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1 Introduction

Network design (ND) problems are integral tools for managing complex systems that
involve both a demand to be satisfied and a supply network that must be organized
to fulfill that demand. In the multi-commodity network design (MCND) setting, the
demand side is typically represented by a set of commodities, each specifying a given
quantity to be moved from a point of origin to a point of destination. The supply side
is represented by a network to be designed, enabling the efficient movement of these
commodities. MCND problems are relevant across all levels of planning, from strategic
decisions about network configuration to tactical decisions that guide the operations of
the system. The objectives of these problems are flexible and can be determined based
on requirements, including minimizing the overall cost of network design or maximizing
profit, reliability, and service levels (Crainic and Hewitt, 2020; Crainic et al., 2021).
The complexity of the MCND problems is well established (Gendron et al., 1999); how-
ever, our study incorporates additional sources of combinatorial complexity arising from
both the demand and supply sides. On the demand side, commodities are not only
characterized by their origins and destinations but are also selected subject to explicit
incompatibility constraints stemming from technical, regulatory, or safety considerations
that prohibit certain commodities from being transported together. On the supply side,
in addition to the conventional selection of arcs, our formulation explicitly incorporates
the selection of transshipment nodes from a set of predefined, available locations within
the network. This selection determines which existing nodes will serve as transshipment
points for commodity flows. These interdependent decision layers substantially expand
the solution space and increase the overall complexity of the problem. We refer to this
integrated setting as the profit-maximizing multiple incompatible-commodity network de-
sign problem with location decisions (PMICND). The objective is to maximize profit by
selecting a subset of commodities that respects incompatibility constraints, designing the
network topology (nodes and arcs), and routing compatible flows through the network.
Profit accounts for revenues from served commodities minus both fixed setup costs for
opened facilities and arcs, and variable routing costs. Each commodity must be shipped
either directly from origin to destination or via one or more open transshipment centers,
with incompatible flows kept strictly separate.
This problem is motivated by multiple real-world applications. In telecommunication net-
work design, companies determine the optimal placement of nodes (e.g., central offices,
data centers) and the set of data streams to serve, while incompatibilities may arise from
spectrum-sharing restrictions that forbid certain signals from being transmitted together
(Voicu et al., 2018). In transportation and logistics, network design decisions are strategic
and costly, making it essential to account for potential incompatibilities from the outset.
These incompatibilities can stem from the nature of the goods, regulatory restrictions,
or contractual agreements such as Dedicated Shipment Agreements, which require certain
commodities to be shipped separately using exclusive resources. For example, fragile
items like crystal glassware cannot be transported with heavy goods, and perishables
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such as fruits and vegetables often have strict compatibility requirements. Compatibility
tables, like those introduced by Lipton and Harvey (1977), help group commodities that
can be safely consolidated. Other categories requiring separation include chemicals and
food, pharmaceuticals and flammable materials, explosives and everyday goods, agricul-
tural products and pesticides, and medical waste and general cargo.
In this paper, we introduce a new MCND variant that jointly optimizes commodity se-
lection, routing, and transshipment facility selection under explicit incompatibility con-
straints. We develop a mixed-integer programming formulation for the problem and
design a Benders decomposition algorithm with acceleration strategies tailored to the
structure of the problem. The decomposition leverages the distinction between compli-
cating variables (design and location decisions) and facilitating variables (flow assign-
ments). We then conduct a computational study to compare decomposition variants and
assess the value of explicitly modeling incompatibilities and transshipment selection.
The remainder of this paper is organized as follows. Section 2 provides a concise overview
of the literature on different aspects of the current study, including location decisions in
network design, profit-maximizing frameworks, and incompatibility of flow in network
design. Sections 3 and 4 present the proposed problem setting and mathematical model,
respectively. Section 5 describes the developed Benders decomposition algorithm and ac-
celeration strategies. Section 6 discusses the best decomposition approach and provides
numerical analyses on the performance of the proposed Benders decomposition algorithm.

2 Related literature

Multi-commodity network design problems involve deciding which nodes and arcs to de-
sign, and how to route multiple commodities through the network. Classical formulations
assumed all commodities must be transported and aimed to minimize total cost. More
recent work has begun to incorporate revenue and profit, allowing carriers to select a
subset of demands to serve. By contrast, the treatment of commodity incompatibility
has largely been confined to operational problems such as vehicle-routing, and remains
scarcely explored in strategic network design. To clarify the state of the art, we organize
the literature into three themes: location and network-design decisions, profit-oriented
models, and studies that address incompatibility at any level.

2.1 Network design and location decisions

Network design problems may involve choosing nodes (facilities) and arcs to create a
network that can route multiple commodities. Hub–location (HLP) and hub–network
design (HND) models are among the most studied. In HLP, a subset of nodes is selected
as hubs to consolidate flows; HND extends this by selecting inter-hub links. Classic HND
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models assume economies of scale on hub–to–hub links and treat origin/destination nodes
as fixed (access–level arcs are not designed) (Contreras, 2021). Some studies relax these
assumptions by designing all, including the collection, transfer, and distribution arcs, and
allowing flows through multiple hubs (Taherkhani and Alumur, 2019; Contreras, 2021).
Yoon and Current (2008) showed that hub-network models can be seen as special cases
of MCND when hub locations are fixed. Another class of MCND models, often called
general network design (GND), do not distinguish hubs from customer nodes: any node
may be activated and each arc incurs a fixed charge. GND involves the joint optimization
of location, design, and non-trivial routing decisions, often accompanied by allocation
choices (Contreras and Fernández, 2012). Variants of MCND consider transshipment
network design (TND), and relay network design (RND). TND models integrate the
selection of transshipment facilities with routing; early work by Current (1988); Current
and Pirkul (1991) and Lien et al. (2011) used heuristics to locate transshipment points
and determine flows. RND models decide where to place relay facilities (for driver or
vehicle exchanges) in long-haul trucking or multimodal systems (Ali et al., 2002; Yıldız
et al., 2018). These models underline that node selection decisions are strategic and
interact strongly with subsequent routing.

2.2 Profit-maximizing network design

Traditional network design assumes fixed demand, but many carriers can choose which
commodities or orders to serve. Profit-maximizing models incorporate revenue for serving
a commodity and often allow the carrier to reject low-profit orders. In service network de-
sign (SND), Andersen and Christiansen (2009) considered a railway operator who selects
the most profitable freight contracts given uncertain demand. In MCND, Zetina et al.
(2019b) introduced a profit-oriented fixed-charge network design with elastic demand;
they used a gravity model to relate demand to travel time and incorporated service com-
mitments. Later, Huang (2021) and Bilegan et al. (2022) examined revenue management
aspects in intermodal freight networks.
Within HND, profit-maximizing variants have attracted much attention. Alibeyg et al.
(2014) formulated mixed-integer programs and Lagrangian relaxations for hub-network
design with profits, allowing demand nodes to be assigned to at most two hubs. Taherkhani
and Alumur (2019) removed this restriction and allowed flows through any number of
hubs. Oliveira et al. (2022) developed a Benders decomposition for a profit-maximizing
multiple-allocation HND, while Oliveira et al. (2023) proposed heuristics for a vari-
ant with incomplete hub networks. Cobeña et al. (2023) modeled demand elasticity
in hub-line location problem using a gravity function and formulated mixed-integer
non-linear and linear models, showing that designing a hub-line system under elastic
demand is computationally challenging and that column generation can be effective.
Newer studies further integrate pricing and outsourcing decisions. Fernandez et al. (2024)
studied a bi-level multi-commodity flow problem with outsourcing decisions. A leader
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(carrier) chooses which commodities to serve on a hub–network, sets outsourcing fees for
non-hub legs, and allocates carriers. Carriers (followers) accept or reject assignments to
maximize their profits. The bi-level problem is reformulated as a single-level program,
and the authors propose several MIP formulations (Fernandez et al., 2024). Although
these models do not consider incompatibilities, they illustrate how profit-maximizing
network design continues to evolve, adding new strategic decisions such as outsourcing
fees.

2.3 Commodity incompatibility and conflict

Real networks often carry products that cannot be transported together due to safety,
quality, or regulatory reasons. At the operational level, vehicle-routing problems with
incompatible commodities model this by preventing incompatible pairs from sharing a
vehicle or compartment. For example, Gu et al. (2023) surveyed multi-commodity VRPs
and noted that explicit commodity modeling is necessary when aggregation leads to
sub-optimal plans. At the network-design level, very few studies consider incompatibil-
ity. Şuvak et al. (2020) introduced the maximum flow problem with conflicts, where pairs
of arcs cannot carry positive flow simultaneously, and proposed Benders-decomposition
and branch-and-cut techniques. More recent studies, such as Montemanni and Smith
(2025), consolidate these developments by reviewing exact and heuristic methods for the
conflict-constrained maximum flow problem and highlighting applications in telecommu-
nications and transportation. Importantly, this work centers on single-commodity flows;
to the best of our knowledge, research on conflicting commodities in multi-commodity
network design remains unexplored. By introducing conflict constraints into a profit-
maximizing multi-commodity network design framework, our PMICND model addresses
this gap. It allows for the strategic selection of commodities, the design of transshipment
nodes and arcs, and the enforcement of incompatibility constraints across commodities,
thereby extending conflict-constrained flow concepts to a multi-commodity setting and
integrating them with profit-oriented network design.

2.4 Summary and positioning

Existing research provides a rich set of frameworks for network design, profit optimiza-
tion, and managing incompatibilities, but these three streams rarely intersect. On the
methodological side, most multi-commodity network design and hub-location models
are formulated as mixed-integer programs with fixed-charge costs. A wide range of
exact and heuristic algorithms have been proposed, including Lagrangian relaxations
(Alibeyg et al., 2014), Benders decomposition (Şuvak et al., 2020; Oliveira et al., 2022)
and column-generation procedures (Cobeña et al., 2023), which have proved effective
for network design and related problems. However, these methods have been applied
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either to profit-maximizing network design models that assume homogeneous commodi-
ties and ignore incompatibilities, or to conflict-constrained flow problems that focus on
single-commodity flows in fixed networks. As a result, there is still no solution approach
that simultaneously tackles node selection, commodity choice, and incompatibility con-
straints in a multi-commodity setting. The PMICND fills this gap by integrating all
three dimensions.
MCND and HND models decide which nodes and arcs to activate, but they typically re-
quire all commodities to be transported; profit-maximizing variants introduce commodity
selection and pricing but ignore incompatibility constraints; and conflict-constrained flow
models handle incompatibilities but assume a fixed network and omit profit considera-
tions. The PMICND problem is particularly challenging and novel because it embeds
demand selection directly into the network design process, rather than assuming a fixed
set of commodities. Each commodity is characterized by its own origin–destination pair,
demand volume, and incompatibility restrictions, which not only determine feasible flows
but also fundamentally shape the network topology to be designed. This coupling be-
tween the demand side and the supply-side configuration (nodes and arcs) greatly expands
the solution space beyond that of traditional network design, requiring simultaneous op-
timization over both the supply-side configuration, leading to a highly interdependent
and combinatorially complex decision problem. The PMICND simultaneously selects
transshipment nodes, chooses which commodities to carry based on profitability and in-
compatibility, and designs the network to route those commodities. Our review shows
that no existing model addresses all these dimensions together, underscoring the novelty
and importance of the PMICND framework. Therefore, the main contributions of the
proposed PMICND model are stated as follows:

1. A profit-maximizing framework is developed to optimize commodity selection while
accounting for incompatibilities in a multi-commodity setting where two incompat-
ible commodities cannot share capacity on the arcs. Each selected commodity must
be fully satisfied.

2. We expand the scope of MCND problems by considering the selection of nodes as
transshipment points. There is a cost associated with selecting each transshipment
point, and as a result, a specific capacity becomes available. Commodities can
select to use transshipment points or not, or even split the flow between direct and
indirect shipment.

3. An exact branch-and-Benders cut algorithm is developed to tackle the proposed
problem, ensuring that the complex interactions between node selection, commodity
routing, and incompatibility constraints can be managed computationally.
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3 Problem setting

Consider G = (N ,A) to be a directed graph, where N is the set of nodes and A ⊆ N×N
is the set of potential arcs. The PMICND problem consists of selecting a subset of arcs
from the potential arcs (i, j) ∈ A and a subset of nodes from the fixed nodes i ∈ N . For
each arc (i, j) ∈ A, fij > 0 is the fixed design cost whenever the arc is included in the
design, giving access to a capacity of uij. For each node i ∈ N , there is a fixed activation
cost fi > 0 considered if we allow the transition of flow through that node. When node
j is activated as a transshipment node, it gives access to a capacity of uj for transition.
A maximum of T ≤ |N | nodes may be selected as transshipment points.
Demands are represented by commodities. These commodities are defined on the nodes
of the network. They are shown by k ∈ K, with each commodity represented by an
origin-destination (OD) pair (O(k), D(k)) and a volume dk that represents the demand
for commodity k ∈ K. For every commodity k ∈ K, the origin and destination are dis-
tinct nodes, i.e., O(k) ̸= D(k). Each commodity, if selected to be satisfied, comes with a
revenue of rkdk. The unit flow cost for commodity k ∈ K on arc (i, j) ∈ A is ckij ≥ 0.
We specify that: (a) the origin and destination nodes of all commodities, O(k) and D(k),
are always available, incur no activation cost, and do not count toward the T -limit; (b)
only pure transshipment nodes are subject to activation and the limit T ; (c) a node
has no capacity limit unless it is activated as a transshipment node. In that case, it is
assigned a maximum capacity uj, which limits only the transit flows through node j,
i.e., flows for which j is neither the origin nor the destination. Flows originating from
or terminating at j are not subject to this limit; (d) flow of a commodity k can be split
from O(k) to D(k).
The PMICND problem designs both the supply side and the demand side of the network
simultaneously. On the demand side, it selects the most profitable commodities, each
defined by its own OD pair, volume, and incompatibility restrictions. These incompatibil-
ity requirements directly affect feasible flows and, in turn, the supply-side configuration.
This tight interdependence between commodity selection and network design expands
the network design configurations beyond MCND models, resulting in a highly combina-
torially complex decision problem. We define Λ = {λk : k ∈ K}, where each λk ⊆ K\{k}
denotes the set of commodities incompatible with commodity k, meaning they cannot be
flowed together. These incompatibility relations are non-transitive; that is, if a commod-
ity k is incompatible with some l ∈ λk, and l is incompatible with another commodity
m ∈ λl, this does not imply that m ∈ λk, unless explicitly specified. To avoid redundancy
and keep each λk concise, we define only non-mutual incompatibility relations.
For each combination of selected demands on the demand side, there needs to be a feasi-
ble route that connects the origin and destination of selected commodities. This feasible
route is achieved by the supply side of the network. On the supply side, the aim is to
design the topological structure of the network given the selected demand with the least
possible cost. The topological structure is achieved by designing the required arcs to be
present in the network, and by selecting the proper intermediary nodes to be active as a
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transshipment point.
Additionally, full-demand fulfillment is assumed. That is, if a commodity is accepted,
it must be completely satisfied, and partial fulfillment is not allowed. This encourages
the selection of the most profitable set of commodities while respecting incompatibility
constraints. As a result, the decision process involves selecting the most profitable fea-
sible combination of commodities, considering compatibility constraints. This leads to
binary demand selection decisions determining which requests to accept and which to
reject. For each unit of commodity k ∈ K, a revenue rk is earned if it is delivered to its
designated destination D(k).
The objective is to maximize the total revenue gained from satisfying the demands. This
profit consists of: (1) the revenue rk gained by serving an OD with dk, (2) the sum of
fixed costs regarding the selection of transshipment nodes in the network,(3) the sum
of fixed costs regarding selecting the arcs to be included in the network, and (4) the
transportation costs associated with moving the flow of all commodities.
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Figure 1: Impact of commodity incompatibility constraints on network flow paths. Pro-
hibiting k1 and k2 from sharing arcs alters their routing while no transshipment cost or
restriction is considered.

Figures 1 and 2 present an example involving three commodities (k1, k2, and k3) with
specified origins and destinations. Figure 1 illustrates the effect of considering commodity
incompatibility, while Figure 2 shows the impact of jointly accounting for location deci-
sions and commodity incompatibilities, assuming fℓ > fij and fℓ = fl ∀ℓ, l ∈ N , ℓ ̸=
l, (i, j) ∈ A. First, consider a case where the commodities face specific shipping restric-
tions and transshipment location decisions are not considered (Figure 1, left). In Figure
1, commodity k1 cannot be shipped with k2, and commodity k3 has no restriction. As a
result, k1 and k2 can not share capacity on the same arc and must follow separate paths,
though they may still share the same node. Consequently, the paths for k1 and k2 change
and become k1 : 1 → 2 → 3 → 4 and k2 : 2 → 8 → 7 whereas the path for k3 remains
the same k3 : 1 → 5 → 9. Now, in addition to incompatibility, if we consider the fixed
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Figure 2: Joint impact of commodity incompatibility constraints and transshipment
node selection. Simultaneously enforcing incompatibility restrictions and selecting cost-
effective transshipment nodes modifies both network topology and flow patterns.

costs associated with the selection of transshipment points, the routes will be affected, as
shown in Figure 2. It is no longer profitable to use four transshipment points (2,3,5,8),
and therefore, both commodities k2 and k3 will share the same transshipment point (8),
resulting in a network with a higher profit.
It should be noted that in some cases, shipping certain commodities may not be practical
due to high number of incompatibility requirements and limited available capacity. As
a result, maintaining network flow hinges on balancing the revenue from serving each
commodity against the costs of designing the network.

4 Mathematical formulation

This section introduces the proposed formulation for the PMICND problem. The sets
and parameters used in the model are outlined in Table (1).

The proposed PMICND model involves five decision variables, designing both the supply
and demand side of the network. On the demand side, the demand selection decisions
are modeled using the binary variable wk, which takes the value one if commodity k ∈
K is selected to be fully satisfied; and zero otherwise, indicating that the demand is
entirely rejected. On the supply side of the network, design and flow decisions will
need to be decided. Given the demand selection, network topology is determined by
the binary variable yij, indicating whether arc (i, j) ∈ A is included in the selected
network. Additionally, the binary variable zj denotes whether node j ∈ N is activated
as a transshipment point. The continuous variable xk

ij represents the flow of commodity
k ∈ K on arc (i, j) ∈ A. To enforce the incompatibility requirements specified by Λ,
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Table 1: The nomenclature of the PMICND model

Symbol Description
Sets
N Set of all nodes \transshipment nodes i, j ∈ N .
A Set of all arcs (i, j) ∈ A.
K Set of all commodities k ∈ K.
A+

i = {j ∈ N : (i, j) ∈ A} Set of outgoing arcs from node i ∈ N .
A−

i = {j ∈ N : (j, i) ∈ A} Set of incoming arcs to node i ∈ N .
λk ∈ Λ Set of incompatible commodities with commodity k ∈ K.
Λ Set of all incompatible sets: Λ = {λk : k ∈ K}.
Parameters
fi Fixed cost for selecting node i ∈ N as a transshipment node
fij Fixed cost for designing a potential arc (i, j) ∈ A
uij Capacity of arc (i, j) ∈ A.
ckij Variable cost of shipping one unit of commodity k on arc (i, j) ∈ A
rk Revenue gained from serving one unit of commodity k ∈ K.
dk Amount of demand for commodity k ∈ K.
ui Capacity of transshipment node i ∈ N .
T Maximum number of transshipment points T ≤ |N |.
Decision variables
wk A binary demand selection variable, equals one if commodity k ∈ K

is selected to be served, 0 otherwise.
yij A binary variable equals one if arc (i, j) ∈ A is selected, 0 other-

wise.
zj A binary variable equals one if node j ∈ N is considered a trans-

shipment point, 0 otherwise.
xk
ij A continuous variable representing the quantity of flow of commod-

ity k ∈ K on arc (i, j) ∈ A.
vkij A binary variable, indicating whether or not a part of commodity

k ∈ K is sent via arc (i, j) ∈ A.

the binary variable vkij is introduced to indicate whether any portion of commodity k
is transmitted via arc (i, j); it takes the value one when the arc is used for routing
commodity k, and zero otherwise.
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PMICND model

max Z =
∑
k∈K

dkrkwk −
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij −

∑
j∈N

fjzj −
∑

(i,j)∈A

fijyij (1)

s.t.
∑
j∈A+

i

xk
ij −

∑
j∈A−

i

xk
ji =


dkwk, i = O(k)

−dkwk, i = D(k)

0, i ̸= O(k), i ̸= D(k)

∀k ∈ K, i ∈ N (2)

∑
k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (3)

xk
ij ≤ uijv

k
ij ∀(i, j) ∈ A, k ∈ K (4)∑

k′∈λk

vk
′

ij ≤ |λk|(1− vkij) ∀(i, j) ∈ A, k ∈ K, λk ∈ Λ (5)∑
k∈K:

j /∈{O(k),D(k)}

∑
i∈A−

j

xk
ij ≤ ujzj ∀j ∈ N (6)

∑
j∈N

zj ≤ T (7)

zj ∈ {0, 1} ∀j ∈ N (8)

yij, v
k
ij, w

k ∈ {0, 1}, xk
ij ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (9)

The objective function (1) maximizes the profit, consisting of four terms. The first term
represents the total revenue gained from serving the selected demands. The second term
computes the total flow cost, and the last two terms represent the fixed cost of arc and
location selection, respectively. Equation (2) represents the flow conservation constraints,
which are defined according to the selected commodities. Equation (3) presents the
capacity linking constraint. This equation guarantees that the flow on each arc will
not exceed the capacity of that arc. Equations (4) and (5) satisfy the incompatibility
restrictions. The constraint (4) is a linking constraint that limits the flow to the capacity
of the links. Constraint (5) ensures that if a commodity is selected, any incompatible
commodities will not be assigned to the same capacity. Constraint (6) prohibits flow
from a transshipment point unless it is opened. This equation indicates that a node can
serve as a transshipment point for a commodity as long as it is neither the origin nor
the destination of that commodity. They also help achieve the assumption of traversing
as many transshipment nodes as needed before arriving at the destination. Equation
(7) imposes a limit on the number of transshipment nodes in the network to at most T ;
together with (6), these constraints limit the number of hops in any path to a maximum
of T + 1. Finally, equations (8) and (9) represent the domain of the decision variables.
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5 Benders Decomposition Approach

In ND problems with incompatible flows, two network designs may appear identical while
their associated flows differ significantly, posing a unique challenge. Obtaining not only
the best network design but also the optimal flow for incompatible commodities is com-
putationally demanding, especially for large instances where closing the optimality gap
is difficult. This underscores the need for an efficient and exact algorithm capable of
delivering high-quality solutions and closing the gap even on large-scale problems.
Benders decomposition algorithm (BD) is a classical decomposition technique that parti-
tions the original problem into two interdependent components: a master problem (MP)
and a sub-problem (SP) (Benders, 1962). The MP guides the solution process by propos-
ing candidate solutions, while the SP evaluates these solutions and generates feedback
to iteratively improve the MP’s formulation. We apply the BD algorithm as an exact
solution method for the proposed PMICND model. A critical question in the PMICND
context is determining the appropriate partitioning of decisions between the MP and SP.
Specifically, one must decide what information should remain in the MP to ensure effec-
tive guidance of the search, and what should be deferred to the SP to efficiently generate
informative feedback (Section 5.1).
In the BD algorithm, the original model is projected onto a subspace, which is deter-
mined by the MP decision variables. Once the projection is made, it is converted into a
dual form. As a result, an equivalent model is obtained that encompasses all the extreme
points and rays of the dual polyhedron. The extreme rays represent feasibility conditions,
while the extreme points indicate the projected cost associated with feasible projections
(Rahmaniani et al., 2017). These are incorporated into the MP through feasibility and
optimality cuts, respectively. The iterative process continues until a predefined conver-
gence criterion is met. Although BD was originally developed for linear programming
problems with continuous SP, it has been extended to SP with integer program settings
as well (Laporte and Louveaux, 1993). When the SP includes integer variables, stan-
dard duality theory does not apply, and classical Benders cuts cannot be derived. In
such cases, alternative theoretical tools or modified cut-generation techniques must be
employed to preserve the algorithm’s validity (Fontaine et al., 2021). Consequently, the
overall framework of the decomposition depends on both the modeling structure and the
continuous or discrete space of the SP.
The remainder of this section is as follows: we first discuss different approaches for de-
composing the PMICND (Section 5.1), then we describe the overall algorithmic structure
of our proposed Benders decomposition algorithm (Section 5.2), and finally, we present
the specialized enhancements proposed to accelerate the proposed Benders decomposition
algorithm (Section 5.3).
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5.1 Decomposition strategies

In BD, the MP thus guides the search process, while the SP evaluates the resulting so-
lutions and reacts to the MP’s decisions. Therefore, a central consideration is how the
complexity of the PMICND is distributed between the two problems. Assigning more
variables to the MP can improve guidance by reducing information loss from relaxation,
but at the cost of a harder MP to solve. However, restricting the SP to continuous vari-
ables simplifies cut generation via duality, yet risks producing an overly complex MP.
Hence, an effective decomposition requires a careful partition of decision variables to
balance computational burden, ensuring both strong guidance in the MP and tractable
cut generation in the SP. In ND, topological design decisions are generally considered
complicated due to their combinatorial impact (Crainic and Gendron, 2020). Since these
decisions define the network’s structural backbone and guide the routing process, they
are typically assigned to the MP, while the flow variables are delegated to the SP. The
combinatorics of the PMICND is compounded as it addresses both the supply-side de-
cisions (i.e., yij and zj) and the demand-side decisions (i.e., wk and vkij). It is natural
to include the supply-side variables in the MP, as its solution directs the search process.
However, it is the selection of commodities that ultimately drives the need for network
design; no commodities can be distributed without first designing a feasible network. As
a result, the general question posed here is: which decisions should be included in the MP
to best guide the overall search process, while also supporting a computationally efficient
solution approach? Therefore we propose four decomposition strategies to answer this
question.

(DS1): yij, zl, w
k, vkij → in MP xk

ij → in SP
(DS2): yij, zl, w

k → in MP xk
ij, v

k
ij → in SP

(DS3): yij, zl → in MP xk
ij, v

k
ij, w

k → in SP
(DS4): yij, w

k → in MP xk
ij, v

k
ij, zl → in SP

The DS1 decomposition strategy follows the classical Benders approach by which dis-
crete design variables are assigned to the MP (treated as complicating variables), while
continuous variables are sent to the SP, enabling application of continuous duality. De-
composition (DS2) is structured such that supply-side decisions are retained in the MP,
while on the demand-side, only the selection of commodities is decided in the MP. This
is justified by the fact that selected demands implicitly determine the structural re-
quirements of the supply-side. Strategy (DS3) decomposes the problem based on the
supply-side and demand-side decisions. In this strategy the supply-side decisions are
decided in MP, and demand-side decisions in SP. This approach is justified based on
the facility location and network design models where location and design are the main
components of structuring the network, therefore deciding on which arcs to route on and
which transshipment locations to select are kept with the MP, whereas (DS4) assumes
that two strategic decisions of both the supply-side and demand-side (i.e., yij and wk) are
decided in MP. The last two strategies argue whether the transshipment decision should
be decided in the MP or projected by the SP.
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Given these decomposition frameworks, we adopt generalized Benders decomposition
(GBD) when working with continuous SP, which yields generalized optimality cuts (GOC)
and generalized feasibility cuts (GFC). When integrality constraints are retained in the
SP (DS2, DS3, DS4), the dual variables are not available. In such cases, we use the in-
teger Benders decomposition (IBD) procedure, which generates integer optimality cuts
(IOC) and integer feasibility cuts (IFC).
The decomposition and cut-generation approach in DS1 differs from the other three
strategies, while DS2 aligns closely with DS3 and DS4. For clarity and brevity in pre-
senting the acceleration strategies, we provide a detailed discussion of DS1 and DS2,
with the remaining strategies deferred to Appendix A. In what follows, when referring
to the MP solutions from one of the four decomposition strategies, the following notation
will be used: ȳij, z̄j, w̄k, and v̄kij, as applicable to the MP of each specific DS.

5.1.1 Strategy DS1

Having all the complicating binary variables in the MP will result in the MP formulated
as (5),(7),(8),(10)-(14), and the SP being a linear program formulated as (15)-(23). We
use the generalized Benders decomposition (Geoffrion, 1972), as a result, a generalized
optimality cut (12) is added to the MP for each γ ∈ ΓDS1 where ΓDS1 is the set of all
integer feasible solutions for which we have Z∗

SPDS1
< θDS1 in theDS1 strategy, where θDS1

is the approximation of the SPDS1 objective function. On the other hand, a feasibility
cut (13) is added to the MP for each ω ∈ ΩDS1 where ΩDS1 is the set of all infeasible
solutions found in the B&B tree in DS1 strategy. The MP for DS1 is formulated as
follows:

max ZMPDS1
=
∑
k∈K

rkdkwk −
∑
j∈N

fjzj −
∑

(i,j)∈A

fijyij + θ (10)

s.t. (5), (7), (8) (11)

Optimality Cuts ∀γ ∈ ΓDS1 (12)

Feasibility Cuts ∀ω ∈ ΩDS1 (13)

yij, w
k, vkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (14)
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The SP for DS1 is formulated as follows:

max ZSPDS1
= −

∑
(i,j)∈A

∑
k∈K

ckijx
k
ij (15)

s.t. (2), (3), (4), (5), (6) (16)

yij = yij ∀(i, j) ∈ A (17)

wk = wk ∀k ∈ K (18)

zj = zj ∀j ∈ N (19)

vkij = vj ∀j ∈ N (20)

xk
ij ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (21)

zj ∈ [0, 1] ∀j ∈ N (22)

yij, w
k, vkij ∈ [0, 1] ∀(i, j) ∈ A, k ∈ K (23)

Let yij, w
k, vkij, and zj denote the copy-variables in subproblem SPDS1 , and let ŷij, v̂

k
ij, ŵk,

and ẑj be their corresponding optimal values obtained by solving SPDS1 . Constraints
(17)-(20) are added as a result of GBD, and β1

i,j, β
2
k , β

3
j , andβ

4
ijk represent their dual mul-

tipliers respectively. Therefore, the optimality cut for DS1 is as follows:

θ ≤−
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij +

∑
(i,j)∈A

β1
i,j(yi,j − ŷi,j) +

∑
k∈K

β2
k(wk − ŵk)

+
∑
j∈N

β3
j (zj − ẑj) +

∑
(i,j)∈A

∑
k∈K

β4
ijk(v

k
ij − v̂kij) (24)

To generate the feasibility cut, we solve the following Feasibility Sub-Problem (FSP).
FSP minimizes the amount of infeasibility caused by the choices made by the MP. Here,
ϵ denotes a decision variable that captures the amount of deviation from feasibility to be
minimized, and ϵ̂ represents its value. Let yij, w

k, vkij, and zj denote the copy-variables
in subproblem FSPDS1 , and let ŷij, v̂

k
ij, ŵk, and ẑj be their corresponding optimal values
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obtained by solving the following FSPDS1 .

min ZFSPDS1
=
∑
i∈N

∑
k∈K

i/∈O(k)

(ϵ1ik + ϵ2ik) +
∑
i∈N

∑
k∈K

i/∈D(k)

(ϵ3ik + ϵ4ik) +
∑
i∈N

∑
k∈K

i/∈O(k)
i/∈D(k)

(ϵ5ik + ϵ6ik)

+
∑

(i,j)∈A

ϵ7ij +
∑
k∈K

∑
(i,j)∈A

(ϵ8ijk + ϵ9ijk) +
∑
j∈N

ϵ10j (25)

s.t.
∑
j∈A+

i

xk
ij −

∑
j∈A−

i

xk
ji =


dkwk + ϵ1ik − ϵ2ik, i = O(k)

−dkwk + ϵ3ik − ϵ4ik, i = D(k)

0 + ϵ5ik − ϵ6ik, i ̸= O(k), i ̸= D(k)

∀k ∈ K, i ∈ N

(26)∑
k∈K

xk
ij ≤ uijyij + ϵ7ij ∀(i, j) ∈ A (27)

xk
ij ≤ uijv

k
ij + ϵ8ijk ∀(i, j) ∈ A, k ∈ K (28)∑

k′∈λk

vk
′

ij ≤ |λk|(1− vkij) + ϵ9ijk ∀(i, j) ∈ A, k ∈ K, λk ∈ Λ (29)∑
k∈K:

{O(k)̸=j,D(k)̸=j}

∑
i∈N :

(i,j)∈A

xk
ij ≤ ujzj + ϵ10j ∀j ∈ N (30)

yij = yij ∀(i, j) ∈ A (31)

wk = wk ∀k ∈ K (32)

zj = zj ∀j ∈ N (33)

vj = vj ∀j ∈ N (34)

ϵ1ik, ϵ
2
ik, ϵ

3
ik, ϵ

4
ik, ϵ

5
ik, ϵ

6
ik, ϵ

10
i ∈ R≥0 ∀k ∈ K, i ∈ N (35)

ϵ7ij, ϵ
8
ijk, ϵ

9
ijk ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (36)

Consider β̂1
i,j, β̂

2
k , β̂

3
j and β̂4

ijk to be the dual multipliers of constraints (31)-(34) respec-
tively. We can then generate the feasibility cut as follows:

0 ≥
∑
i∈N

( ∑
k∈K

i̸=O(k)

(ϵ̂1ik + ϵ̂2ik) +
∑
k∈K

i̸=D(k)

(ϵ̂3ik + ϵ̂4ik) +
∑
k∈K

i̸=O(k)
i̸=D(k)

(ϵ̂5ik + ϵ̂6ik)

)
+
∑

(i,j)∈A

ϵ̂7ij +
∑
k∈K

∑
(i,j)∈A

(ϵ̂8ijk + ϵ̂9ijk)

+
∑
j∈N

ϵ̂10j +
∑

(i,j)∈A

β̂1
ij(yij − ŷij) +

∑
k∈K

β̂2
k(wk − ŵk) +

∑
j∈N

β̂3
j (zj − ẑj) +

∑
(i,j)∈A

∑
k∈K

β̂4
ijk(v

k
ij − v̂kij)

(37)
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5.1.2 Strategy DS2

In this strategy, since vkij carries no fixed cost, the MP is similar to the DS1 formulation,
omitting vkij from the decision variables and retaining only constraints (7), (8). Since
the SP’s feasible space is discrete, an integer optimality cut (40) is added to the MP
for each γ ∈ ΓDS2 where ΓDS2 is the set of all integer feasible solutions for which we
have Z∗

SPDS2
< θDS2 in the DS2 strategy, where θDS2 is the approximation of the SPD2

objective function. On the other hand, a combinatorial cut (41) is added to the MP for
each ω ∈ ΩDS2 where ΩDS2 is the set of all infeasible solutions found in the B&B tree, in
DS2 strategy. The MP for DS2 is formulated as follows:

max ZMPDS2
=
∑
k∈K

rkdkwk −
∑
j∈N

fjzj −
∑

(i,j)∈A

fijyij + θ (38)

s.t. (7), (8) (39)

Optimality Cuts ∀γ ∈ ΓDS2 (40)

Feasibility Cuts ∀ω ∈ ΩDS2 (41)

yij, w
k ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (42)

The SP for DS2 is formulated as follows:

max ZSPDS2
= −

∑
(i,j)∈A

∑
k∈K

ckijx
k
ij (43)

s.t.
∑
j∈A+

i

xk
ij −

∑
j∈A−

i

xk
ji =


dkwk, ∀k ∈ K, i ∈ N , i = O(k)

−dkwk, ∀k ∈ K, i ∈ N , i = D(k)

0, ∀k ∈ K, i ∈ N , i ̸= O(k), i ̸= D(k)

(44)

∑
k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (45)

xk
ij ≤ uijv

k
ij ∀(i, j) ∈ A, k ∈ K (46)∑

k′∈λk

vk
′

ij ≤ |λk|(1− vkij) ∀(i, j) ∈ A, k ∈ K, λk ∈ Λ (47)∑
k∈K:

{O(k)̸=j,D(k)̸=j}

∑
i∈N :

(i,j)∈A

xk
ij ≤ ujzj ∀j ∈ N (48)

vkij ∈ {0, 1}, xk
ij ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (49)

The following optimality cut is added to the MPDS2 once an integer feasible solution is
found.

θ ≤ (ZSPDS2
− UBSPDS2

)
( ∑

(i,j)∈ηy

yij −
∑

(i,j)/∈ηy

yij +
∑
k∈ηw

wk −
∑
k/∈ηw

wk

+
∑
j∈ηz

zj −
∑
j /∈ηz

zj − (|ηy|+ |ηw|+ |ηz|)
)
+ ZSPDS2

(50)
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In this context, UBSPDS2
denotes an upper bound on ZSPDS2

. Furthermore, ηy = {(i, j) ∈
A : yij = 1} is the set of arcs where the variable yij takes the value 1 for that integer
feasible solution. The sets ηw and ηz are defined similarly. In cases where SPDS2 results
in an infeasible solution, we add the following combinatorial cut to exclude the current
infeasible solution from further investigation.∑

(i,j)∈ηy

(1− yi,j) +
∑

(i,j)/∈ηy

yi,j +
∑
k∈ηw

(1− wk) +
∑
k/∈ηw

wk +
∑
j∈ηz

(1− zj) +
∑
j /∈ηz

zj ≥ 1 (51)

5.2 Algorithmic structure

In the original BD approach, the mixed-integer MP is solved to optimality during every
iteration, in a cutting-plane fashion, a process that can be very demanding in terms
of computational resources. Newer methods, however, tackle the MP only once and
then integrate optimality cuts dynamically as the branch-and-bound (B&B) tree is ex-
plored. This technique, referred to as branch-and-Benders-cut (B&BC) or the Benders-
based branch-and-cut algorithm, capitalizes on callback functions available in commer-
cial solvers like Gurobi and CPLEX. We use the B&BC as it has shown to be efficient
(Bodur and Luedtke, 2017). Figure (3) illustrates the proposed B&BC. The detailed
pseudo-codes for the B&BC algorithm are provided in the appendix. In the first phase
(Algorithm 1), we relax the integrality requirements of MP and solve the root node using
a cutting-plane approach as discussed by (McDaniel and Devine, 1977). These cuts help
tighten the linear relaxation in the subsequent phase. Additionally, we obtain a lower
bound using a greedy heuristic approach (Algorithm 2) and add it as a cutoff to the sub-
sequent phase. In the second phase (Algorithm 3), the integrality conditions are restored
and the problem is solved in a branch-and-cut (B&C) fashion. This two-phase strategy
enables Gurobi to inject additional or more robust cuts into the model, leveraging the
enriched information from the initial relaxations. Whenever a cut is violated at a node,
we add that cut to the MP using lazycut. When no further cuts can be added to a
node, the algorithm moves to the next unexplored node. This process continues until the
stopping criteria are met.

5.3 Accelerating Benders decomposition algorithm

Various acceleration and improvement approaches have been introduced for the Benders
decomposition applied to network design problems (Costa, 2005; Rahmaniani et al., 2018;
Zetina et al., 2019a). This section provides the selected methods to speed up the Benders
decomposition algorithm for the PMICND problem. These methods include: (1) Modified
(non-standard) decomposition (Gendron et al., 2016). (2) Using the Benders dual cuts to
accelerate the convergence (Rahmaniani et al., 2020). (3) Strengthening the generalized
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Figure 3: Flow chart of the proposed branch & Benders cut algorithm (B&BC).

Note. Z∗
MP , LB and y are the optimal objective value of the LPR, the best lower-bound,

and an optimal solution to the problem, respectively

optimality cut (Papadakos, 2008). (4) Incorporating valid inequalities to strengthen the
MP and SP formulations. (5) Warm starting the B&BC (McDaniel and Devine, 1977).
(6) Initializing the B&B tree with a lower bound using a greedy heuristic approach.

5.3.1 Modified decomposition

Following the modified decomposition (MD) approach, also known as the nonstandard
decomposition strategy (Rahmaniani et al., 2017), we strengthen the MP by explicitly
incorporating a copy of the SP’s linear relaxation directly within the MP formulation.
This technique has been shown to significantly accelerate the Benders decomposition al-
gorithm (Gendron et al., 2016), and we therefore adopt it to enhance the efficiency of
our algorithm.
In practice, this is accomplished by duplicating the relevant decision variables and con-
straints from the SP and adding them as valid inequalities to the MP. This strategy has
the advantage of partially restoring the linking constraints (between the complicating
and facilitating decision variables, as defined by the variable partition) that are otherwise
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omitted through the BD process, thereby mitigating the relaxation of the information
associated with the SP that results from the decomposition. Moreover, this approach is
grounded in the general idea of transferring information between the MP and the SP (in
this case, from the latter to the former) as a means to enhance the Benders algorithm;
see Hewitt and Rei (2024) for a general illustration of this concept in the context of
stochastic programs. Additionally, the following valid inequality is included in the MP:

θ ≤ ZSP (52)

where ZSP denotes the objective function of the SP, expressed in terms of the duplicated
decision variables. It should be noted that this valid inequality complements the Benders
optimality cuts, as both provide upper bounds on the value of the projected term in the
MP’s objective function (i.e., θ). It is important to note that this approach does not
apply to DS1.

5.3.2 Benders dual cuts

Benders dual cuts were first introduced by Rahmaniani et al. (2020). This approach
proceeds by constructing a new MILP model for the SP, where a local copy of the MP
variables is reintroduced into the new MILP sub-problem to project those in the MP
with equality constraints. We call this reformulated problem the sub-problem with pro-
jections (SPP). This reformulation of the SP has also been used in previous studies to
generate generalized Benders cuts (Geoffrion, 1972). Next, a Lagrangian duality is ap-
plied to the SPP to price out the equality constraints that link the local copies to the
MP variables. We refer to this relaxed sub-problem as the Lagrangian dual sub-problem
(SPL). By doing this relaxation, the local variables are no longer forced to equal the MP
variables. The key advantage of this approach is that, by working with the Lagrangian
dual SP, it becomes possible to lift the Benders cuts. This lifting can be achieved either
by improving the SP value at the current Lagrangian multipliers through exploration of
the original model’s full decision space, or by directly exploring the space of Lagrangian
multipliers through the Lagrangian dual itself. Rahmaniani et al. (2020) showed that
for fractional solutions obtained from the MP, the optimality cuts generated from SPL
dominate those generated from SPP. Moreover, for integer solutions of the MP, the cuts
derived from SPL are as strong as those from SPP. The same logic applies to feasibility
cuts: the feasibility sub-problem (SPF) is constructed to generate feasibility cuts, and its
strengthened version, the Lagrangian dual feasibility sub-problem (SPFL), drives feasibil-
ity cuts via its Lagrangian duality.
We present the Benders dual cut generation approach for DS2, and the same logic ex-
tends to the other decomposition strategies. It is important to note that since in DS1,
SPPDS1 = SPDS1 and SPFDS1 = FSPDS1 , only SPL and SPFL need to be constructed.
However, for DS2, DS3, and DS4, all four sub-problems, namely SPP, SPL, SPF, and
SPFL, are required.
Strategy DS2:
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We first build SPP to derive the generalized optimality cuts. SPPDS2 is formulated as
follows:

Max ZSPPDS2
= −

∑
(i,j)∈A

∑
k∈K

ckijx
k
ij (53)

s.t. (2)− (7), (17)− (19), (21)− (23)

Assume that, ŷi,j, ŵk, ẑj and x̂k
ij are the values obtained from solving SPPDS2 and also

β1
i,j, β

2
k , and β3

j are dual multipliers of constraints (17)-(19) respectively. Therefore, the
generalized optimality cut for DS2 is as follows:

θ ≤ −
∑

(i,j)∈A

∑
k∈K

ckijx̂
k
ij +

∑
(i,j)∈A

β1
i,j(yi,j − ŷi,j) +

∑
k∈K

β2
k(wk − ŵk) +

∑
j∈N

β3
j (zj − ẑj) (54)

After solving SPPDS2 we can then solve the following SPLDS2 to generate the strength-
ened optimality cut (SOC) as follows (56).

Max ZSPLDS2
=−

∑
(i,j)∈A

∑
k∈K

ckijx
k
ij −

∑
(i,j)∈A

β1
i,j(yi,j − yi,j)

−
∑
k∈K

β2
k(wk − wk)−

∑
j∈N

β3
j (zj − zj)

(55)

s.t.(2)− (9)

Assume that, ỹi,j, w̃k, z̃j and x̃k
ij are the values obtained from solving SPLDS2 . Therefore,

the SOC for DS2 is as follows:

θ ≤ −
∑

(i,j)∈A

∑
k∈K

ckijx̃
k
ij +

∑
(i,j)∈A

β1
i,j(yi,j − ỹi,j) +

∑
k∈K

β2
k(wk − w̃k) +

∑
j∈N

β3
j (zj − z̃j) (56)

Similar to the optimality cuts, generalized and strengthened feasibility cuts can also
be derived for DS2, as presented in Appendix A.1. Consequently, each DS requires
solving two subproblems to generate strengthened optimality cuts (SPP and SPL) and
two subproblems to generate strengthened feasibility cuts (SPF and SPFL).

5.3.3 Pareto optimal cuts

Degeneracy in Benders decomposition occurs when the SP admits multiple optimal dual
solutions, requiring the selection of the deepest optimality cut that no other cut can
dominate. This is crucial for highly degenerate problems such as ND, where neglecting
this step can degrade performance (Crainic et al., 2021). Magnanti and Wong (1981)
proposed selecting dual variables for the deepest cut by solving an auxiliary SP (i.e.
Pareto SP (PSP)) alongside the SP, thereby accelerating convergence. Choosing an
appropriate core point enables the generation of Pareto-optimal cut (POC). Papadakos
(2008) further demonstrated that this approach is independent of the SP’s optimal value
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and that any convex combination of distinct core points remains valid for producing
POCs. In this study, we make use of the duals resulting in the deepest cut to generate
the SOC. Instead of deriving the duality information from SPP, it is derived from PSP
to generate stronger cuts. The core point is defined as Cyij, Cwk, Czj, Cvkij. For DS2, we
have: 

Cyij = (1− ζ)Cyij + ζyij
Cwk = (1− ζ)Cwk + ζwk

Czj = (1− ζ)Czj + ζzj

(57)

where Cyij and yij denote the core point and the current optimal MP solution, respec-
tively, and ζ ∈ (0, 1), typically set to 0.5. In PMICND, the presence of incompatible
commodities and transshipment points complicates arbitrary core initialization, as it
may render the PSP infeasible. To address this, initial core values are assigned 0.5 with
respect to the decomposition approach and updated using (57). Since commodity selec-
tions may not always satisfy incompatibility constraints, Cwk is obtained from SPN to
ensure PSP feasibility.

5.3.4 Valid inequalities

We derive a series of valid inequalities to strengthen the MP and improve the lower bound,
thereby enhancing the upper bound provided by the Benders decomposition algorithm.
One of the reasons for the slow convergence of the BD algorithm is the lack of information
regarding the network design in the MP. Thereby we introduce different sets of valid
inequalities based on the required information for MP.

� Network design based valid inequalities

Given that the problem under investigation retains a fundamental MCND structure, we
leverage inequalities originally proposed for the MCND to tighten the LPR and thereby
accelerate the BD algorithm. Two families of valid inequalities are incorporated in our
setting: (i) strong inequalities (SI) and (ii) cut-set inequalities (CI) (Rahmaniani et al.,
2018; Crainic and Gendron, 2020). While the SI can be directly added without modifi-
cation, the CI must be adapted to reflect the commodity-selection feature of our model.
The first family, SI (58), directly links the activation of an arc to the flow that can be
routed through it.

xk
ij ≤ bkijyij ∀(i, j) ∈ A, k ∈ K (58)

Where bkij = min{dk, uij}. This equation is added to the SP to improve the quality of its
LPR and also the duals passed on to the MP, and as a result of MD, it is also added to
the MP.
Additionally, the classical CI is adopted to account for the commodity selection feature of
our model. For these selected commodities, sufficient capacity must be ensured across all
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network partitions to support their flows. This cut accounts for both connectivity and arc
capacities between different OD pairs, conditional on the selection of their corresponding
demands. A cut is a division of the set N into two subsets ℓ and ℓ, where ℓ is the
complement of ℓ in N , such that there is a positive net supply across ℓ. In other words,
there exists at least one destination that is not in ℓ. A cut-set (ℓ,ℓ) includes the subset
of arcs induced by the cut (ℓ, ℓ) = {(i, j) ∈ A : i ∈ ℓ, j ∈ ℓ}.∑

(i,j)∈(ℓ,ℓ)

uijyij ≥
∑

k∈K(ℓ,ℓ)

dkwk ∀ ℓ ⊆ N , ℓ ̸= ∅
(59)

Where K(ℓ, ℓ) = {k ∈ K : O(k) ∈ ℓ,D(k) ∈ ℓ}. According to (Crainic and Gendron,
2020), adding these cuts to the MCND does not guarantee feasibility. However, these in-
equalities help reduce the non-optimal and infeasible regions, improving the lower bound
in a reasonable time. The same applies to the PMICND problem. The challenge in using
CI is dealing with the exponential number of cuts that need to be added to the MP
at each node. We use a similar approach to Chouman et al. (2017); Rahmaniani et al.
(2018) and generate cuts with the cardinality of ℓ being 1 and 2.

� Problem definition based valid inequalities

Equations (60) and (61) represent the linking constraints between defining the demand-
side and designing the supply-side. In the PMICND mode, this link was indirectly
established using the flow decisions between the corresponding binary variables wk and
yij. Inclusion of these inequalities explicitly enforces direct connections between the
corresponding binary variables. Equation (60) ensures that once a commodity is selected
to be satisfied, at least one outgoing arc from the origin node must be opened. Equation
(61) ensures that once a commodity is selected to be satisfied, at least one incoming arc
toward the destination node must be opened.

wk ≤
∑

(i,j)∈A|i=O(k)

yij ∀k ∈ K (60)

wk ≤
∑

(i,j)∈A|j=D(k)

yij ∀k ∈ K (61)

Equations (62) and (63) establish the connection between transshipment-node selection
and arc-opening decisions. In the PMICND model, this dependency was previously im-
plied through the flow variables linking zj and yij. Constraint (62) guarantees that when-
ever a candidate node is chosen as a transshipment point (and it is not the destination
of commodity k), it must be reachable through at least one incoming arc. Conversely,
constraint (63) ensures that when such a node is selected (and it is not the origin of
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commodity k), there must be at least one outgoing arc available.

zj ≤
∑
i∈A−

j

yij ∀j ∈ N , k ∈ K : j ̸= D(k) (62)

zi ≤
∑
j∈A+

i

yij ∀i ∈ N , k ∈ K : i ̸= O(k) (63)

Considering the connection between vkij with yij, we know that if a commodity k is
selected to be sent through an arc (i, j) ∈ A, then its corresponding arc and commodity
should be selected. Since in DS1, v

k
ij ∈ {0, 1} and in DS2, DS3, and DS4, v

k
ij ∈ [0, 1],

therefore, we have the following valid inequalities:

vkij ≤ yij ∀(i, j) ∈ A, k ∈ K (64)

vkij ≤ wk ∀(i, j) ∈ A, k ∈ K (65)

As a result of incompatibilities and also the limited capacities on the arcs and nodes,
choosing or neglecting a transshipment point is quite tricky. Therefore, it is best to
know whether a transshipment will be used or not as soon as the demand is selected
to be satisfied. Based on (6), whenever a commodity is selected for shipment, its flow
can either (a) go directly from its origin to destination, (b) pass through at least one
transshipment point, or (c) split between a direct route and at least one transshipment
point. Hence, we can express:

wk ≤
∑
j∈N :

j ̸=O(k), j ̸=D(k)

zj + y(O(k),D(k)) ∀k ∈ K
(66)

In addition, we observe that considering the transshipment inequality (6) for the outgoing
arcs, as illustrated in (67), as well as tightening the right-hand side (RHS) of the equa-
tions by replacing ui with ρi = min{ui,

∑
j∈A+

i
uij} ∀i ∈ N : (i, j) ∈ A, significantly

accelerates the algorithm. ∑
k∈K:

O(k)̸=i,D(k)̸=i

∑
j∈A+

i

xk
ij ≤ ρizi ∀i ∈ N

(67)

Likewise for the incoming arcs we replace uj with ρj = min{uj,
∑

i∈A−
j
uij} ∀j ∈ N :

(i, j) ∈ A. Similarly, we tighten the RHS for (4) by replacing uij with bkij, where bkij =
min{dk, uij}. These modifications

� Maximal incompatible clique cuts

A key challenge of the PMICND model lies in handling the large number of incompatible-
commodity decisions across both the MP and SP. To strengthen constraint (5), the
pairwise relations among incompatible commodities are introduced as

vk
′

ij ≤ 1− vkij ∀(i, j) ∈ A, k ∈ K, λk ∈ Λ, k′ ∈ λk (68)
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In DS1, where vkij ∈ {0, 1}, these constraints improve the lower bound, while in the
remaining decompositions they strengthen the upper bound. To further reinforce the
formulation, clique cuts are employed. When more than two commodities are mutually
incompatible, the number of pairwise relations in (68) increases rapidly; clique cuts con-
solidate these relations by enforcing only one active commodity per incompatible group,
thereby strengthening the model and reducing computational effort (Atamtürk et al.,
2000).
To derive the maximal clique cuts, we construct an undirected conflict graph C = (V , E),
where each vertex represents a commodity and an edge connects two commodities that
cannot share the same arc. To ensure symmetry, the incompatibility relations are de-
fined mutually as λ̃k ∈ Λ̃. The incompatibility structure of C may contain several fully
connected subgraphs, known as cliques. A clique is maximal if it is not a proper subset
of any larger clique.

Proposition 1. Let C = {C1,C2, . . . ,Cl} denote the set of maximal cliques identified in
C. For each arc (i, j) ∈ A and each maximal clique Cl ∈ C of the conflict graph C, the
following inequality is valid for the PMICND model:∑

k∈Cl

vkij ≤ 1 ∀(i, j) ∈ A, Cl ∈ C (69)

Proof. Proof. See Appendix A.2.

This inequality is added to the SP to improve the quality of the duals passed to the
MP, and due to master–dual (MD) interactions, it is also included in the MP. In DS1,
where vkij ∈ {0, 1}, it strengthens the lower bound, while in DS2, DS3, and DS4, where
vkij ∈ [0, 1], it tightens the linear programming relaxation (LPR).

� Upper bounding function

For any OD pair, the minimum flow cost can be determined by meeting the corresponding
demand along its shortest path. Let PO(k)D(k) denote the shortest path from O(k) to
D(k). Because the shortest path minimizes the routing cost for each commodity, the
objective value of the SP is at least as large as the cost of this cheapest route. An
important advantage of this upper-bounding function (UBF) is that it provides valuable
information for the demand selection variables. Let Ck

P (O(k),D(k)) denote the flow cost of
the shortest path for commodity k from its origin to its destination. Based on this, for
each strategy, we derive the following cut, which can be added to the MP at each node.

DS1&DS2 : θ ≤ −
∑
k∈K

Ck
P (O(k),D(k))d

kwk (70)
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Although (52) is present in MP, UBF improves the upper bound. These UBFs are
utilized in two ways. 1) They are added on the fly at each node after IOC & GOC. 2)
They improve the strength of the IOC (i.e., (50)) at each integer node by deriving the
information of UBSP from UBF. The UBF for DS3 and DS4 are presented in A.3.

5.3.5 Warm-up strategy

The warm-start strategy (WS) presented is based on the original work of (McDaniel and
Devine, 1977). We first solve the BD approach in a cutting plane manner using the
relaxed version of the MP (& SP for DS2, DS3, and DS4), and after the algorithm has
converged, we add the integrality back to the MP. The cuts added in this phase (phase
(I) are added as a warm start to the B&BC algorithm (phase (II)). Phase I uses the
GBD approach, where the optimality and feasibility cuts are derived from SPP and SPF,
respectively. In the warm-start, variables and constraints from MD are added to the MP
only after completing Phase I. Adding MD to the MP creates a tight LPR, causing Phase I
to often converge in a single iteration, effectively bypassing Phase I altogether. However,
since including these cuts at the root node significantly improves convergence, MD is
incorporated only after Phase I is completed. The warm-start phase is also restricted to
a maximum of maxiter iterations, with early termination if no improvement is observed
in α0 consecutive iterations. Before adding the cuts to Phase II, we remove the top α1%
of cuts with high slack values. The pseudocode for this warm-start procedure is shown
in Algorithm 1.

5.3.6 Lower bounding with a compatible solution

A key challenge in the PMICND model lies in determining feasible itineraries for com-
modities while satisfying both capacity limitations and incompatibility restrictions. In
particular, a commodity k may need to be split across multiple arcs to meet its incom-
patibility constraints, which, in turn, complicates the itineraries of all commodities in
its incompatibility set λk. Consequently, deciding whether to include or exclude a com-
modity with a large |λk| is critical, as its route may become excessively long or complex,
rendering it inefficient to satisfy. Therefore, initializing the B&B tree with an integer
feasible solution helps to fathom these nodes early and avoid unnecessary exploration.
We propose a two-phase greedy heuristic to tackle the PMICND. In the first phase,
each commodity k that has no incompatibilities is routed along its shortest, capacity-
respecting path. Should this path satisfy residual capacity requirements and yield a
strictly positive profit, the flow is committed by opening any necessary arcs or trans-
shipment points, updating residual capacities, and recording the selected itinerary. In
the second phase, we address commodities that exhibit incompatibility relations. For
each such commodity k, we generate up to three alternative itineraries (specifically, the
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three shortest feasible paths (e ∈ P) under the current network state). These candidate
paths are evaluated according to two criteria: net profit rkdk−

∑
e∈P ce d

k and number of
incompatibility conflicts |λk|. Commodities are then ordered in a priority queue by de-
scending profit and ascending conflict count. Iteratively, we extract the highest-priority
commodity k, recompute its candidate paths to reflect any updates in opened infras-
tructure, and allocate the flow along the first path that simultaneously respects both
capacity and incompatibility constraints. Upon completion of both phases, the heuristic
returns a set of routed flows that adhere to all capacity and incompatibility requirements,
together with the total profit of the resulting solution. The pseudo-code for this heuristic
approach is presented in Algorithm 2.

6 Numerical results and analysis

In this section, various numerical tests are conducted to investigate the efficiency of the
proposed B&BC algorithm. All algorithms are implemented in Python 3.12 and solved
using Gurobi optimizer version 11. To ensure a fair comparison, Gurobi was restricted to
a single thread. The experiments are conducted on a Linux server running at 2.67 GHz
with 32 GB RAM. All variants of the B&BC are benchmarked against the PMICND
model, which the Gurobi solver directly solves.

6.1 Data and experimental settings

Following the literature, a well-known test instance, R and C are used. These instances
are commonly used for service and multi-commodity network design problems. The R
instances are denoted as rx.y, where x represents the network size in terms of nodes,
arcs, and commodities, and y represents the specifications related to the fixed and vari-
able cost of the network design and the capacity of the arcs. Specifically we have used
135 R instances with x ranging from 04-18, and y from 1-9. For the C instances we have
used all 31 of them. Besides the incompatibility set Λ, the rest of the parameters are
presented in Table (2).
To generate the set of incompatibilities for each commodity λk, we assume that each
commodity falls into one of the following categories: (I) no incompatibilities (|λk| = 0),
(II) one or two incompatibilities, or (III) three or four incompatibilities. We use a zero-
inflated distribution to populate the set λk ∈ Λ accordingly. Let µ1 denote the fraction of
commodities with any incompatibilities, and let µ2 denote the fraction of those commodi-
ties that have one or two incompatibilities. As a result, (I) ⌊(1 − µ1)|K|⌋ commodities
have no incompatibility requirements, (II) ⌊µ1µ2|K|⌋ have one or two incompatibilities,
and (III) ⌊µ1(1− µ2)|K|⌋ have three or four incompatibilities.
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Table 2: Values of the parameters

Description Parameter Value
Flow cost ckij R& C Instance Data Set

Revenue for satisfying one unit of commodity rk U∼(
⌊
10×min(i,j)∈A{ckij}

⌋
,
⌊
20×max(i,j)∈A{ckij}

⌋
)

Capacity of arcs uij R& C Instance Data Set

Capacity of transshipment nodes uj U ∼
(
m(j)min{uij : i ∈ A+

j ∪ A−
j }, m(j)max{uij : i ∈ A+

j ∪ A−
j }
)

m(j) = max{|A+
j |, |A−

j |}
Arc design cost fij R& C Instance Data Set

Transshipment location cost fj U∼(2×minj∈N|(i,j)∈A{fij},2×maxj∈N|(i,j)∈A{fij})
Demand dk R& C Instance Data Set

6.2 Accounting for transshipment points and incompatibility in
the design phase

When commodities are mutually incompatible, ignoring demand-side incompatibility re-
quirements during supply-side design can lead to rejected demands due to flow con-
straints, reducing overall profit. To evaluate the impact of incorporating these require-
ments, we analyze two cases. In case P1, incompatibility constraints are specified on
the demand side but disregarded by the supply-side planner. In case P2, both incom-
patibility constraints and transshipment restrictions (i.e.,

∑
j∈N fjzj, (6), and (7)) are

ignored, reducing the problem to the basic profit-maximizing MCND. We compare these
cases against the proposed PMICND model while keeping supply-side design fixed. We
consider nine parameter settings: µ1 ∈ {0.2, 0.4, 0.8} and µ2 ∈ {0.3, 0.5, 0.7}. Two trans-
shipment scenarios are analyzed: (i) T = |N |, where all nodes can act as transshipment
points (Figures 4a, 4b), and (ii) T = 0.3|N |, where only a subset of nodes serve as trans-
shipment points (Figures 4c, 4d). Figures 4a and 4c illustrate case P1, comparing the
effects of considering versus neglecting incompatibility in the design phase for full and
limited transshipment networks, respectively. For these analysis we use the r12 instance.
Results indicate that selecting transshipment points from a limited set can hedge against
the effects of ignoring commodity incompatibility, ensuring profit stability, particularly
for networks with larger |K|. Figures 4b and 4d show case P2, where ignoring both incom-
patibility and transshipment requirements leads to even higher profit losses, particularly
for networks with smaller |K|, where neglecting these constraints can result in negative
profits.

6.3 Evaluating decomposition approaches

This section presents a comparative analysis of the decomposition strategies. In this
section, we consider µ1 = 0.4, µ2 = 0.7, and T = 0.5|N | for the analysis. The R instance
data sets are used for this comparison. Table 3 summarizes the three primary performance
metrics. Time (s) denotes the average solution time required by each solution approach.
The optimality gap is reported as Gap = UB−LB

UB
where UB and LB are the best upper

27

Profit Maximizing Network Design with Location  
Decisions Considering Incompatible Commodities and  Demand Selection 

CIRRELT-2025-37



(0
.2
,0
.7
)

(0
.2
,0
.5
)

(0
.2
,0
.3
)

(0
.4
,0
.7
)

(0
.4
,0
.5
)

(0
.4
,0
.3
)

(0
.8
,0
.7
)

(0
.8
,0
.5
)

(0
.8
,0
.3
)

0

2

4

·106

O
b
je
ct
iv
e
V
al
u
e

|K|=50 PMICND |K|=50 P1

|K|=100 PMICND |K|=100 P1

|K|=200 PMICND |K|=200 P1

(µ
1
,µ

2
)

(a)

(0
.2
,0
.7
)

(0
.2
,0
.5
)

(0
.2
,0
.3
)

(0
.4
,0
.7
)

(0
.4
,0
.5
)

(0
.4
,0
.3
)

(0
.8
,0
.7
)

(0
.8
,0
.5
)

(0
.8
,0
.3
)

0

2

4

·106

O
b
je
ct
iv
e
V
al
u
e

|K|=50 P2 |K|=50 PMICND

|K|=100 P2 |K|=100 PMICND

|K|=200 P2 |K|=200 PMICND

(µ
1
,µ

2
)

(b)

(0
.2
,0
.7
)

(0
.2
,0
.5
)

(0
.2
,0
.3
)

(0
.4
,0
.7
)

(0
.4
,0
.5
)

(0
.4
,0
.3
)

(0
.8
,0
.7
)

(0
.8
,0
.5
)

(0
.8
,0
.3
)

0

2

4

·106

O
b
je
ct
iv
e
V
al
u
e

(µ
1
,µ

2
)

(c)

(0
.2
,0
.7
)

(0
.2
,0
.5
)

(0
.2
,0
.3
)

(0
.4
,0
.7
)

(0
.4
,0
.5
)

(0
.4
,0
.3
)

(0
.8
,0
.7
)

(0
.8
,0
.5
)

(0
.8
,0
.3
)

0

2

4

·106

O
b
je
ct
iv
e
V
al
u
e

(µ
1
,µ

2
)

(d)

Figure 4: Comparing total profit in P1 ((4a),(4c)) and P2 ((4b),(4d)) vs PMICND for
different |K| and (µ1, µ2).

and lower bounds obtained. Finally, the dominance ratio Dratio measures the fraction of
instances on which B&BC performs at least as well as (or clearly outperforms) Gurobi.
To formalize “clear dominance,” we assign each instance to one of three categories: DB

for instances where B&BC clearly dominates Gurobi (in time or gap), DG for instances
where Gurobi clearly dominates B&BC, and DN for instances with no clear dominance.
An instance is classified as DN if any of the following conditions hold: (i) both B&BC
and Gurobi converge within 120 s (for the 7200 s limit) or 600 s (for the 18000 s limit);
(ii) both solvers converge beyond these thresholds (120 s and 600 s) but their convergence
times differ by less than 120 s; or (iii) neither solver converges within the time limit and
the difference in their optimality gaps is less than 0.02%. The dominance ratio is then
defined as Dratio = DN+DB

DN+DB+DG
reflecting the proportion of instances where B&BC

is not outperformed by Gurobi. As evidenced by the results in Table 3, strategy DS2

outperforms all other decomposition approaches with respect to solution time, optimality
gap, and Dratio. Therefore we consider this specific type of decomposition strategy for
our analysis on the proposed B&BC algorithm.
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Table 3: Analyzing decomposition strategies

R
Gurobi 11 DS1 DS2 DS3 DS4

Time(s) Gap Time(s) Gap Dratio Time(s) Gap Dratio Time(s) Gap Dratio Time(s) Gap Dratio

r04 0.3 0.0% 6020.7 46.3% 0/9 0.8 0.0% 9/9 1671.9 0.1% 6/9 7200 14.7% 0/9
r05 3.1 0.0% 7200 100% 0/9 13.6 0.0% 9/9 2402.9 0.3% 6/9 7200 35.8% 0/9
r06 56.1 0.0% 7200 100% 0/9 35.6 0.0% 9/9 1740.6 1.2% 5/9 7200 28.6% 0/9
r07 1.1 0.0% 7200 82.3% 0/9 801.8 0.0% 8/9 811.5 0.0% 8/9 7200 14.2% 0/9
r08 5.8 0.0% 7200 92.8% 0/9 13.4 0.0% 9/9 864.5 0.3% 6/9 7200 38.6% 0/9
r09 75.1 0.0% 7200 90.3% 0/9 41.6 0.0% 9/9 1725.7 0.2% 5/9 7200 36.7% 0/9
r10 571.9 0.0% 7200 100% 0/9 1222.4 0.0% 6/9 2591.7 3.3% 5/9 7200 69.9% 0/9
r11 3066.4 0.7% 7200 100% 0/9 3744.2 0.4% 5/9 6171.9 3.5% 2/9 7200 91.3% 0/9
r12 4288.9 1.5% 7200 100% 0/9 5389.7 1.2% 4/9 6569.1 8.3% 1/9 7200 96.7% 0/9
r13 4428.5 0.3% 7200 100% 0/9 2911.1 0.1% 7/9 3522.5 1.8% 5/9 7200 67.9% 0/9
r14 5404.4 1.5% 7200 100% 0/9 4279.5 0.8% 6/9 4488.9 1.6% 5/9 7200 69.2% 0/9
r15 7050.4 3.3% 7200 100% 0/9 6617.4 3.1% 6/9 6717.7 5.1% 4/9 7200 77.9% 0/9
r16 4168.5 0.3% 7200 100% 0/9 1401.9 0.0% 8/9 2129.9 0.0% 7/9 7200 67.4% 0/9
r17 7200 1.9% 7200 100% 0/9 4906 0.6% 8/9 5349.6 0.7% 8/9 7200 67.7% 0/9
r18 7200 4.6% 7200 100% 0/9 6855.9 4.1% 7/9 7200 4.4% 6/9 7200 67.9% 0/9

Average 2901.8 0.9% 7121.4 94.1% 0.0% 2549.0 0.7% 81.5% 3597.2 2.1% 58.5% 7200 56.3% 0.0%

6.4 B&BC performance

This section evaluates the performance of the proposed B&BC algorithm, with particular
emphasis on the impact of its acceleration strategies and on how problem characteristics
influence its efficiency. First, we analyze the contribution of each acceleration strategy
to determine their effectiveness in improving computational performance for a fixed µ1 =
0.4, µ2 = 0.7, and T = 0.5|N |. Subsequently, we investigate the effect of varying values
of T and the magnitude of Λ, on overall algorithmic performance, reflecting how problem
complexity scales with these factors.

6.4.1 Evaluating acceleration strategies

To quantify the individual contributions of each acceleration strategy, we perform the
analysis by systematically removing each component from B&BC and comparing the
resulting performance with the full algorithm. Certain strategies prove critical, as their
removal leads to significant performance degradation even on small instances, while the
impact of others becomes apparent only when solving large-scale problems. To this end,
we exclude MD (Section 5.3.1) and compare the outcomes with complete B&BC. In ad-
dition we also evaluate the performance of including (52) separately. These two prove
especially important, even in smaller instances. Table 4 summarizes the results for small-
and medium-sized R instances under a 3600-second time limit. Column #Sol indicates
the number of instances yielding an integer-feasible solution. As demonstrated, omitting
any of MD or (52) significantly reduces the algorithm’s ability to find feasible solutions.
Unlike MD, and (52), which show a noticeable impact even on small instances, the value
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Table 4: Evaluating the effect of MD

R
B&BC B&BC-(52) B&BC-MD

Time(s) Gap #Sol Time(s) Gap #Sol Time(s) Gap #Sol

r04 0.8 0.0% 9/9 3213.3 12.4% 9/9 3600 100% 0/9
r05 65.9 0.0% 9/9 3600 17.4% 8/9 3600 100% 0/9
r06 866.5 0.1% 9/9 3600 8.1% 9/9 3600 100% 0/9
r07 401.4 0.0% 9/9 3600 57.4% 4/9 3600 100% 0/9
r08 15.9 0.0% 9/9 3600 24.9% 7/9 3600 100% 0/9
r09 485.2 0.0% 9/9 3600 8.4% 9/9 3600 100% 0/9
r10 1239.8 0.2% 9/9 3600 33.3% 7/9 3600 100% 0/9

Average 439.4 0.0% 100% 3488.2 26.5% 79.4% 3600 100% 0.0%

of remaining acceleration strategies become more evident on large-scale instances. We
begin by examining the two key components of the B&BC algorithm: the warm start
and the greedy heuristic. Table 5 presents the results of this analysis, focusing on two
variations: (1) B&BC-GH, where the greedy heuristic is removed, preventing the use of
its initial lower bound in the second phase, and (2) B&BC-WS, where the first phase
is omitted. As illustrated, dropping either of these two components from the B&BC
worsens the overall performance in terms of Time, Gap, and DB.

Table 5: Evaluating the effect of accelerations GH & WS on the proposed B&BC

Instance |N | |A| |K| B&BC B&BC-WS B&BC-GH
Time(s) Gap DB Time(s) Gap DB Time(s) Gap DB

r11 20 120 100 1102.7 0.0% 4/9 6287.3 0.3% 4/9 6584.0 0.2% 4/9
r12 20 120 200 4931.1 0.0% 3/9 9473.5 0.3% 3/9 8747.8 0.2% 3/9
r13 20 220 40 1272.7 0.0% 7/9 5193.1 0.0% 5/9 4593.1 0.0% 5/9
r14 20 220 100 6518.7 0.4% 8/9 6460.9 0.5% 6/9 7265.3 0.5% 5/9
r15 20 220 200 14065.2 0.6% 6/9 15050.5 1.3% 6/9 15150.1 1.1% 6/9
C37-40 20 230 200 18000 1.0% 4/4 17757.8 0.7% 4/4 18000 0.8% 4/4
C45-48 20 300 200 18000 0.8% 3/4 18000 0.8% 3/4 18000 0.7% 3/4
r16 20 314 40 633.0 0.0% 7/9 2573.9 0.0% 6/9 2689.4 0.0% 6/9
r17 20 318 100 7745.5 0.2% 9/9 9027.8 0.4% 8/9 9151.6 0.3% 8/9
r18 20 315 200 16514.1 2.8% 7/9 16775.8 3.5% 6/9 16724.3 2.7% 8/9
C49-52 20 520 100 15794.3 0.3% 4/4 16795.9 0.3% 3/4 15724.1 0.2% 4/4
C53-56 30 520 400 18000 1.1% 1/4 18000 1.0% 2/4 18000 0.9% 3/4
C57-60 30 700 100 15022.5 0.1% 4/4 15067.1 0.0% 4/4 14884.2 0.0% 4/4
C61-64 30 700 400 18000 0.9% 3/4 18000 1.0% 2/4 18000 1.0% 2/4

Average 11114.4 0.58% 72.9% 12461.8 0.74% 64.6% 12394.0 0.62% 67.7%

Since there are different classes of VI, we categorize them based on their definitions and
further investigate the effect of each class by considering the following categories. a) V I1,
which consists of (60), (61), b) V I2, which consists of (62), (63), c) V I3, which consists
of (64), (65), d) V I4, which consists of (66), (67), e) network design based VIs (ND),
f) maximal incompatible clique cuts (MIC), and g) upper bounding function (UBF).
The results of this analysis are presented in the Appendix in Table (8). As illustrated,
neglecting any of the VIs leads to a drop in the overall performance of the B&BC algo-
rithm. Among these VIs, we consider ones to be more impactful if their absence leads
to a higher Gap and a lower DB, compared to when it is considered. In the event of
a tie, we prioritize Gap as the deciding factor. Based on this criterion, for T = 0.5|N |
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the relative effectiveness of the VIs can be ranked from strongest to weakest as follows:
MIC > ND > V I4 > V I3 > V I1 > UBF > V I2.
We further discuss the effect of adding cuts derived from the linear relaxation of SP in the
B&C phase in more detail. As discussed in section 5.3.2 we have excluded the feasibility
cuts derived from the linear relaxation of SP since it does not contribute much in accel-
eration. The effect of excluding these cuts on large-sized instances is presented in Table
(6). To precisely evaluate the value of these cuts, we compare three cases: (1) excluding
only feasibility cuts, which is the current approach (B&BC), (2) excluding feasibility and
optimality cuts (B&BC-OC&FC), (3) maintaining both feasibility and optimality cuts
(B&BC+FC), and the (4) effect of strengthening the SOC cuts by driving the duals
from PSP instead of SPP (B&BC-PO). By excluding the optimality cuts, we exclude
the generalized, strengthened, and Pareto-optimal cuts, whereas for the feasibility cuts
the generalized and strengthened cuts are excluded. Results indicate that keeping the
optimality cuts in the B&BC improves DB, whereas omitting feasibility cuts from the
B&BC results in an overall better performance.

Table 6: Evaluating the effect of cuts derived from the LPR of SP.

Instance |N | |A| |K| B&BC B&BC-(OC&FC) B&BC-PO B&BC+FC
Time Gap DB Time Gap DB Time Gap DB Time Gap DB

r11 20 120 100 1102.7 0.0% 4/9 7384.2 0.2% 4/9 6634.0 0.2% 4/9 6536.9 0.2% 4/9
r12 20 120 200 4931.1 0.0% 3/9 10569.9 0.8% 2/9 9332.9 0.5% 2/9 9477.0 0.6% 2/9
r13 20 220 40 1272.7 0.0% 7/9 5073.2 0.0% 5/9 4825.6 0.0% 5/9 4928.4 0.0% 5/9
r14 20 220 100 6518.7 0.4% 8/9 8174.7 0.6% 5/9 7268.0 0.5% 6/9 7287.3 0.5% 6/9
r15 20 220 200 14065.2 0.6% 6/9 15467.4 1.8% 6/9 15094.0 1.6% 6/9 15222.2 1.6% 6/9
C37-40 20 230 200 18000 1.0% 4/4 18000 1.0% 4/4 18000 1.0% 4/4 18000 1.1% 4/4
C45-48 20 300 200 18000 0.8% 3/4 18000 1.0% 1/4 18000 0.6% 3/4 18000 0.8% 3/4
r16 20 314 40 633.0 0.0% 7/9 2980.3 0.0% 6/9 2762.6 0.0% 6/9 2745.5 0.0% 6/9
r17 20 318 100 7745.5 0.2% 9/9 9775.5 0.5% 6/9 9022.3 0.4% 8/9 9279.3 0.5% 7/9
r18 20 315 200 16514.1 2.8% 7/9 16686.6 3.3% 5/9 16953.6 3.3% 5/9 16728.4 3.3% 5/9
C49-52 30 520 100 15794.3 0.3% 4/4 15917.0 0.4% 4/4 14741.8 0.2% 4/4 15968.7 0.3% 4/4
C53-56 30 520 400 18000 1.1% 1/4 18000 1.1% 2/4 18000 1.0% 1/4 18000 1.1% 1/4
C57-60 30 700 100 15022.5 0.1% 4/4 15284.8 0.1% 4/4 15166.0 0.1% 4/4 15084.9 0.1% 4/4
C61-64 30 700 400 18000 0.9% 3/4 18000 0.9% 3/4 18000 0.9% 3/4 18000 0.9% 3/4

Average 11114.4 0.58% 72.9% 12808.3 0.84% 57.3% 12388.8 0.74% 63.5% 12518.6 0.79% 62.5%

The performance of the algorithm for small-, medium-, and large-scale instances is sum-
marized in Table (7) in A.6. For small and medium-sized instances, the DB ratio remains
relatively low. However, as the problem size increases, the dominance of B&BC becomes
more evident. In fact, for large-scale instances, B&BC strongly dominates Gurobi in
72.9% of the cases, and in 86.5% of the cases, Gurobi fails to strongly dominate the
proposed B&BC.

6.4.2 Evaluating the effect of transshipment points

Constraint (7) in the PMICND formulation directly impacts route complexity by limiting
the number of candidate transshipment points, and therefore the maximum number of
hops for each commodity. When all network nodes are allowed to serve as transship-
ment points (T = |N |), the model offers maximum flexibility in route design, whereas
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restricting T to a smaller subset reduces this flexibility. We examine how variations in T
affect the performance of the proposed B&BC algorithm. Four cases are considered for
this analysis: T = {0.3|N |, 0.5|N |, 0.7|N |, |N |}. Performance is evaluated using three
metrics: Time, Gap, and DB, focusing on how the proposed acceleration strategies per-
form under these topological constraints. First, we examine the performance of WS and
GH strategies, two components of the B&BC algorithm. Figure (5) underscores their
complementary strength in enhancing algorithmic efficiency and solution quality as T
increases. Each point on the plot represents the average results over 103 large-scale R &
C instances. As illustrated, excluding either of WS or GH, increases the computational.
This additional time, however, does not yield any improvement in the other performance
measures. Excluding WS reduces DB from an average of 72.9% to 64.6%, while excluding
GH reduces it to 67.7%. Similarly, for the Gap metric, excluding WS increases the value
from an average of 0.58% to 0.74%, whereas excluding GH results in a Gap of 0.62%.
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Figure 5: Analyzing the effect of WS and GH on the overall performance of the B&BC:
(a) Gap, (b) DB, and (c) Time (s) across different transshipment point configurations

Additionally, we evaluate the quality of lower-bound solutions produced by GH. Given
that the R instances share similar network topology, they are used to assess the heuristic’s
performance under varying network characteristics, including the

fij
ckij

ratio and capacity

tightness, represented as (F/V,Cap). As illustrated in Figure (6), the y-axis represents
GapGH = MPOFV −GHOFV

MPOFV
× 100, where MPOFV is the objective function value of the MP

solved in 18000 sec time limit using B&BC, and GHOFV is the objective function value
obtained by the heuristic approach. The results show that on average this gap is approx-
imately 29.74%. Considering that the heuristic approach (Algorithm 1) solves large-sized
instances (R & C) in less than one second (approximately 0.2 sec on average), compared
to an average of approximately 7991.6 seconds required by B&BC for the large R in-
stances (r11–r18), this gap can be deemed acceptable. The quality of solution produced

by Algorithm 1 shows a slight decline relative to the optimal solution as the
fij
ckij

ratio

increases. A similar trend is observed when the network capacity becomes more con-
strained. However, in instance r12.9, where both

fij
ckij

and capacity tightness attain their
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highest levels, Algorithm 1 finds the optimal solution for all values of T . Conversely, the
worst performance occurs in instance r12.8, where the gap reaches 76.5% despite its

fij
ckij

ratio being lower than in r12.9.
Figure (7) illustrates the impact of incorporating cuts derived from the LPR of the
SP, for networks with different sizes of T . As depicted, the addition of feasibility cuts
(B&BC+FC) significantly reduces the efficiency. The performance gap between B&BC
and B&BC-(OC&FC) represents the contribution of optimality cuts. The influence of
these cuts becomes more pronounced with increasing values of T . As T increases, opti-
mality cuts derived from the LPR of SP play a more critical role in enhancing the overall
efficiency of the B&BC algorithm, specifically in DB.
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Figure 7: Evaluating the impact of individual components on the performance of the
B&BC for different |T | by comparing their (a) Gap, (b) DB, and (c) Time (s).

Additionally, we evaluate the impact of developed VIs by examining their performance
for different values of T . Figure (8) reports the results for each VI in a single block,
showing Gap, DB, and Time. The x-axis denotes the number of transshipment points,
while the left y-axis shows Gap% and normalized Time (scaled to Gap for a compact
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view). The right y-axis corresponds to DB. Each point represents the average over 103
large-scale R&C instances. For T = 0.3|N | and 0.5|N |, all proposed VIs improve the
algorithm’s performance with respect to DB. When examining all variations of T , we
observe notable trends in how different VI influence performance metrics.
For the metric DB, the MIC and V I3, demonstrate the greatest impact. On average,
across all T , excluding MIC and V I3 from B&BC reduces DB by 18.3% and 13.5%,
respectively. In contrast, excluding V I4 and V I5 increases DB by 2.3% and 0.8% re-
spectively, however, this comes at the cost of degrade in Time by an average of 343.4
and 166.1 seconds, respectively. Turning to the Gap metric, the most influential VI are
V I3 and MIC. On average, excluding these VIs results in a 31.3%, and 29.7% increase in
Gap, respectively. In contrast, excluding ND and V I5 increase the Gap by 10.3%, and
6.3%, respectively. However this comes at the cost of increase in Time by an average
of 88.1 and 166.1 seconds, respectively. A similar pattern emerges when considering the
Time metric, where MIC and V I3 again show the highest contributions. On average,
excluding these VI results in increase in Time for 1603.1 and 718.3 seconds respectively.
On average excluding none of the VI improves Time metric. Overall, considering all
performance metrics and averaging across all variations of T , MIC emerges as the most
influential VI, demonstrating the highest overall contribution.
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6.4.3 Evaluating the effect of incompatibility

A second factor influencing the computational complexity of the PMICND model is the
size of Λ. In this section, we assess the performance of B&BC under varying |Λ| and
|λk| using large R and C instances. With µ1 ∈ {0.2, 0.4, 0.8} and µ2 ∈ {0.3, 0.5, 0.7},
nine parameter combinations are examined to capture varying levels of incompatibility.
We then analyze the impact of the MIC inequality (69) by varying |Λ|. Figure 9 com-
pares B&BC and Gurobi across the different (µ1, µ2) settings, while Figure 9a presents
the dominance ratio as the number of incompatible commodities increases. The results
indicate that, as incompatibility grows, DB increases and DN decreases. Consequently,
the gap between DB and DB+DN becomes smaller, suggesting that B&BC dominates
Gurobi more consistently under higher incompatibility. In addition, the B&BC algo-
rithm provides higher-quality solutions and shorter computational times than Gurobi
when incompatibility intensifies. Figures 9b and 9c illustrate these trends. Furthermore,
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Figure 9: Impact of varying (µ1, µ2) on the performance of the B&BC algorithm on large
R and C instances, evaluated using: (a) Dominance ratio, (b) Gap%, and (c) Time (s).

as illustrated in Figure (10), we examine the impact of the MIC inequality using nine
distinct combinations of (µ1, µ2). The MIC inequality aggregates all incompatibilities of
a commodity into a single constraint and, therefore, has greater significance when, for
k ∈ K, λk > 2, i.e., when a commodity has three or more incompatibilities involved.
Its influence is thus expected to increase with ⌊µ1(1 − µ2)|K|⌋. In our analysis, µ1

ranges from 20% to 80% and µ2 varies from 30% to 70%, producing instances where
the fraction of commodities with three or four incompatibilities ranges from 6% to 56%.
Figure (10) compares the average performance of the B&BC algorithm over 103 large
instances under different incompatibility settings. Each position on the horizontal axis
corresponds to a pair (µ1, µ2). The left plot shows results obtained without incorporat-
ing MIC (B&BC-MIC), whereas the right plot includes them (B&BC). When MIC
is considered, the Gap remains below about 1.1% across all (µ1, µ2). The normalized
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Figure 10: Evaluating the impact of MIC inequality on large R and C instances when
|λk| rises, using Gap%, normalized Time, and DB.

computational time increases gradually from roughly 1 to 2.9 as |Λ| increases, indicating
stable performance despite increasing incompatibility. Moreover, the dominance measure
DB (gray bars) remains higher than 50%, and rises with the increase of |Λ| reflecting that
the majority of instances are strictly dominated compared to Gurobi. The consistent rise
in the dominance measure DB, even when 80% of commodities exhibit incompatibilities
and more than half have λk > 2, indicates that the solution quality continues to improve
despite the increasing computational complexity of the model.
In contrast, omitting the MIC inequality yields comparable performance only when in-
compatibilities are limited (i.e., less than (0.2, 0.3)); however, performance degrades no-
tably as |Λ| increases. For example, when µ2 = 0.3, increasing µ1 from 0.2 to 0.8 raises
the fraction of incompatible commodities from 20% to 80%. In this setting, the propor-
tion of commodities with λk ≤ 2 increases from 6% to 24%, while those with λk > 2
increase from 14% to 56%. Under this high-incompatibility scenario, the Gap rises from
approximately 0.8% to over 2.9%, while the normalized computational time increases
from roughly 0.65 to 5.5, with a considerable reduction in the dominance measure DB.
These results indicate that excluding MIC substantially reduces both solution quality and
computational performance when a large share of commodities exhibit multiple incom-
patibilities, underscoring the importance of integrating MIC into the B&BC algorithm.

7 Conclusion

The multi-commodity capacitated network design problem (MCND) is critical for man-
aging diverse flows while balancing cost, reliability, and performance, requiring careful
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consideration of complex configuration choices. This study addresses a variant in which
both the demand and supply sides are designed simultaneously. On the demand side,
we select the most profitable commodities to serve, considering safety and regulatory in-
compatibility requirements that restrict certain commodities from sharing capacity, thus
requiring either dedicated or compatible shipments. On the supply side, the network
is designed to maximize overall profit through the selection of arcs and transshipment
points, where transshipment nodes are those neither origins nor destinations but nec-
essary routing points. We formally define this integrated optimization problem as the
Profit-Maximizing Incompatible Multi-Commodity Network Design Problem with Loca-
tion Decisions (PMICND) and present a generic mixed-integer programming (MIP) model
applicable across telecommunications, transportation, and logistics industries. Our anal-
ysis confirms that disregarding transshipment and incompatibility requirements when
designing the demand and supply sides leads to substantial financial losses. To navigate
the problem’s complexity, especially in large-scale settings, we developed a branch &
Benders cut (B&BC) algorithm. We tested four different decompositions for the master
and subproblems and compared their performance. To boost efficiency, the algorithm
incorporates multiple acceleration techniques, such as a modified decomposition scheme,
Benders dual and Pareto-optimal cuts, a warm-start procedure, a lower-bounding heuris-
tic, and several classes of valid inequalities derived from the structural characteristics of
the PMICND. Extensive computational experiments on benchmark instances show that
the proposed algorithm performs reliably across varied network structures and incompat-
ibility settings, often surpassing commercial solvers like Gurobi. In large networks with
high levels of incompatibility, the B&BC achieved an average optimality gap of 1.3%,
compared with Gurobi’s 2.1%, and it outperformed Gurobi in roughly 72.6% of the test
instances.
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Research Chair in Stochastic Optimization of Transport and Logistics Systems. We
gratefully acknowledge the financial support provided by the Natural Sciences and En-
gineering Council of Canada (NSERC) through its Discovery Grant program, and the
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A Decomposition Strategies (DS3, DS4)

A.0.1 Strategy DS3

The MP is formulated as (71)-(76). Similar to DS2, an integer optimality cut (73) is
added to the MP for each γ ∈ ΓDS3 where ΓDS3 is the set of all integer feasible solutions
for which we have Z∗

SPDS3
< θDS3 in the DS3 strategy, where θDS3 is the approximation

of the objective function SPDS3 . On the other hand, a combinatorial cut (74) is added
to the MP for each ω ∈ ΩDS3 where ΩDS3 is the set of all infeasible solutions found in
the B&B tree, in DS3 strategy. The MP for DS3 is formulated as follows:

max ZMPDS3
= −

∑
j∈N

fjzj −
∑

(i,j)∈A

fijyij + θ (71)

s.t. (7) (72)

Optimality Cuts ∀γ ∈ ΓDS3 (73)

Feasibility Cuts ∀ω ∈ ΩDS3 (74)

zj ∈ {0, 1} ∀j ∈ N (75)

yij ∈ {0, 1} ∀(i, j) ∈ A (76)

The SP for DS3 is formulated as follows:

max ZSPDS3
=
∑
k∈K

rkdkwk −
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij (77)

s.t. (2), (4), (5) (78)∑
k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (79)∑

k∈K:
{O(k)̸=j,D(k)̸=j}

∑
i∈N :

(i,j)∈A

xk
ij ≤ ujzj ∀j ∈ N (80)

wk, vkij ∈ {0, 1}, xk
ij ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (81)

The following optimality cut is added toMPDS3 once an integer feasible solution is found.

θ ≤
(
ZSPDS3

− UBSPDS3

)
×

 ∑
(i,j)∈ηy

yij −
∑

(i,j)/∈ηy

yij +
∑
j∈ηz

zj −
∑
j /∈ηz

zj − (|ηy|+ |ηz|)

+ ZSPDS3

(82)

UBSPDS3
denotes an upper bound on ZSPDS3

. Furthermore, ηy = {(i, j) ∈ A : yij = 1} is
the set of arcs where the variable yij takes the value 1 for that integer feasible solution.
ηz is defined similarly. In cases where the SPDS3 results in an infeasible solution, we add
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the following combinatorial cut to exclude the current infeasible solution from further
being investigated.∑

(i,j)∈ηy

(1− yi,j) +
∑

(i,j)/∈ηy

yi,j +
∑
j∈ηz

(1− zj) +
∑
j /∈ηz

zj ≥ 1 (83)

A.0.2 Strategy DS4

The MP is formulated as (84)-(87). Likewise DS2 and DS3 an integer optimality cut (85)
is added to the MP for each γ ∈ ΓDS4 where ΓDS4 is the set of all integer feasible solutions
for which we have Z∗

SPDS4
< θDS4 in the DS4 strategy, where θDS4 is the approximation

of the SPDS4 objective function. On the other hand, a combinatorial cut (86) is added
to the MP for each ω ∈ ΩDS4 where ΩDS4 is the set of all infeasible solutions found in
the B&B tree, in DS4 strategy. The MP for DS4 is as follows:

max ZMPDS4
=
∑
k∈K

rkdkwk −
∑

(i,j)∈A

fijyij + θ (84)

s.t. Optimality Cuts ∀γ ∈ ΓDS4 (85)

Feasibility Cuts ∀ω ∈ ΩDS4 (86)

yij, w
k ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (87)

The SP for DS4 is formulated as follows:

max ZSPDS4
= −

∑
(i,j)∈A

∑
k∈K

ckijx
k
ij −

∑
j∈N

fjzj (88)

s.t. (4), (5), (6), (7), (8) (89)

∑
j∈A+

i

xk
ij −

∑
j∈A−

i

xk
ji =


dkwk, i = O(k)

−dkwk, i = D(k)

0, i ̸= O(k), i ̸= D(k)

∀k ∈ K, i ∈ N (90)

∑
k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (91)

vkij ∈ {0, 1}, xk
ij ∈ R≥0 ∀(i, j) ∈ A, k ∈ K (92)

The following optimality cut is added to the MPDS4 once an integer feasible solution is
found.

θ ≤
(
ZSPDS4

− UBSPDS4

)
×

 ∑
(i,j)∈ηy

yij −
∑

(i,j)/∈ηy

yij +
∑
k∈ηw

wk −
∑
k/∈ηw

wk − (|ηy|+ |ηw|)

+ ZSPDS4

(93)
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In this context, UBSPDS4
denotes an upper bound on ZSPDS4

. Furthermore, ηy = {(i, j) ∈
A : yij = 1} is the set of arcs where the variable yij takes the value 1 for that integer
feasible solution. The sets ηw and ηz are defined similarly. In cases where the SPDS4

results in an infeasible solution, we add the following combinatorial cut to exclude the
current infeasible solution from further being investigated.∑

(i,j)∈ηy

(1− yi,j) +
∑

(i,j)/∈ηy

yi,j +
∑
k∈ηw

(1− wk) +
∑
k/∈ηw

wk ≥ 1 (94)

A.1 Feasibility Problems

The SPFDS2 is presented as follows:

Min ZSPFDS2
=
∑
i∈N

∑
k∈K

i̸=O(k)

ϵ1ik + ϵ2ik +
∑
i∈N

∑
k∈K

i̸=D(k)

ϵ3ik + ϵ4ik +
∑
i∈N

∑
k∈K

i̸=O(k)
i̸=D(k)

ϵ5ik + ϵ6ik

+
∑

(i,j)∈A

ϵ7ij +
∑
k∈K

∑
(i,j)∈A

ϵ8ijk + ϵ9ijk +
∑
j∈N

ϵ10j

(95)

s.t. (21)− (23), (26)− (33), (35)− (36)

Consider β̂1
i,j, β̂

2
k , and β̂3

j to be the dual multipliers of constraints (31)-(33) respectively.
We can then generate the feasibility cut as follows:

0 ≥
∑
i∈N

∑
k∈K

i̸=O(k)

(ϵ̂1ik + ϵ̂2ik) +
∑
i∈N

∑
k∈K

i̸=D(k)

(ϵ̂3ik + ϵ̂4ik) +
∑
i∈N

∑
k∈K

i̸=O(k)
i̸=D(k)

(ϵ̂5ik + ϵ̂6ik) +
∑

(i,j)∈A

ϵ̂7ij +
∑
k∈K

∑
(i,j)∈A

(ϵ̂8ijk + ϵ̂9ijk)

+
∑
j∈N

ϵ̂10j +
∑

(i,j)∈A

β̂1
i,j(yi,j − ŷi,j) +

∑
k∈K

β̂2
k(wk − ŵk) +

∑
j∈N

β̂3
j (zj − ẑj)

(96)

After generating feasibility cuts (96), the following feasibility problem (SPFLDS2) can
be solved to generate strengthened feasibility cuts (98). Similarly, ϵ denotes a decision
variable that captures the amount of deviation from feasibility to be minimized, and ϵ̃
represents its value.

Min ZSPFL =
∑
i∈N

∑
k∈K

i̸=O(k)

ϵ1ik + ϵ2ik +
∑
i∈N

∑
k∈K

i̸=D(k)

ϵ3ik + ϵ4ik +
∑
i∈N

∑
k∈K

i̸=O(k)
i̸=D(k)

ϵ5ik + ϵ6ik

+
∑

(i,j)∈A

ϵ7ij +
∑
k∈K

∑
(i,j)∈A

ϵ8ijk + ϵ9ijk +
∑
j∈N

ϵ10j −
∑

(i,j)∈A

β̂1
i,j(yi,j − yi,j)

−
∑
k∈K

β̂2
k(wk − wk)−

∑
j∈N

β̂3
j (zj − zj)

(97)
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s.t.(8), (9), (26)− (33), (35)− (36)

Assume that, ỹi,j, w̃k and z̃j are the values obtained from solving SPFLDS2 . We can
then generate the strengthened feasibility cut as follows:

0 ≥
∑
i∈N

∑
k∈K

i̸=O(k)

ϵ̃1ik + ϵ̃2ik +
∑
i∈N

∑
k∈K

i̸=D(k)

ϵ̃3ik + ϵ̃4ik +
∑
i∈N

∑
k∈K

i̸=O(k)
i̸=D(k)

ϵ̃5ik + ϵ̃6ik +
∑

(i,j)∈A

ϵ̃7ij +
∑
k∈K

∑
(i,j)∈A

ϵ̃8ijk + ϵ̃9ijk

+
∑
j∈N

ϵ̃10j +
∑

(i,j)∈A

β̂1
i,j(yi,j − ỹi,j) +

∑
k∈K

β̂2
k(wk − w̃k) +

∑
j∈N

β̂3
j (zj − z̃j)

(98)

A.2 Proof of Proposition 1.

Proof. Proof. A clique in the conflict graph C is a complete subgraph where every pair
of vertices (commodities) is connected by an edge, meaning all commodities in the clique
are mutually incompatible. A maximal clique is one not properly contained in any larger
clique. Due to mutual incompatibility, at most one commodity from any clique can be
routed on a given arc (i, j), as selecting two or more would violate the incompatibility
constraints enforced in the model. Thus, the sum of the binary (or relaxed) variables vkij
over commodities k ∈ Cl cannot exceed 1. It should be noted that the following always
holds: |Cl| ≥ 2. However, in the case of |Cl| = 2, cliques are already imposed via (68),
therefore cliques found for |Cl| ≥ 3 aggregates multiple pairwise inequalities from (68)
into a single, stronger cut, reducing redundancy while preserving validity.

A.3 UBF for DS3 and DS4

Considering the objective function of the SP for each ofDS3 andDS4, their corresponding
upper-bounding function will be as follows:

DS3 : θ ≤
∑
k∈K

wkrkdk −
∑
k∈K

Ck
P (O(k),D(k))d

kwk (99)

DS4 : θ ≤ −
∑
k∈K

Ck
P (O(k),D(k))d

kwk −
∑
j∈N

fjzj (100)

A.4 Pseudo codes
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Algorithm 1 Benders Decomposition Cutting Plane (Phase I)

Relax the integrality of MP variables (based on DS)
Init cpiter = 0, stableiter = 0, prevobj =∞, maxiter, α0, α1

while cpiter < maxiter do
cpiter ← cpiter + 1
Solve MP, get currobj
if |currobj − prevobj | < 10−6 then

stableiter ← stableiter + 1
if stableiter ≥ α0 then

break
end

else
stableiter ← 0

end
prevobj ← currobj
Solve SP with MP solution
if SP infeasible then

Add generalized feasibility cut
else if SP.objVal < θ then

Add generalized optimality cut
end
Remove top α1% slack cuts and restore integrality of MP variables

Algorithm 2 Greedy Heuristic for Incompatible Commodities

Procedure Greedy Heuristic(Network data)
Initialize data structures for network state

// Phase 1: Process compatible commodities

for each commodity k without incompatibilities do
path ← FindFeasiblePath(k)
if path exists and satisfies capacity then

if profit of k on path > 0 then
Select k and update network

end

end

end
// Phase 2: Process incompatible commodities

Create priority queue Q prioritized by high profit & low degree of incompatibility
for each commodity k with incompatibilities do

path ← FindFeasiblePath(k)
if path exists and profit > 0 then

Add k to Q
end

end
while Q ̸= ∅ do

Extract most profitable k from Q
if k is compatible and fits capacity then

Select k and update network
end

end
Output Heuristic OFV
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Algorithm 3 Accelerated branch & Benders cut algorithm (Phase II)
Initialization:

1. Apply MD on MP and initialize tree T with MP.

2. Initialize T with cuts from Phase I.

3. Consider the Heuristic OFV as a Cutoff to prune nodes.

while T not empty do
select a node from T and solve:
if in root node then

if DS1 then
for each fractional solution do

if Corresponding SP is feasible then
Add POC & SOC

else
Add SFC

end

end

end
for each integer solution do

if Corresponding SP is feasible then
DS1 : Add GOC, POC & UBF / DS2,DS3,DS4 : also add SOC and IOC

else
DS1 : Add GFC / feasibility cuts discarded in DS2,DS3,DS4

end

end

else
if DS1 then

for once every α2 nodes in fractional solutions do
if SP is feasible then

Add POC & SOC
else

Add SFC
end

end

end
for each integer solution do

if Corresponding SP is feasible then
DS1 : Add GOC, POC & UBF / DS2,DS3,DS4 : also add SOC and IOC

else
DS1 : Add GFC / feasibility cuts discarded in DS2,DS3,DS4

end

end

end

end

A.5 Implementation details of the B&BC

As discussed in Section 5.2, we implement the Benders decomposition algorithm in two
phases. In the first phase, we solve the root node by relaxing the MP and SP (in

47

Profit Maximizing Network Design with Location  
Decisions Considering Incompatible Commodities and  Demand Selection 

CIRRELT-2025-37



DS2, DS3, and DS4) and apply a classical cutting-plane procedure. We also incorporate
the VIs into the MP (for DS2: equations (59), (60)–(63), and (66)). Since both MP
and SP integrality constraints are relaxed in this stage, the resulting SP often becomes
highly infeasible, leading to only marginal improvements in the objective value. Based
on preliminary experiments, we set cpmax-iter = 20, α0 = 3, and α1 = 10%. In the second
phase, we restore the integrality conditions and apply MD (excluding DS1) and solve
the problem using a B&C. In this phase we start exploring the search tree and for every
solution found in the tree we add an optimality or a feasibility cut. To efficiently explore
the tree, we use a greedy approach to find a feasible solution to act as a lower bound
for the MP. The VIs (for DS2: equations (58), (67), and (69)) are incorporated in this
phase as a result of MD. VIs (64), (65), and (70) are added on the fly. As illustrated in
Algorithm 3, fractional solutions are only explored for DS1 in the root node and once
every α2 = 100 nodes in the tree to strengthen the LPR. In the case of DS2,DS3 andDS4,
these fractional solutions do not provide good information for the optimality or feasibility
cuts, therefore, they are only explored at the root node to strengthen the LPR by adding
VIs ((64), (65)). Additionally, for every integer solution in the root node (for DS2,DS3

and DS4), the Benders dual and Pareto optimal cuts are added. To enhance the efficiency
of the B&BC, in the second phase, we omit the feasibility cuts derived from the LPR of
SP (for DS2, DS3, and DS4). These cuts are derived from the extreme rays of the LPR of
SP, whereas in these decomposition strategies, the focus is on the infeasibility of SP with
integrality constraints. As a result, feasibility cuts fail to convey valuable information
and have a limited impact on improving the objective function value. However, this is
not the case for DS1, where such cuts remain informative and beneficial.

A.6 Complementary results

48

Profit Maximizing Network Design with Location  
Decisions Considering Incompatible Commodities and  Demand Selection 

CIRRELT-2025-37



Table 7: B&BC vs Gurobi comparison for T = 0.5|N | candidate transshipment points.

Category Instance |N | |A| |K| Gurobi B&BC Dominance Ratio

Time(s) Gap Time(s) Gap DG DB DN

Small

r04 10 60 10 0.3 0.0% 1.0 0.0% - - 9
r05 10 60 25 2.7 0.0% 17.5 0.0% 1 - 8
r06 10 60 50 40.2 0.0% 35.2 0.0% 3 - 6
C33–36 20 230 40 6.5 0.0% 18.1 0.0% - - 4
C41–44 20 300 40 25.3 0.0% 29.7 0.0% - - 4
Avg. Small 15.0 0.0% 20.3 0.0% 20.0% 0.0% 80.0%

Medium

r07 10 82 10 1.0 0.0% 801.7 0.0% 1 - 8
r08 10 83 25 5.1 0.0% 12.1 0.0% - - 9
r09 10 83 50 38.5 0.0% 40.0 0.0% - - 9
r10 20 120 40 519.5 0.0% 1117.3 0.0% 3 - 3
Avg. Medium 141.0 0.0% 492.8 0.0% 11.1% 0.0% 88.9%

Large

r11 20 120 100 4399.5 0.2% 1102.7 0.0% 1 1 7
r12 20 120 200 6420.5 0.7% 4931.7 0.4% 4 3 2
r13 20 220 40 5204.9 0.0% 1273.2 0.0% 4 - 5
r14 20 220 100 10194.3 0.8% 6518.7 0.4% - 8 1
r15 20 220 200 15434.2 2.2% 14065.2 0.6% 3 6 -
C37–40 20 230 200 18000 1.6% 18000 1.0% - 3 1
C45–48 20 300 200 18000 0.9% 18000 0.8% - 3 1
r16 20 314 40 5689.9 0.1% 653.0 0.0% - 7 2
r17 20 318 100 17035.8 1.4% 7745.5 0.2% 1 2 6
r18 20 315 200 18000 3.5% 16514.1 2.8% 2 7 -
C49–52 30 520 100 18000 0.4% 15794.3 0.3% - 1 3
C53–56 30 520 400 18000 0.9% 18000 1.1% - 2 2
C57–60 30 700 100 15986.4 0.1% 15022.5 0.0% 1 - 3
C61–64 30 700 400 18000 1.0% 18000 0.9% 1 3 -
Avg. Large 13469.6 1.0% 11114.4 0.5% 13.5% 72.9% 13.6%
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Instance
Gurobi B&BC B&BC-MIC B&BC-ND B&BC-UBF B&BC-V I1 B&BC-V I2 B&BC-V I3 B&BC-V I4 B&BC-V I5

Time Gap Time Gap DB Time Gap DB Time Gap DB Time Gap DB Time Gap DB Time Gap DB Time Gap DB Time Gap DB Time Gap DB

r11 4399.5 0.2% 1102.7 0.0% 4/9 10303.0 0.4% 4/9 6207.8 0.3% 4/9 6765.0 0.2% 4/9 6358.8 0.2% 4/9 7404.6 0.3% 4/9 6140.5 0.2% 4/9 6483.2 0.2% 4/9 6420.3 0.1% 4/9
r12 6420.5 0.7% 4921.1 0.0% 3/9 10295.6 0.6% 3/9 7836.3 0.4% 3/9 8598.7 0.4% 3/9 8801.9 0.5% 3/9 9301.2 0.1% 3/9 8701.7 0.6% 2/9 7735.2 0.1% 3/9 8215.5 0.1% 3/9
r13 5528.9 0.0% 1272.7 0.0% 7/9 7350.0 0.3% 4/9 5184.4 0.0% 6/9 5331.7 0.0% 5/9 4999.4 0.0% 5/9 5178.8 0.0% 5/9 5310.9 0.0% 5/9 4775.7 0.0% 5/9 4720.1 0.0% 5/9
r14 10014.3 0.8% 6518.7 0.4% 8/9 8937.5 0.5% 5/9 6829.0 0.5% 6/9 6969.0 0.4% 5/9 7220.9 0.6% 5/9 7224.0 0.4% 6/9 7127.3 0.3% 5/9 6243.7 0.3% 6/9 6610.9 0.5% 6/9
r15 15434.2 2.2% 14065.2 0.6% 6/9 18000.1 1.2% 6/9 14556.7 1.3% 6/9 15089.4 1.4% 6/9 15213.6 1.2% 5/9 15391.3 1.4% 6/9 15478.4 1.6% 6/9 15412.5 1.1% 6/9 14560.9 0.8% 6/9
C37-40 18003.3 1.6% 18000.1 1.0% 4/4 18000.2 1.2% 4/4 18000.1 1.7% 4/4 18000.2 0.9% 4/4 18000.1 1.0% 4/4 18000.2 1.0% 4/4 18000.1 1.1% 4/4 18000.2 0.9% 4/4 17940.6 0.9% 4/4
C45-48 18004.1 0.9% 18000.1 0.8% 3/4 18000.2 0.6% 3/4 18000.1 0.8% 3/4 18000.2 0.7% 4/4 18000.2 0.8% 3/4 18000.2 0.9% 2/4 18000.2 0.9% 2/4 18000.2 0.8% 4/4 18000.1 0.7% 4/4
r16 5689.9 0.1% 633.0 0.0% 7/9 2745.0 0.0% 6/9 2609.1 0.0% 6/9 2602.0 0.0% 6/9 2482.1 0.0% 6/9 2502.6 0.0% 6/9 2507.6 0.0% 6/9 2469.0 0.0% 6/9 2624.5 0.0% 6/9
r17 17035.8 1.4% 1744.5 0.2% 9/9 11762.5 0.9% 6/9 7759.0 0.5% 8/9 9341.1 0.3% 7/9 9151.6 0.4% 7/9 9500.2 0.3% 8/9 9782.2 0.3% 9/9 8569.5 0.3% 9/9 8133.9 0.2% 9/9
r18 18004.1 3.5% 16514.1 2.8% 7/9 17724.1 3.7% 4/9 17159.7 2.7% 8/9 16610.6 3.5% 5/9 16845.2 2.9% 7/9 16684.6 3.2% 6/9 16934.1 3.2% 6/9 16656.8 2.9% 8/9 16645.0 2.7% 7/9
C49-52 18004.2 0.4% 15794.3 0.3% 4/4 15853.9 0.4% 3/4 16320.6 0.2% 4/4 15861.2 0.2% 4/4 16279.9 0.3% 3/4 17182.2 0.3% 4/4 18000.2 0.4% 3/4 15919.7 0.3% 4/4 15853.6 0.2% 4/4
C53-56 18020.5 0.9% 18000.6 1.1% 1/4 18000.7 1.1% 1/4 18000.7 1.0% 1/4 18000.6 1.0% 1/4 18000.7 1.0% 1/4 18000.6 1.1% 2/4 18000.6 1.2% 1/4 18000.6 1.0% 1/4 18000.7 0.7% 3/4
C57-60 15988.6 0.1% 15022.5 0.1% 4/4 15992.6 0.1% 1/4 14412.0 0.0% 4/4 15330.0 0.1% 4/4 14536.2 0.1% 2/4 15223.5 0.1% 2/4 15302.8 0.1% 1/4 14374.3 0.1% 3/4 14688.2 0.0% 3/4
C61-64 18002.7 1.0% 18000.7 0.9% 3/4 18000.7 1.0% 2/4 18000.8 0.9% 3/4 18000.1 0.9% 3/4 18000.7 0.9% 2/4 18000.7 0.9% 2/4 19000.8 1.3% 1/4 18000.7 0.9% 3/4 18000.7 0.7% 3/4

Average 13469.6 1.0% 11114.4 0.58% 72.2% 13620.0 0.91% 54.2% 12128.3 0.66% 66.7% 12464.3 0.75% 63.5% 12485.3 0.72% 62.5% 12699.6 0.71% 65.6% 12523.4 0.82% 60.4% 12188.7 0.64% 68.8% 12173.3 0.58% 70.8%

Table 8: Evaluating the effect of different classes of VI for T = 0.5|N |
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