costs. In contrast, De Bruecker
et al. [2018] work with explicit predefined shifts in waste collection, distinguishing between
cheaper peak-hour shifts and more expensive non-peak shifts. Their model assigns routes
to these shift types to directly minimize weekly labor costs, making shift-related costs an

explicit target within the objective function.

When staff availability is considered, it may be represented in several ways. In healthcare
applications, availability is commonly modeled through time windows. For example,
Grenouilleau et al. [2019] address home healthcare routing in which caregivers define their
working days and daily availability windows. Route construction implicitly determines
departure times within these windows, while the objective function minimizes routing
costs, overtime, and idle time. In delivery applications, availability is modeled differently,
often through occasional drivers (OD) or crowdsourced delivery (CD) couriers. These
systems rely on a hybrid workforce that combines full-time employees with independent
couriers who declare their availability to accept tasks [Yang et al., 2024]. This has led
to rapid growth in crowdsourced delivery research (e.g., Mancini and Gansterer [2024],
Zhang et al. [2025], Barbosa et al. [2023]), where the availability of such couriers becomes
a key operational constraint. Alnaggar et al. [2021] provide a comprehensive review of
routing and scheduling approaches in CD platforms and emphasize that handling driver
availability remains a major challenge. In these systems, availability is uncertain and
typically follows an accept-or-reject pattern. Ulmer and Savelsbergh [2020] introduce the
workforce scheduling problem with unscheduled drivers, where shift schedules (start times
and durations) are determined for in-house drivers operating alongside uncertain CDs, to
minimize total working hours while satisfying service-level requirements. Behrendt et al.

[2023] address a similar problem: scheduled couriers sign up for shifts before operations

6 CIRRELT-2025-38



The vehicle routing problem with driver scheduling

and are centrally dispatched to multiple tasks during their shift, whereas ad-hoc CDs
arrive during the day and choose one order at a time. Their model determines the number
of scheduled couriers required in each period to minimize the total cost of scheduled

couriers, ad-hoc CDs, and expired orders.

Table 2 summarizes the literature on shift scheduling and routing problems according to

shift types, cost considerations, staff availability, and application context.

Table 2: Positioning VRPDS against related routing and scheduling studies

Stud Staff availability =~ Shift flexibility Cost in objective Shift Application
tudy

CD Time window Start  End  Shift Rout definer domain
Frohner and Raidl [2021] - - - v - 4 Scheduler Online store
Ren et al. [2010] - - - v - v Scheduler Healthcare provider
De Bruecker et al. [2018] - - - - v - Scheduler Waste collection
Grenouilleau et al. [2019] 4 v v v Staff/scheduler Healthcare
Ulmer and Savelsbergh [2020] v - v v - - Scheduler Same day delivery
Behrendt et al. [2023] v - - - v - Scheduler Same day delivery
This paper - v v v v v Staff/scheduler Last mile delivery

2.3 Literature gap and contributions

As summarized in Table 2, existing studies primarily differ in how they represent workforce
control, shift flexibility, and the degree of integration between routing and scheduling
decisions. In most formulations, driver availability is predetermined or simplified into an
accept-reject decision, without modeling when a driver can actually start or finish work.
Moreover, shifts are typically selected from a fixed list of time intervals rather than being
generated from individual availability profiles. As a result, planned schedules often fail to
align with actual workforce constraints and operational flexibility, limiting both realism

and managerial applicability.

Considering these gaps, our contributions are as follows: 1. We introduce the Vehicle
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Routing Problem with Driver Scheduling (VRPDS), a VRP variant in which each driver’s
shift is generated endogenously within declared availability windows, rather than selected
from a predefined list of shifts. 2. We propose a joint optimization framework that simul-
taneously determines driver schedules and vehicle routes, explicitly linking shift timing,
route feasibility, and total operational cost. 3. We develop a mixed-integer programming
(MIP) formulation strengthened with valid inequalities to solve small instances exactly,
and an ILS-based heuristic tailored to larger instances through neighborhoods that ad-
just routes and shift durations jointly. 4. We conduct computational experiments to assess
solution quality and efficiency across different instance sizes, showing that the proposed
approach scales effectively. 5. We provide managerial insights on the operational and
economic value of flexible shift generation, demonstrating improvements in cost, driver

utilization, and service coverage compared with fixed-shift systems.

3 Problem description and mathematical formulation

The VRPDS involves fulfilling the demand of a set of customers within a single day
using a fleet of vehicles, each operated by a driver and based at the depot. The terms
“driver” and “vehicle” are used interchangeably throughout this paper. The problem
is defined on a graph G = (V, A), with V' = {0,1,...,n,n + 1}, the set of nodes and
arc set A = {(4,4) | 4,5 € V, i # j}\ {(n +1,0)}. The starting and ending depots
are represented by 0 and n + 1, respectively, and N = {1,...,n} is the set of customer
nodes. Let P C V be a subset of nodes; the in-arcs and out-arcs of P are defined as

5~ (P)={(i,j)€A:i¢ P,j € P} and 6*(P) ={(i,j) € A:i€ P,j ¢ P}.

Each customer ¢ € N is associated with a demand quantity ¢;, a service time s;, and
a time window [oy, §;] within which the delivery must start. The depot also operates
within its time window, denoted as [ag, fp] for node 0 and [ay41, fni1] for node n + 1

with ag = a1 and By = B,1. Time window constraints are considered hard, meaning
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that no deliveries can be made outside these specified periods. The travel cost between
nodes ¢ and j is denoted by ¢;;, while the travel time is ¢;;, and the euclidean distance is
represented as d;;. We assume c¢;; = t;; = d;; throughout the study. In cases where the
company’s fleet cannot fulfill all customers, a 3PL covers unmet demands, incurring an

additional cost of f x D per delivery where f is a coefficient and D = max; jcy d;;.

Each vehicle k € K, with a capacity @), starts at the depot and must return to it before
time T' (T' = f,+1). Each driver k is available during the interval [ag, bg], with 0 < a; <
b, < T, and receives an hourly salary of h;. Drivers need to be assigned to a shift, which
is an uninterrupted time interval defined by its start and end times. A shift s = [os, e4] is
defined by its start time o; and end time e,, and must respect drivers availability periods
and company rules for shift duration stating that each driver can work for a maximum of d
hours, where d < T and b, —ay, < d, and a minimum of ¢ hours, where ¢ < d. Let Sy be the
set of feasible shifts for driver k& where S}, = {[05, es] | ar < o5 <es <bg, < es—o5 < ci}.
We introduce the parameter ¢ as the time increment between successive potential shift

start times, thereby aligning all start times at fixed intervals of length g.

We define the following variables to model the problem. Variable yys is binary and takes
value 1 if driver £ is assigned to shift s, and 0 otherwise. x;j; is a binary variable that
equals 1 if vehicle k uses arc (i, j) € A, and 0 otherwise. u; denotes the service start time

at node j. Finally, w; is a binary variable indicating whether the 3PL serves customer 1.

The objective of the VRPDS is to minimize the total operational cost, which includes
both delivery costs and driver salaries, while ensuring that all customers are visited. The
problem is formulated as follows.

min Z Z CijTijk + Z fDw; + Z Z (65 - Os)hkyksa (1)

keK (i,j)€A iEN kEK s€Sy

st Y Yk <1 ke K (2)

s€Sk
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DY wp=1-w ieN (3)

keEK jedt(i)
Z Tijk — Z x]zk_o k’EK,jEN (4)
€6 (J) i€t (j)
Z Lo,k = Z Yks ke K (5>
]6(57L SGSk
Z Tjntlk = Z Yks ke K (6>
j€d—(n+1) sESK

Z Z Qi < Q ke K (7)

tEN jeot (i)

ozjgujgﬂ] JGN (8)
uj = (05 + toj)yks — T(L = > wije) jENkeK (9)
SESk (i,7)€EA
< Z — SJ Yks + T(l Z xijk) j S N, ke K (10)
sESk (i,5)€A
u; > u; + (tij + s) Z 2 — T(1 — Z Tijk) (1,7) € A (11)
keK keK
uj > Z Z (toi + tij + si + ax) Ty JeN (12)
keK ieN\{0,5}
xik € {0,1} ke K,(i,j) € A (13)
w; € {0,1} ieN  (14)
yrs € {0, 1} s€S,ke K (15)
u; € RZO jeVv. (16)

The objective function (1) minimizes the total costs, including shift, routing, and 3PL
delivery costs. Constraints (2) impose that a driver must be assigned to at most one shift.
Constraints (3) guarantee that each customer is assigned to exactly one route if a driver
serves it; otherwise, it will be assigned to the 3PL. Constraints (4) are flow conservation
constraints at every intermediate node. Constraints (5)—(6) ensure that, for each driver

assigned to a shift, there is a valid path by enforcing departure from and return to the
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depot. Constraints (7) ensure that the vehicle capacity is respected. Constraints (8)-(11)
define the timing of the visits and time window at the nodes. Constraints (12) are valid
inequalities to force the visit time at any customer to be no earlier than the driver’s shift
start plus the travel and service time along any chosen arc. Finally, constraints (13)—(16)

define the nature and domain of the variables.

4 Solution algorithm

The VRPDS is NP-hard, as it generalizes the classical VRPTW by introducing endogenous
driver scheduling. Exact methods are thus impractical for larger instances. To address
this challenge, we develop a tailored heuristic that combines an Iterated Local Search
(ILS) framework with an embedded assignment optimization for driver-route pairing.
While ILS has shown strong performance on large-scale routing problems [Subramanian
et al., 2012, Mancini et al., 2021], our contribution lies in adapting and extending it to

simultaneously handle routing, scheduling, and shift-cost decisions.

k

A solution to the VRPDS is represented as a set of routes ry = (i}, 45, .. ., 1,

), where each
route is assigned to a driver k with a feasible shift s, = [og, €] that respects the driver’s
availability and company work-hour rules. Unserved customers are outsourced to the 3PL

operator.

The algorithm begins by generating an initial feasible solution. Then, an initial local
search procedure is applied to improve the solution. The ILS framework then perturbs
the current solution to explore new neighborhoods of the solution space. After the per-
turbation, a local search is applied to produce a further improved solution. Finally, an
assignment problem is solved to minimize shift costs, which reassigns routes to drivers.
The perturbation, local search, and reassigning routes to drivers are repeated iteratively

until a termination condition is met.
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Our ILS is tailored to the integrated nature of VRPDS in three ways. First, every local
move is evaluated based on the total cost, which comprises 3PL, travel, and shift-related
expenses. This ensures that route changes are considered alongside staffing and outsourc-
ing implications, rather than in separate phases. Second, we use forward time slack after
each move or perturbation to identify the smallest feasible shift for a driver that accom-
modates the constructed route. This approach will precisely adjust the shift’s start and
end times and ensure all constraints are satisfied, including driver availability. Third,
the pairing between routes and drivers is reoptimized at each iteration by solving an
assignment model that determines the most cost-effective driver for each route. This pro-
cedure ensures that the overall shift cost across all routes is minimized while maintaining

feasibility within the scheduling framework.

In the following sections, we describe the process for determining the optimal shift for

each driver and route, and provide a detailed explanation of the proposed ILS framework.

4.1 Shift optimization strategy

This section outlines the strategy for determining the optimal shift for a driver based on
their assigned route. The best shift has the shortest duration among all feasible shifts.
To identify it, we adapt the concept of forward time slack, a principle widely employed

in the vehicle routing literature (see Savelsbergh [1992] and Cordeau et al. [2004]).

For simplicity, we reindex the nodes visited on route ry as (0,1,...,1x), where 0 and [
represent the depot. The route is assumed to start as early as possible. At each node 7
on this route, we calculate the arrival time A;, the waiting time W;= max{0, a; — A;},
and the beginning of service time B;. The forward time slack F* measures how much the
start of service at node i can be delayed without violating the time windows of the route.

Savelsbergh [1992] computes it as F' = min;<;<, {ﬁj - (Bi + D i<p<; tp,p+1> }

In our context, calculating forward time slack requires an adjustment to incorporate
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service times. This ensures that both travel and service times are properly considered

when determining the slack for a given route. The modified time slack can then be
calculated as F = min;<;<, {@ — (Bi D icp<j oot T D icpe; sp> }

To find the best shift, we must determine the impact of postponing the departure from
the depot. By delaying the departure by the minimum forward time slack at the de-
pot and the total waiting time along the route, we ensure that the final arrival time
A, at the route’s endpoint remains unchanged. Specifically, we calculate the delay as:
min {FO, >0 <p<l, Wp}. Any delay beyond this value would result in a later arrival at
the endpoint. Thus, the shortest route duration that maintains feasibility and avoids

constraint violations is given by A4; — (ak + min {FO, ZO<p<lk Wp}>.

Knowing that a route is feasible if the driver’s shift aligns with their full availability period,
we aim to minimize the shift duration to reduce associated costs. To achieve this, we try to
delay the route’s start as much as possible while respecting all constraints. The forward
time slack at the depot determines the latest possible start time, Fj, plus the driver’s
availability start time, ay. This ensures the route remains feasible while minimizing the
shift cost by shortening the duration. The largest feasible start time, which we call Start,

is {“’“;fFOJ x g. The start time is rounded down to the nearest multiple of ¢ minutes.

Assuming Wk = > o<pei, Wy, Start can either be greater than az + WE or less than
ar + Wk. We can determine how it affects the end of the shift depending on which
interval the Start time falls into. If a; + Wﬁ < Start, then the end of the route will be
delayed by A = Start— (a;+WZE). Otherwise, the end time, End, will remain unchanged.
Consequently, the End of the route is defined as follows:

ﬂ-‘x if 5 ;
g if Start < ay + W7,
End = {g g

{#-‘ x g if Start > aj, + Wk.

However, End must be aligned to a standard schedule, meaning it should be divisible by

g minutes. Therefore, the end of the route is achieved by A7* = A;, + max(A,0).

CIRRELT-2025-38 13
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4.2 Initial solution

We use a constructive heuristic based on the cheapest feasible insertion to create the initial
solution. To begin with, all customers are assigned to the 3PL, and drivers are given the
largest possible shifts based on their availability. The list of candidate customers for
insertion (LC) is initialized with all customers. The process begins by generating routes

for drivers, during which customers are inserted from the LC into the drivers’ routes.

In the cheapest insertion procedure, the change in total cost when inserting a node is
calculated based on travel costs, shift adjustments, and 3PL costs, calculated as C'(j, k) =
(cij + ¢t — cu)— [+ [(ex, — o) — (e}, — 0,)] where C(j, k) represents the cost of inserting
an unassigned customer j into the route of driver k. The driver’s optimal shift before
inserting node j is denoted by [og, ex] and after inserting node j between nodes i and [,
the updated shift is [0}, €}], with o} and e), as the new start and end times, respectively.
The algorithm evaluates each potential insertion by calculating C(j, k) for every possible
customer-to-route insertion, considering capacity constraints, time windows, and driver
availability. The customer is inserted into the route offering the lowest feasible cost. If

infeasible or cost-ineffective, the customer is reassigned to the 3PL.

4.3 Local Search

This section presents the local search procedures used to improve the routing solutions
by iteratively refining the current routes through neighborhood exploration. We perform
one intra-route and four inter-route local search procedures, which are improved by reas-
signing routes to drivers and solving an assignment problem at each iteration. The best
improvement approach iteratively evaluates all possible moves within a defined neighbor-
hood, selects the one that offers the biggest improvement to the current solution, and
continues this process until no further improvements can be made. Evaluating a neigh-

borhood solution involves finding the optimal schedule for each route and ensuring that
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the schedule maintains route feasibility while minimizing the shift duration for the route.

4.3.1 Intra-route neighborhood structure

In intra-route local search, each route is improved by relocating its nodes. This process
involves assessing the impact of moving nodes within the route to reduce shift and routing
costs to potentially minimize or eliminate waiting times. The algorithm aims to find the
best move within each route by evaluating all nodes and their possible relocations. For
every non-empty route, it examines each node and assesses potential moves to determine
which relocation minimizes the total cost. It calculates the cost change for each move
and verifies its feasibility. If a feasible move reduces costs, it is selected as the best move
for that route. After applying the best move, the algorithm updates the route and moves
on to the next one. This process continues until no further cost-reducing moves can be

found across any route.

4.3.2 Inter-route neighborhood structures

We propose four inter-route neighborhood structures. The solution space is exhaustively

explored, i.e., all possible combinations are examined to find the best improvement.

Relocate Node: This local search evaluates relocating customers within existing routes,

assigning them to available drivers, or shifting a node from an existing route to 3PL.

2-opt*: Potvin and Rousseau [1995] introduced the 2-opt* for problems with time win-
dows. We iterate over two routes at a time and, for each, exchange the right-hand portion

of their routes starting from a selected customer.

Or-opt Move: The classical Or-opt method removes a sequence of two to four nodes and
reinserts it at a new position [Groér et al., 2010]. However, we evaluate all chain length

combinations and also relocate chains that include sequences of unassigned nodes.
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Cross-exchange: It swaps two chains of customers between two routes [Taillard et al.,
1997]. For each selection of two routes, chains ranging from 1 to L customers are consid-

ered for exchange, removing four edges and replacing them with four new ones.

The inter-route neighborhood structures are applied in the following order: Relocate

Node, Or-opt, 2-opt*, and Cross-exchange.

4.4 Perturbation

The main role of the perturbation process is to modify a local optimal solution by tran-
sitioning from a current solution to a neighboring one. The perturbation process involves
removing a certain number of nodes from a given solution and re-inserting them into other
positions in the routes or assigning them to the 3PL. If the number of relocated nodes is
too large, ILS behaves like random restarts; if it is too small, the search tends to return

to the same recently visited local optimum [Lourenco et al., 2003].

We apply the concentric removal method used by Maximo et al. [2024]. First, we remove
nodes and assign them to 3PL by randomly selecting a node and removing a set of d
nodes clustered around it, ensuring they remain closely grouped. Then, we check all the
unassigned nodes and determine the best insertion for each. If not feasible due to time
windows, capacity, or shift limitations, the affected nodes will be assigned to the 3PL.

During the reinsertion process, the total cost is computed, including the shift cost.

4.5 Reassigning routes to drivers

After improving the solution through the local searches, we obtain a set of routes and
assigned drivers. However, some available drivers may not have been assigned to any
shifts. Since drivers have varying salaries, we can reduce shift costs by reassigning routes

to the most cost-effective drivers, whether they are currently unassigned or already have

16 CIRRELT-2025-38



The vehicle routing problem with driver scheduling

a route. This reassignment allows for the selection of the optimal shift for each generated

route. To achieve this, we solve an assignment problem as follows:

Given a set of routes, R = {ry,79,...,7,} and the set of drivers, K, where some drivers
may not currently be assigned to any shifts, we solve the problem (17)- (20). The objective
is to minimize the cost of assigning routes to drivers and finding the best shifts. The term
cr, represents the cost associated with assigning route r to driver k. We calculate the
shift cost for each route and assign it to different drivers, considering feasibility constraints
such as availability and shift duration. If a shift is infeasible, a high penalty is assigned
to it. The binary variable x,; indicates the assignment status, where z,, = 1 if route r is

assigned to driver d, and x,; = 0 otherwise.

min Z Z CrkTrk (17)

reR ke K

s.t. Zx”f =1 reR (18)
keK
d < ke K (19)
reR
T €{0,1} reRkeK (20)

Constraints (18) ensure that each route is assigned to exactly one driver, and constraints
(19) guarantee that each driver is assigned to at most one route. Constraints (20) define

the assignment’s binary decision variables.

The optimal assignment is determined using the Hungarian algorithm [Kuhn, 2004] which
checks if this solution reduces shift costs compared to existing assignments. Subsequently,

the driver shifts and routes are updated based on the new optimal assignment.
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5 Computational results

In this section, we present and analyze the results of the computational experiments
to assess the performance of the proposed solution algorithm for the VRPDS. First, we
introduce the instances in Section 5.1. Parameters and the tuning procedure are presented
in Section 5.2. The performance of the proposed algorithm is compared against that of the
MILP solver, and the results are presented in Section 5.3. The mathematical formulation
and the proposed solution method are implemented in C++ using IBM ILOG CPLEX
Concert Technology 22.11 as the MILP solver. Computational experiments are performed
on an AMD EPYC 7532 CPU with a 2.4 GHz and a memory limit of 32 GB of RAM. A

single thread and a one-hour time limit are set.

5.1 Instance generation

The literature has no benchmark instances for the VRPDS, therefore we have generated
the following dataset for our experiments. An instance is identified as “n- |K|- Q" where
n is the number of customers, |K| the number of drivers, and @ the capacity of each
vehicle. As shown in Table 3, instances are divided into two classes based on the number
of customers: small and large. In the small class, instances with n € {10,20} are served
by |K| = 5 vehicles (capacity @ = 200), whereas those with n € {30,40,50} use |K| = 10
vehicles (capacity @ = 250). In the large class, instances with n € {100,200, 300, 400}
are handled by |K| € {20,30,40,50} vehicles with capacities @@ € {300, 350,400, 450}.
Each instance is generated using four time windows: one hour, two hours, three hours,
and a randomly selected time window among one, two, and three hours. Five instances

are created for each set. Therefore, we run 180 instances in total.

Customers are randomly placed within a 100x 100 square on a two-dimensional Euclidean

plane, with the depot centrally located at coordinates (50,50). Vehicles travel at a speed
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Table 3: Instance configurations

Instance class n |K| @
Small 10, 20 5 200
30,40,50 10 250
Large 100 20 300

200 30 350
300 40 400
400 20 450

of one unit of distance per minute. The travel time matrix is symmetric and respects the
triangular inequality. The planning horizon is from 6 AM to 6 PM, or 0 to 720 minutes,
with the depot’s time window also covering these 12 hours. Service times for each customer
are randomly assigned between 5 and 10 minutes, and demands range between 10 and
20 units. Each customer has a time window, with the start time randomly selected from
the interval (ag + toi, Bpg1 — tign+1) — Si), Where ag and 3, are the start and end times of
the depot’s time window, to; and ;,11) are the travel times between the depot and the

customer, and s; is the service time at the customer.

Drivers have fixed 4-hour availability periods, covering five time slots: [0- 240], [120-
360], [240- 480], [360- 600], and [480- 720]. These availabilities ensure full coverage of the
time horizon. If there are 5 drivers, each is assigned a unique availability. If there are
10 drivers, each availability is assigned to two drivers, and this pattern continues as the

number of drivers increases.

The salary for each driver is randomly generated between $15 and $20 per hour. For
comparison, the U.S. Bureau of Labor Statistics reports a median wage of $17.03 per
hour (25th—75th percentile: $12.45-$22.42 per hour) for delivery-truck drivers as of May
2023 [U.S. Bureau of Labor Statistics, 2024]. Additionally, the minimum working hours

per driver is 2 hours, and the maximum is 8 hours. Finally, the granularity of the shift
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start intervals, denoted by g, is set to 30 minutes, allowing shifts to start every half hour.

All instances generated for this study and a dataset with the detailed results of our

experiments can be found at https://sites.google.com/view/jfcote/.

5.2 Parameters tuning

This section presents the parameter tuning process for the ILS used to solve the VRPDS.
We perform parameter tuning on a training set of 20 instances, comprising ten small-sized

and ten large-sized instances, with varying numbers of customers.

The primary parameter selected for tuning is the number of iterations before termination,
while keeping the perturbation rate at 10% . The heuristic was executed with 100, 500,

1000, 2500, and 3500 iterations. For each iteration count, a single run was conducted.

Figure 1a illustrates the average runtime and the average gap relative to the Best Known
Solution (BKS) for each configuration. The BKS represents the best solution found across
all iterations. The results indicate a significant reduction in the gap between the solution
and the BKS when the number of iterations increases from 100 to 2500, followed by a
more gradual improvement between 2500 and 3500 iterations. However, the execution
time almost doubles with each increase in the number of iterations. Considering this
trade-off, we selected 2500 iterations as the number of iterations (maz/ter), as it makes

a balance between solution quality and computational efficiency.

Next, in Figure 1b, we evaluate the effect of the perturbation rate p on both small and large
instances, as our preliminary analysis revealed varying impacts across these instance sizes.
We tested perturbation rates of 2%, 5%, 10%, 20%, and 30%. The results, presented in
Figure 1b, show that for small instances, a perturbation rate of 20% achieves the smallest
gap, whereas for large instances, a 5% rate yields the best performance. Based on these

observations, we selected 20% for small instances and 5% for large instances as the optimal
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perturbation rates.

Gap (%) and Time (s) vs # maxIter Gap (%) vs p for Small and Large Instances

r 600

3.51 —8— Gap (%) » —-@- Small Instances

—®- Time (s) e 6| —®— Large Instances
.

3.0 /,’ r 500

r 400

0
0 500 1000 1500 2000 2500 3000 3500

maxliter 0 (%)
(a) Effect of maxIter on the performance (b) Effect of perturbation rate on the perfor-
of the ILS, p = 10%. mance of the ILS for small and large instances.

Figure 1: Parameter tuning for maxIter and the perturbation rate, p.

At each perturbation step, we modify § = p-n number of customers. The search is allowed

to run for at most mazlter = 2500 iterations.

In the next phase of tuning, we focus on selecting the operators used for ILS. As introduced
in Section 4.3, five local search operators are used. To assess their contribution, we
conducted experiments on the 20 instances mentioned earlier, where the ILS was run
without one operator at a time. Each experiment was run ten times, and the average gap
relative to the BKS across all runs is presented in Figure 2 using boxplots. The results
indicate that the Relocate Node operator is the most critical, as its removal leads to the
highest average gap of approximately 10%. In contrast, the 2-opt* operator has the least
influence on solution quality, with a gap of around 2.0%. The Intra-route operator ranks
second in importance, followed closely by the Cross-exchange local search. The remaining
operators contribute almost equally to the overall performance. Importantly, the smallest
average gap of approximately 1.5% is achieved when all operators are employed. The two

figures in Figure 2, provide complementary insights: Figure 2b, shows a better comparison
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of operators by excluding the effect of Relocate operator. Preliminary experiments also

showed that this sequence of operators is efficient.

Relocate m
Intra-route m

Or- Opt Move

20pt*

Cross exchange M H]
Assignment+ m
All operators H] D}

2 4 6 8 10 1.0 1.5 2.0 2.5 3.0

(@) Average gap (%) (b)

T —

Figure 2: Contribution of each local search to the solution quality.

5.3 Results analysis

The computational results are summarized in Tables 4 and 5. A time limit of 3600 seconds
was imposed for both methods, with the ILS also employing a stopping criterion of 2500
iterations. In these tables, “TW” refers to the length of time windows, which can be one,
two, three hours, or a random duration. “UB” and “LB” represent the average upper
and lower bounds obtained by CPLEX. The column labeled “Opt” reports the number
of instances solved to optimality, while “T(s)” indicates the average computational time
in seconds. We observe that while ILS consistently provides high-quality solutions within
the time limit, CPLEX can solve 53 out of 100 small instances to optimality. For instances

with less than 30 customers, all five are solved to optimality, but for 50 customers, only
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one out of five.

Table 4: Results from CPLEX

TW=1 TW=2 TW=3 TW = Random
Instances UB LB  Opt T(s) UB LB Opt T(s) UB LB  Opt T(s) UB LB Opt T(s)
10-5-200 689.4  689.4 5 0.1 605.1 605.1 5 0.2 566.6 566.6 5 1.8 660.5 660.5 5 0.1
20-5-200 1271.8 12718 5 0.4 10274 10274 5 149 9295 9295 5 656.1 1065.5 1065.5 5 21.0
30-10-250 1687.0 1687.0 5 63.4 1331.6 12076 1 3,453.0 1155.5 831.2 0 3,576.5 1356.1 12424 1  3,496.8
40-10-250 2048.9 20489 5 682.8 1645.0 12788 0 3,575.0 1536.3 9553 O 3,570.0 1686.8 1320.5 0  3,573.1
50-10-250 2574.7 2459.7 1  3,043.8 19455 13463 0 3,573.9 1884.3 9648 0 3,575.4 2165.8 1499.3 0 3,573.2
Average/ Total 1654.4 16314 21 758.1 1310.9 1093.0 11 2,123.4 12144 849.5 10 2,276.0 1386.9 1157.6 11 21328

As shown in Table 4, under the 1-hour time window, 21 out of 25 instances were solved to

optimality, with the four unsolved cases all belonging to the 50-10-250 set. For both the

2-hour and random time windows, 11 out of 25 instances reached optimality. Under the

3-hour time window, only 10 instances were solved. Overall, computational time increases

with both the length of the time windows and the number of customers.

To compare the solutions obtained by the proposed algorithm with those from CPLEX,

we define the Gap as the percentage difference between the UB and Z, which is the

average cost obtained by the algorithm over five runs. The gap is calculated as Gap =

100 x (Z — UB)/UB. Table 5 presents the gap and execution time for each instance,

considering the four time window scenarios for instances with up to 100 customers, as

CPLEX could not provide an upper bound for larger instances.
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Table 5: Summary of results for the ILS

TW=1 TW=2 TW=3 TW = Random

Instances  Gap(%) T(s) Gap(%) T(s) Gap(%) T(s) Gap(%) T(s)

10-5-200 2.10 1.63 2.03 1.67 4.28 1.63 0.97 1.66
20-5-200 3.84 2.50 5.30 2.58 6.49 2.74 5.14 2.71
30-10-250 4.27 4.80 4.07 5.04 3.57 5.37 4.93 4.88
40-10-250 5.56 6.67 5.53 742 -1.22 7.81 1.65 747
50-10-250 9.21 8.81 4.90 10.33 -10.89 1194 -1.20 10.11
100-20-300 6.28 30.16 -22.29 3544 -64.14 3895 -36.12 34.52

Average 5.21 9.10 -0.08 1041 -10.32 1141  -4.10 10.22

For small instances (e.g., 10-5-200 and 20-5-200), ILS produces solutions that are close
to those obtained by CPLEX, with small gaps (e.g., 2.1% and 3.84% for TW = 1). These
differences remain marginal across different time window settings, indicating that while
CPLEX finds slightly better solutions, ILS remains competitive with significantly shorter
computation times. As the problem size increases (e.g., 50-10-250 and 100-20-300), the
heuristic’s performance varies depending on the time windows. For instance, at TW = 3,
it achieves a large improvement of -64.14% for instance 100-20-300. On average, the
heuristic achieves competitive results, with an overall gap of 5.21% at TW = 1, improving
t0-0.08% at TW = 2 and reaching -10.32% at TW = 3, where it significantly outperforms
CPLEX. The execution time remains relatively low across all time window, confirming
the efficiency of the ILS, particularly for larger problem instances where computational

speed is a key factor.

For larger instances, since the solver did not provide an upper bound, we analyzed the
average (Z), best, and worst solutions, and stability gap over five runs to assess solution
quality. Table 6 shows a summary of the results for large-sized instances across different

time windows. The stability gap represents the percentage difference between the average
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Table 6: Analysis of results for large-sized instances

# Customers 200 300 400
™ Z Best  Worst  Stability Gap Z Best  Worst  Stability Gap Z Best Worst  Stability Gap
1h 6739.9 6408.8 7065.9 -5.18% 9207.8 8881.4 9473.8 -3.67% 11127.4 10835.1 11472.7 -2.70%
2h 4926.6 4787.9 5082.8 -2.91% 6340.0 6236.8 6454.6 -1.66% 7615.6 74934 77220 -1.65%
3h 4135.1 4051.2 4237.2 -2.08% 5449.6 5306.6 5596.7 -2.70% 6669.8  6534.7  6824.2 -2.07%
Random 5083.8 4960.4 5227.2 -2.49% 6681.2 6524.2 6844.2 -2.41% 8118.9  7989.5  8252.9 -1.61%
Total average 5221.4 5052.1 5403.3 -3.17% 6919.6 6737.3 7092.3 -2.61% 8382.9 8213.2 8568.0 -2.01%

and best solutions. It decreases slightly as the number of customers increases, from 3.2%
for 200 customers to 2.6% for 300 customers and 2.0% for 400 customers. Considering
the impact of customer time windows, instances with shorter TW (1h) have the highest
variability, with an average gap of 5.2% for 200 customers, compared to 3.7% for 300
customers and 2.7% for 400 customers. As TW increases to 2h and 3h, the gap narrows,
indicating that larger time windows improve solution stability. Overall, larger instances

and longer time windows yield more stable solutions across multiple runs.

6 Managerial insights

The primary goal of this section is to provide managerial insights on how changes in
policies regarding shift duration, 3PL cost, and drivers’ availability can impact costs and
the solution. These insights can help managers make informed decisions to enhance their
supply chain’s performance. In what follows, we test 50 instances with 10, 20, 30, and 40

customers with a known optimal solution.

6.1 Impact of driver availability on shift scheduling and costs

A dilemma for managers in last-mile operations is striking a balance between operational

efficiency and workforce flexibility. Our results indicate that increasing driver availability
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Table 7: Cost analysis for different availability periods

Increase
Cost  Availability: 4h 1h 2h 3h 4h  Full availability
Shift 249.0 258.2 2718 2774  284.0 286.6
Travel 625.5 613.4 6154 6029  599.1 593.2
3pl 1111.2 147.8  87.04 74.4 63.1 52.9
Total 1985.8 1019.5 974.2  954.8  946.2 932.9

can significantly reduce overall costs, primarily by reducing reliance on 3PL services. For
example, as shown in Table 7, when availability increases from 4 hours to full-day, total
costs drop by over 50%. However, the marginal cost savings decline sharply after a 2-hour
extension, with only a 2.3% gain from moving to full-day availability. For decision-makers,
this suggests a sweet spot of around 6 hours of availability, as it delivers most of the cost
benefits while avoiding the need for lengthy or inflexible shifts that may reduce driver
satisfaction or breach labor constraints. Beyond this point, the gains become marginal,
and the operational burden (e.g., managing longer shifts, risk of fatigue, or employee
dissatisfaction) may outweigh the savings. These results suggest that moderate extensions
in shift availability, possibly through voluntary overtime or flexible scheduling policies,
could deliver considerable savings with minimal negative impact. However, pushing for
full availability may not be justified unless cost reduction is the overriding priority and

labor conditions allow it.

An example of the effect of availability is illustrated in Figure 3, which shows three
solutions after increasing availability by 1 hour and 2 hours and to the full availability. In
this example, the service times are 10, 10, 5, 9, 8, 6, 7, 7, 5, 6, the corresponding demands
are 20, 18, 13, 20, 15, 18, 15, 18, 13, 14, and the time windows are [512, 632], [238, 418],
(115, 235], [144, 324], [345, 465], [302, 422], [227, 287], [326, 386], [626, 686], [575, 695] for

customers 1 through 10, respectively.
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Figure 3: Example: impact of driver availability on solution
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Table 8: Example: impact of availability on cost structure.

Availability: 4h  1h increase 2h increase Full availability

Shift cost 445.0 125.0 155.5 187.5
Travel cost 137.5 255.0 386.0 432.0
3PL cost 95.0 285.0 95.0 0.0

Total cost 677.5 665.0 636.5 619.5

As availability increases in Figure 3, the cost structure shifts. In the 1-hour increase
solution (665), Figure 3b, it is more cost-effective to assign customers to a 3PL rather than
keeping three drivers, reducing shift costs (125) and travel costs (255), but increasing 3PL
costs (285). In the 2-hour increase solution (636.5), as shown in Figure 3c, two drivers
are utilized, with extended availability, which enables them to serve more customers,
resulting in higher shift costs (155.5) and travel costs (386), but a decrease in 3PL costs
(95). Finally, with full availability, total costs fall to 619.50, and all customers are assigned
to drivers, resulting in longer routes and shifts. The cost gap between having 6 hours of
availability and full availability (12 hours) is 2.7%. At this point, managers must decide
whether to prioritize reducing total costs by encouraging longer driver availability or to
accept shorter availability that gives drivers more flexibility, potentially increasing overall

costs. Table 8 summarizes all the costs associated with this example.

6.2 Impact of working time limits

The second factor to consider for managers is the effect of shift duration on decision
making. To examine the impact of relaxing these constraints, we first set driver availability

to the planning horizon, allowing for full flexibility in scheduling.

Our findings in Table 9 suggest that removing shift duration limits, ranging from a mini-

mum of 2 hours to a maximum of 8 hours, can yield several operational benefits, including
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Table 9: Impact of ignoring shift duration on the average of some performance metrics

Total cost Shift cost Travel cost 3PL cost #Assigned drivers Capacity utilization Driver utilization

With shift limitation 684.08 201.69 428.64 53.75 12.52 0.40 0.43
Without shift limitation 673.54 202.13 423.43 47.98 12.57 0.43 0.46
Change% -1.54 0.22 -1.22 -10.73 0.43 5.92 5.62

lower delivery costs, increased capacity utilization (defined as the ratio of used capacity to
total capacity), improved driver utilization (the ratio of total assigned shifts to total avail-
ability), and reduced reliance on 3PL services. However, in many real-world contexts, shift
durations are governed by labor agreements or government regulations, limiting manage-
rial ability to implement such changes directly. Still, these results highlight the potential
value of negotiating more flexible scheduling frameworks where feasible, such as through
union discussions, pilot programs with voluntary overtime, or flexible shift bidding sys-
tems. Even incremental flexibility, when aligned with regulatory frameworks, could yield
cost savings and improve internal resource use, ultimately reducing reliance on expensive

outsourcing.

6.3 Impact of 3PL costs on customer and driver assignments

Another key concern for managers is how 3PL costs impact decision-making. To analyze
this, we set f to five different values: 0.5, 0.9, 1, 1.1, and 1.5 and test some performance
metrics shown in Figure 4. Our results reveal a clear cost-sensitivity threshold that can

guide managers in outsourcing decisions.

When 3PL costs are relatively low (f < 0.9), outsourcing offers a cost-effective way to
reduce reliance on in-house resources. This strategy can help companies scale rapidly
without expanding their fleet. However, once 3PL costs approach or exceed parity with
internal delivery costs (f > 1), the benefit of outsourcing diminishes sharply. Companies

then stabilize their operations by maintaining a core team of in-house drivers and only
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Figure 4: Impact of 3PL cost on different metrics.

outsourcing a minimal number of deliveries. This plateau effect implies that beyond a cer-
tain cost point, further increases in 3PL rates do not lead to further operational changes,
suggesting a strategic cutoff beyond which renegotiating 3PL contracts or investing in

internal capacity becomes more attractive.

7 Conclusions

In this study, we addressed the Vehicle Routing Problem with Driver Scheduling (VR-
PDS), which integrates vehicle routing with the workforce scheduling problem. We consid-
ered drivers’ availability and formulated the problem as a deterministic model to minimize
total costs, which include travel costs, shift costs, and the cost of serving customers by
the 3PL. An ILS algorithm combined with a reassignment procedure was proposed to
solve the VRPDS. Through computational experiments, we demonstrated that only a
small number of instances were solved optimally using a commercial solver, while the ILS

proved more efficient for larger instances.

This study highlights how adjusting policies related to driver availability, 3PL costs, and
shift duration can influence operational costs and resource allocation. Relaxing driver

availability lowers total costs by decreasing 3PL and traveling costs while increasing shift
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costs. Higher 3PL costs result in more customers being assigned to in-house drivers,
while loosening shift duration constraints reduces overall costs and leads to higher driver
and capacity utilization. These insights provide managers with a pathway to optimize

flexibility, cost control, and resource utilization.
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