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Abstract: Rail is a cost-effective and relatively low-emission mode for transporting 
intermodal containers over long distances. This paper addresses tactical planning of 
intermodal railroad operations by introducing a new problem that simultaneously 
considers three consolidation processes and the management of a heterogeneous railcar 
fleet. We model the problem with a scheduled service network design with resource 
management (SSND-RM) formulation, expressed as an integer linear program. While such 
formulations are challenging to solve at scale, we demonstrate that our problem can be 
tackled with a general-purpose solver when provided with high-quality warm-start 
solutions. To this end, we design a construction heuristic inspired by a relax-and-fix 
procedure. We evaluate the methodology on realistic, large-scale instances from our 
industrial partner, the Canadian National Railway Company: a North American Class I 
railroad. The computational experiments show that the proposed approach efficiently 
solves practically relevant instances, and that solutions to the SSND-RM formulation yield 
substantially more accurate capacity estimations compared to those obtained from 
simpler baseline models. Managerial insights from our study highlight that ignoring railcar 
fleet management or container loading constraints can lead to a severe underestimation 
of required capacity, which may result in costly operational inefficiencies. Furthermore, our 
results show that the use of multi-platform railcars improves overall capacity utilization and 
benefits the network, even if they can locally lead to less efficient loading as measured by 
terminal-level slot utilization performance indicators. 
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1 Introduction

Railroads move large quantities of a wide range of valuable commodities over long distances.
Rail is considered a cost-effective and relatively low-emission mode for long-distance ground
transportation and can therefore play an important role in enhancing the sustainability of
freight transportation.

Railroads are a key component of national and global supply chains and intermodal trans-
portation that is steadily and strongly growing in volume and worth. Rail intermodal transporta-
tion means moving containers loaded in single or double stacks on particular railcars. Given
its economic importance, intermodal transport has become a major component of railroad op-
erations, planning and, management. It is well known that, in order to operate efficiently and
profitably, railroads face challenging decision-making problems at all levels of planning, strate-
gic, tactical, and operational. Intermodal services require particular attention in this context
due to both customer-related factors (e.g., the need to synchronize rail–ship activities in ports
and stricter-than-usual time requirements) and operational concerns (e.g., double-stack loaded
intermodal railcars generally bypass automated sorting in classification yards). As a result,
these services typically call for dedicated planning processes.

We focus on tactical planning of intermodal railroad operations in the North American
market. This is a large market with infrastructure that enables double-stacking containers
on railcars. While this increases the number of containers that can be transported within
a given train length, it also makes the planning problem more complex. Indeed, there are
several container and railcar types with specific loading constraints (Mantovani et al. 2017). We
introduce the Intermodal Railroad Blocking and Railcar Fleet-Management (IBRM ) problem.
Taking a train service schedule as given by the railroad, we aim to build an economically and
customer-service efficient plan that simultaneously considers the selection of extra services, the
loading of containers on railcars, the blocking of loaded and empty railcars, the selection of
blocks, the distribution of demand flows through the service network, and the management of
the railcar fleet. The plan is built for a cyclic schedule of given length (e.g., a week), intended
to be repeatedly executed over the tactical-planning horizon (e.g., a season).

Particularly challenging issues in addressing the IBRM are (i) simultaneously considering
three consolidation processes: containers to railcars, railcars to blocks, and blocks to trains;
(ii) differentiating railcar and container types and representing, in a computationally efficient
way, the loading of containers onto railcars within a tactical model; and (iii) integrating the
management of a limited heterogeneous railcar fleet with the design of the blocking and service
network.

While there is an extensive literature on railroad planning, relatively few studies focus on
integrated planning and intermodal rail transport. For example, Morganti et al. (2020) is the
study closest to our work, as they focus on intermodal block planning; however, they do not
consider railcar fleet management nor extra train service selection.

This paper offers several contributions. First, we introduce the IBRM problem, which is
new to the literature, and propose an enhanced Scheduled Service Network Design with Resource
Management (SSND-RM ) model (Crainic and Hewitt 2021). The SSND-RM model takes the
form of an integer linear programming model (ILP) based on a cyclic four-layer space time
network representation (namely, the container, car, block and train layers). This approach
enables the use of a continuous-time network representation, where the time structure is defined
by the arrival and departure times of the train services considered at the terminals on their
respective routes.

Second, we propose a construction heuristic inspired by a relax-and-fix procedure. We use
the heuristic to compute high-quality warm-start solutions for general-purpose ILP solvers. This
simple approach is appealing from a practical point of view, as a general-purpose solver can
be used as a black box. Using this approach, we show that we can solve large-scale realistic
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instances from our industrial partner, the Canadian National Railway Company, in a reasonable
time.

Third, by comparing solutions with those obtained by solving simpler baseline models, we
show the significance of the problem we introduce. Based on extensive numerical experiments
and analyses, we offer several managerial insights. In brief, ignoring loading constraints and
railcar fleet management can result in severe underestimation of required capacity; we link
characteristics of demand (number of containers of different types) to an adequate composition
of the railcar fleet; and we highlight the importance of multi-platform cars from a capacity
usage point of view.

The structure of the paper unfolds as follows: Section 2 describes the problem in detail and
Section 3 gives a review of the related literature. We describe the network representation in
Section 4 followed by the SSND-RM formulation in Section 5. Section 6 outlines the solution
approach, and Section 7 describes the computational results based on large-scale instances from
our industrial partner. Finally, Section 8 concludes the paper.

2 Problem Description

We consider a tactical planning problem facing railroads. The tactical plan is cyclic over a given
schedule length T , for example, a week, and is repeated over a medium-term planning horizon
(e.g., three months). The aim is to guide intermodal rail operations over a physical network. To
describe the problem in detail, we start by introducing core concepts – scheduled train service
supply, container demand, and railcars – followed by a description of loading rules, blocks, and
the decision-making problem. We summarize the related notation in Table 1.

Train services. Railroads operate an infrastructure network made up of rail tracks connecting
terminals θ ∈ Θ that are dedicated, totally or partially, to intermodal traffic. We consider a
set of scheduled train services σ ∈ Σ. The services are dedicated to intermodal traffic and each
train service σ has an origin terminal oσ with departure time ασ, and a destination terminal dσ
with arrival time βσ. It also has a set of intermediate stops Θint

σ , each i(σ) ∈ Θint
σ with arrival

βi(σ) and departure αi(σ) times. We define a leg as the route between two consecutive stops.
The service capacity is expressed in train length (we use feet, shorthand ft) that may vary by
leg. We note that intermodal traffic is typically light compared to general cargo, the limiting
factor is therefore train length rather than tonnage.

We consider two types of scheduled train services: First, regular services, Σinit, designed to
transport the majority of the recurrent demand. Second, potential extra train services, Σextra,
that are to be selected, and operated at fixed cost, fσ, σ ∈ Σextra, when needed. An extra
service is activated only when loaded at least at Uσ%, σ ∈ Σextra, of its capacity on its leg set.
Extra services can include using capacity on general cargo trains, or dedicated extra intermodal
trains. The scheduled services Σ = Σinit ∪ Σextra are given, extra ones being potential only.
The selection of a subset of extra trains is therefore part of the tactical planning problem.

Containers. Intermodal containers come in different sizes and types. For example, the North
American market has high- and low-cube containers of various sizes (e.g., 20-, 40-, and 53-ft).
Unlike operational load planning problems (Mantovani et al. 2017), only high-level information
is available at the tactical planning stage. As we further detail below, crucial in this context are
aspects that impact the usage of railcars, and hence the capacity usage of the train. Let k ∈ K
denote intermodal demand, defined as a number υk of containers of a specific type τk ∈ T
arriving at origin terminal ok at time αk, loaded on railcars and moved to their destination
terminal dk before a certain due-date βk. We consider two container types T = {τ40, τ53}, as
two 20-ft containers can be defined as one 40-ft-long box, while containers longer than 40 ft
(e.g., 45 ft) may be treated as 53-ft-long ones as they follow similar loading rules.
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Railcars. The North American fleet contains several different railcar types. Mantovani et al.
(2017) discuss these in depth. Here, we describe the information that is relevant to tactical
planning. The types of railcars γ ∈ Γ differ in the number of platforms, 1, 3, or 5, and their
respective size (length) π ∈ Π, and can accommodate single- or double-stacked containers. The
most common platform types in the North American market are 40 ft and 53 ft long. Each
platform is shaped like a well to lower the center of mass of loaded containers. The space is
therefore physically restricted by the platform size. Let ηγπ denote the number of platforms of
type π ∈ Π on railcar type γ ∈ Γ (all the platforms that make up a railcar are of the same
type), and let Γπ denote the set of railcar types made up of platform type π ∈ Π. Let λγ be
the length of railcar type γ ∈ Γ.

For the tactical planning problem, it is important to note that, for a given platform size π,
the ratio λγ/η

γ
π decreases with increasing number of platforms. This means that, for example, a

five-platform railcar uses less train capacity per platform, than a one-platform railcar. However,
railcars with more than one platform have additional loading restrictions. We attend to those
next.

Loading Rules. Each platform may be double-stacked (two container slots, one at the bottom
and one on top) or single-stacked (one slot) and loading rules dictate which configurations of
container types are allowed on which railcar type (Mantovani et al. 2017). Here, we focus
on rules pertaining to container size, as this is the only information available at the tactical
planning level.

First we consider the bottom slot as the loading rule simply dictates that the platform needs
be of sufficient size. That is, independently of the railcar type, a 40-ft container can be loaded
in the bottom slot on either a 40-ft or 53-ft platform, whereas a 53-ft container requires a 53-ft
platform.

The top slot size is not physically restricted by a well. So in principle, a 53-ft or 40-ft
container could be loaded in the top slot, independently of the container size loaded in the
bottom slot. This is true for 40-ft railcars with one platform and all 53-ft railcar types (see the
bottom part of Figure 1 for an example of a loading that respects the rules). However, for 40-ft
railcars with more than one platform, the limited distance between platforms does not allow to
load 53-ft containers in all top slots. Therefore, 40-ft containers can be loaded in any top slot,
but 53-ft containers can only be loaded in every second slot (see the top part of Figure 1 for an
example of a loading that does not respect the rules). This means that the maximum number
of 53-ft containers on railcars with three 40-ft platforms is two, the corresponding figure for five
40-ft platforms is three, etc.

These loading rules imply that several demands with possibly different container types and
time characteristics can be loaded together on a same railcar as long as the loading rules are
respected.

Figure 1: Illustrative examples of loading rules (not respected in the top figure, respected in
the bottom figure)
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Blocks. A block b ∈ B is a consolidation of railcars that move as a single unit between
a pair of terminals taking advantage of economies of scale and reducing terminal handling
costs. Blocks are assigned to a sequence of train services. Blocking of intermodal traffic differs
from its general cargo counterpart. Whereas it is customary to sort most railcars at so-called
classification yards, this is less common for intermodal railcars. For instance, double-stack
railcars cannot be sorted in hump yards for physical reasons (it could destabilize the load).
This means that the intermodal railcars that form a given block all have the same destination,
which is the destination of the block.

As such, a block b ∈ B is defined by an origin terminal ob where it is built by grouping
the classified (sorted) railcars assigned to it, the time of departure at the origin terminal αb,
the destination terminal db where it is dismantled, the time of arrival at destination βb, the
sequence of trains moving the block from its origin to its destination, and the terminals where
they are being transferred from one train to another with the respective arrival and departure
times given by the associated train-service schedules. A block has a maximum capacity ub that
is limited by the train capacity on each train leg.

To illustrate the basic concept, we show a stylized example in Figure 2. It depicts three train
services σ1, σ2 and σ3 (arrows with dashed, solid, and dotted lines, respectively). There are five
terminals represented on the vertical axis (θ1, . . . , θ5) and time is represented on the horizontal
axis. Each train has an origin and a destination terminal and are respectively composed of
three, two, and one legs. We represent four demands at the bottom part of the figure, each with
an origin and a destination. Note that demands k2 and k3 share the same origin, but they have
different destinations. For the sake of simplicity, we do not explicitly represent containers and
railcars in this figure. The demand is transported on four blocks (see highlighting next to the
trains with the block identification at the origin): b1 is transported by trains σ1 and σ2, b2 by
σ2 and σ3, whereas b3 and b4 are transported by a single train (σ2 and σ1, respectively).

Figure 2: Illustrative example of trains, blocks and demands

We note that a given demand k can be split on multiple railcars, and even on multiple
blocks. Let Bk ⊆ B denote the set of blocks that can transport demand k ∈ K given its time
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characteristics, while Kb is the set of demands that can be assigned to block b ∈ B. Let cbk be
the unit cost of transporting a container of demand k on block b ∈ Bk, and cbγ the unit cost
of using railcar type γ in block b ∈ B. The tactical plan selects the subset of blocks in B that
should be built. Fixed costs fb, b ∈ B, reflect the time and resources required to build a block
at its origin terminal and to transfer it between services, when relevant. The transportation of
demand that cannot be satisfied by the service network defined by the tactical plan is outsourced
at a relatively high cost ck, k ∈ K.

Railcar fleet management. We consider a heterogeneous fleet of railcars where we denote
by Hγ the total number of railcars of type γ ∈ Γ. Because there is a limited railcar supply
in the network, it is essential to efficiently manage these resources to bring the right type of
railcars to the right location in the network at the right time. This is a challenging aspect of
the problem as demand may be unbalanced between the origin-destination pairs, and the right
mix of railcar types depends on the specific mixes of container types (see discussion on loading
rules). Some railcars might, thus, have to travel empty so as to be distributed where they are
needed (e.g., at terminals where a railcar shortage is occurring). When the fleet composition
is modified due to, e.g., seasonal changes or new railcar acquisitions, railroad companies have
to decide at which terminals the railcars should be first stationed. In this case, in addition
to providing a railcar circulation (i.e., determining the flow of railcars within the network to
support the planned services), the railcar fleet management plan should also give the initial
allocation of railcars to the different terminals in the network. Let cγθ denote the unit cost of
initially allocating railcar type γ ∈ Γ to terminal θ ∈ Θ.

Decision-making problem. Given a train schedule, a set of demands, and a heterogeneous
fleet of railcars, the goal of the IBRM problem is to determine simultaneously a scheduled
blocking plan that includes container-to-railcar (loading problem) and railcar-to-block (blocking
problem) assignments, a railcar circulation to support the selected blocks with, when wanted, an
initial railcar allocation to terminals (railcar fleet management problem), the demand itineraries,
including, when needed, the volumes assigned to general cargo trains or trucks, and finally,
when desired, a selection of extra trains to add to the schedule to satisfy demand; all of this
while minimizing the total operational costs. As a benefit, managerial strategic insights, such as
determining an effective railcar fleet composition, can also be derived from the provided tactical
plan.

3 Literature Review

There is a rich and long history of successful Operations Research developments and contribu-
tions targeting railroad planning. A comprehensive review of this literature goes far beyond
the scope of this paper. The interested reader may turn to a series of surveys that synthe-
size this story and contributions, including Assad (1980b), Dejax and Crainic (1987), Crainic
(1988), Crainic and Laporte (1997), Cordeau et al. (1998), Crainic (2000), Newman et al. (2002),
Crainic (2003), Ahuja et al. (2005a), Crainic and Kim (2007), Bektaş and Crainic (2008), Crainic
(2009), Yaghini and Akhavan (2012), Piu and Speranza (2014) and Chouman and Crainic (2021).
The Service Network Design methodology and contributions are synthesized and reviewed in
Crainic and Hewitt (2021), Crainic (2025b,a) and Crainic and Rei (2025). Several observations
and trends stand out when examining this literature and allow one to situate our contribution
within the field.

First, few studies target intermodal rail transportation planning. We discuss them in the
last part of the section, following a rapid overview of developments relevant to the problem we
address.
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Infrastructure
Θ Set of terminals, θ ∈ Θ
ttrans Block transfer time at any terminal

Train services
Σ Set of scheduled train services, σ ∈ Σ
Σinit Set of regular scheduled train services
Σextra Set extra (non regular) scheduled train services
oσ Origin terminal of σ ∈ Σ
ασ Departure time of σ ∈ Σ
dσ Destination terminal of σ ∈ Σ
βσ Arrival time of σ ∈ Σ
Θint

σ Set of intermediate stops of σ ∈ Σ
βi(σ) Arrival time at intermediate stop (node) i(σ) ∈ Θint

σ , σ ∈ Σ

αi(σ) Departure time at intermediate stop (node) i(σ) ∈ Θint
σ , σ ∈ Σ

fσ Fixed cost of using σ ∈ Σextra

Uσ Capacity usage threshold for σ ∈ Σextra

Demand
K Set of demands, k ∈ K
ok Origin terminal of k ∈ K
αk Arrival time at origin of k ∈ K
dk Destination terminal of k ∈ K
βk Due date at destination of k ∈ K
υk Number of containers of k ∈ K
T Set of container types, τ ∈ T ; T = {τ40, τ53} in current setting
τk Container type of k ∈ K
ck Unit outsourcing cost k ∈ K
Railcars
Γ Set of railcar types, γ ∈ Γ
λγ Length of railcar type γ ∈ Γ
Π Set of platform sizes, π ∈ Π Π = {π40, π53} in current setting
Γπ Set of railcar types made up of platform type π ∈ Π
ηγπ Number of platforms of type π for railcar γ ∈ Γ
Hγ Number of railcars of type γ ∈ Γ available in the system
cγθ Unit cost for intially allocating railcar type γ ∈ Γ to terminal θ ∈ Θ

Blocks
B Set of blocks, b ∈ B
Bk Set of blocks which may transport demand k ∈ K, Bk ⊆ B
ob Origin terminal of b ∈ B
αb Departure time of b ∈ B
db Destination terminal of b ∈ B
βb Arrival time of b ∈ B
fb Cost of building b ∈ B
ub Capacity of b ∈ B
Kb Set of demands that can be assigned to b ∈ B
cbk Unit cost of moving a container of demand k on b ∈ B
cbγ Unit cost of moving a railcar of type γ on b ∈ B

Table 1: Summary of notation related to core concepts and problem parameters
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Second, one observes that most early contributions focus on single problems or combinations
of a limited number of them, blocking, service selection, and resource management in particular.
Blocking (see, e.g., Bodin et al. 1980, Newton et al. 1998, Ahuja et al. 2007, Jha et al. 2008,
Yaghini and Akhavan 2012, Yaghini et al. 2021) is assumed to be addressed first (in contrast,
Morganti et al. 2020, assumes a given service schedule), followed by service selection and makeup
(see, e.g., Morlok and Peterson 1970, Assad 1980a, Nozick and Morlok 1997, Newman and Yano
2000, Yaghini and Akhavan 2012). In most cases, network design type formulations (Magnanti
and Wong 1984, Crainic et al. 2021) are proposed to select blocks or services, from given sets,
respectively.

The management of resources is then addressed as a different planning activity, focusing
on distribution and routing given a set of services. To address the challenge of unbalanced
trade, resources that complete their assignments and are needed in terminals different from their
current locations are repositioned to undertake the next round of activities. The activity is often
characterized as “operational”, even though resources support services and, accordingly, the
planning horizon of the previous two activities is shared. In general, network flow optimization
methods are proposed in this context, evolving from transportation/assignment models (see,
e.g., Bomberault and White 1966, White 1968, White and Bomberault 1969, White 1972) to
multicommodity integer flow time-space formulations integrating various practical rules and
limitations (see, e.g., Florian et al. 1976, Joborn et al. 2004, Ahuja et al. 2005b, Vaidyanathan
et al. 2008a,b, Balakrishnan et al. 2016, Bouzäıene-Ayari et al. 2016, Piu et al. 2015, Ortiz-
Astorquiza et al. 2021, Miranda et al. 2020).

Third, a trend can be observed in railroad tactical planning toward comprehensive models
that integrate the main system and operational components, e.g., selection, scheduling and
makeup of services, railcar classification and block design, resource assignment and management,
and demand routing through the selected service network. Service Network Design (SND)
appears as the methodology of choice to address these problems (Chouman and Crainic 2021).
Our work belongs to this railroad planning and OR methodological development area.

Crainic et al. (1984) propose what is probably the first railroad tactical planning SND model
(Crainic and Rousseau 1986, generalizes it for consolidation-based multicommodity multimode
freight transportation systems). The model integrates service selection, service frequency op-
timization, car classification and blocking, train makeup, and freight routing. The nonlinear
path-based formulation also accounts for congestion and delays in terminals and on the net-
work’s tracks, as well as for the (re-)positioning of empty railcars through one or several OD
demand matrices (generated through demand-distribution models from the surplus and penury
levels at terminals derived from the loaded demand).

Haghani (1989) presents a SSND model combining train routing, scheduling, and make-up,
as well as empty car distribution, on a space-time network. A heuristic is used to address a
somewhat simplified version of the model and illustrate the interest of integrated planning. The
model proposed by Keaton (1989, 1992) aims to determine the pairs of terminals to connect
by direct services, whether to offer more than one train a day, as well as the routing of freight
and the blocking of railcars. Gorman (1998) starts from the previous model to design, using a
tabu-enhanced genetic search metaheuristic, a scheduled operating plan that follows as much
as possible the particular operation rules of a major North-American railroad. All these con-
tributions model blocking through classification costs, rather than explicit blocking decision
variables.

Zhu et al. (2014) propose what appears to be the first comprehensive SSND railroad planning
model, integrating the selection of scheduled services, selection of blocks, service makeup, and
railcar classification and routing. The model is built on a cyclic, multi-layer (Crainic et al. 2022,
Crainic 2024) time-space network corresponding to the discretized schedule length. The layers
corresponds to the railcar terminal activities (demand entry and exit, and railcar classification
and blocking), block terminal activities, and train service operations. The authors propose a
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matheuristic combining dynamic block generation and slope scaling, Tabu Search and ellipsoidal
search methods. The authors do not address resource management issues.

Pedersen and Crainic (2007), Pedersen et al. (2009) focus on integrating the management of
one type of resource, namely, locomotives or intermodal shuttles (i.e., locomotive and fixed set of
container-carrying railcars), into tactical-planning SSND formulations. The authors formalize
the concept of design-balanced SSND, forcing equal numbers of selected services arriving at or
leaving from any terminal, at all relevant time moments. Pedersen and Crainic (2007), Vu et al.
(2013), Chouman and Crainic (2015) present metaheuristics to address the resulting SSND.

Andersen et al. (2009a) enlarge the scope of the previous problem setting and devise SSND
with resource management models to address the coordination and synchronization of services
and fleets of several railroads and navigation companies at particular junction points (train ser-
vices operating in several countries need locomotive changes at some borders due to differences
in electric tensions). Andersen et al. (2009b) then observe that resources that support services
or that are repositioned operate according to cycle schedules, returning to their home bases after
certain periods of time. The authors compare SSND arc and cycle-based formulations and show
that the latter provide more modeling flexibility, in terms of cycle duration for example, and
computational efficiency, provided that cycles are generated a priori. Andersen et al. (2011) pro-
pose a branch-and-price with column generation algorithm to address the latter issue. Crainic
et al. (2014, 2018) extend this work in the general SSND context for consolidation-based freight
carriers (with one unit of resource per service only) in two ways: 1) a larger range of resource
management concerns, e.g., multiple resource types, acquisition and allocation/reallocation of
resources at terminals, outsourcing services, and cycle duration rules; 2) a matheuristic that
incorporates slope scaling and network flow-based cycle generation heuristics.

To conclude this brief review, we return to the limited number of contributions aimed at
planning intermodal railroad transport. Nozick and Morlok (1997) minimizes the total moving
cost of flatcars and trailers (1 trailer loaded on a flatcar) given a set of services. Newman and
Yano (2000) proposes a day-of-week uncapacitated (in the number of trains one can make up in a
yard and operate on a line) frequency SND model, to determine whether homogeneous container
OD demand should be moved by a direct or indirect (through a unique main yard) service.
Müller et al. (2021) propose a SSND with stochastic demand for the case of a homogeneous set
of services (called “vehicles” in the paper) managed through design-balancing constraints. A
very simple loading rule (one container) characterize these three contributions, which do not
consider the selection and formation of services and blocks.

Morganti et al. (2020) start to address the loading issue when formulating their SSND
model for the block planning problem for intermodal rail transport with double-stack railcars.
Operational loading requires detailed information about containers, such as their individual
weights (Mantovani et al. 2016), and is hence too detailed for tactical planning. Morganti et al.
(2020) therefore propose a first approximation of those rules, based on the length of the main
container and railcar platform types, together with constraints enforcing the length of selected
blocks and of the services to which they are assigned. The space-time network is discretized
according to the schedules of the given set of services, their respective times of arrival and
departure at terminals yielding the time moments of the network. We adopt the same modeling
of time in our work. Unlike us, Morganti et al. (2020) do not consider service selection or
resource management.

In conclusion, we note that the current state-of-the-art in railroad tactical planning does not
address the main challenges of intermodal systems. The methodology we propose contributes
to filling this gap, integrating within a comprehensive SSND model service and block selection,
realistic tactical-level container-to-railcal loading constraints, and the management of multiple
sets of railcars that may be combined, loaded or empty, when building the blocks.
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4 Network Modeling

The multi-layer network structure is presented in Section 4.1, introducing the time representa-
tion and the train-service layer. The other layers and the inter-layer arcs are then described by
following a demand itinerary, from the initial processing at the origin terminal (Section 4.2), to
moving through the network (Section 4.3), and the final handling at destination (Section 4.4).
Recall that the tactical plan defines the demand itineraries, the blocks to build, the extra
services to run, and the management of the railcar fleet. Table 2 summarizes the time-space
network notation.

4.1 General Structure and Train Layer

We propose a four-layer (Crainic et al. 2022, Crainic 2024) cyclic time-space network G = (N ,A)
of length T to represent the system dynamics, the activities, and the decisions of the IBRM
problem. Nodes i ∈ N represent events at specific moments in time t(i) and terminals θ(i).
Arcs stand for activities taking place in time and space between these nodes.

The layers correspond to the main components of the system, train services, blocks, railcars,
and containers. Intra-layer nodes and arcs model the activities corresponding to each layer
at appropriate moments in time, while inter-layer arcs capture the interactions among the
components, e.g., loading/unloading of containers onto/from railcars, consolidating the latter
into blocks, attaching/detaching the latter to/from train services, and dismantling blocks at
destination. Due to the cyclic nature of the tactical plan, activities initiated before the end of
the schedule may end after T , that is, during the next application of the plan. This is modeled by
having the corresponding arcs wraparound, times computed modulo(T ) (Chouman and Crainic
2021, Crainic and Hewitt 2021). The network is illustrated in Figure 3 for a terminal θ ∈ Θ
and a representative time interval featuring a train arrival and a train departure. We refer to
this figure throughout the section.

Figure 3: Four-layer (train, block, car, container) time-space network illustration

The container layer represents the arrival of each demand k ∈ K at its origin yard, the
possible waiting before being loaded onto railcars, the actual loading operation, the unloading
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at destination, and the subsequent exit from the system. The car layer connects the container-
based demand to the system and governs how containers are loaded on railcars, that are grouped
into blocks and then into trains. It is also in the car layer that the fleets of the various types of
railcars are managed through the assignment to container-loading activities, the empty move-
ments to balance the needs within the network, the railcar-pool inventory counts at terminals,
as well as the initial fleet size and allocation at terminals. Blocks are handled on the block layer :
building at origin by consolidating empty and loaded railcars, attachment to a train, transfer
between two train services, and detachment from the last train at destination for dismantling.
Detailed descriptions of the network components and modeling of these three layers are given
in the next subsections.

The train layer plays a special role in the proposed formulation. It obviously represents
the movements between terminals and the time spent there to pick up or drop off the blocks of
regular and extra train services. It also defines the time instances of the time-space network and,
thus, the pacing of activities and decisions. Recall that, most time-space networks proposed
in the service network design literature, including models targeting rail planning (see, e.g.,
Chouman and Crainic 2021, Crainic and Hewitt 2021), generate time-space networks by 1)
discretizing the schedule length according to a given granularity and 2) duplicating each node
of the physical network at each of the resulting periods. We take a different approach and define
a continuous-time network based on the schedules of the given train-service set Σ.

The arrival and departure times of each train service to/from each terminal on its route yield
corresponding arrival (tin) and departure (tout) nodes, defining the time structure of the entire
network (Figure 3). Let N tout

θ and N tin
θ be the sets of tout and tin nodes at terminal θ ∈ Θ,

sorted in increasing time order, with N tout = ∪θ∈ΘN tout
θ and N tin = ∪θ∈ΘN tin

θ . Then, any
node i ∈ N , representing an event on any layer, has its time stamp t(i) equal to either a train
arrival or departure moment at terminal θ ∈ Θ, i.e., i ∈ N tin

θ or i ∈ N tout
θ , respectively. In

other words, container, railcar, and block activities are synchronized with train departures and
arrivals, the associated waiting being represented on the inter-layer arcs.

Notice that, more than one service could arrive at or leave a terminal at any given time
moment, generating several simultaneous nodes. Such an event is rare, however. Hence, to
simplify the presentation, and without loss of generality, we assume a single service arrival or
departure at any time moment.

4.2 Embarking on a Train

We describe in the following the “embarking” side of the container, car, and block layers. We
discuss the initial allocation of the railcar fleets to terminals in the car layer subsection.

4.2.1 The Container Layer

models demand entering (and existing) the system with the set of nodes N din = ∪θ∈ΘN din
θ . A

demand k ∈ K leaves its origin terminal ok at the earliest when the first train, following its own
arrival time at the terminal, departs. As such, a node is generated in the container layer every
time a train leaves (instead of every time a demand enters). Accordingly, a demand k ∈ K
arriving to ok at time αk connects to nodes i ∈ N din

ok
such that t(i) ≥ αk. Recall that demands

can be divided and delivered using different blocks and trains. This is modeled with a set of
ContainerWait arcs Adwt = ∪θ∈Θ{a = (i, j), j = i + 1, i ∈ N din

θ , θ ∈ Θ} where j = i + 1
represents the next-in-time DIN node in terminal θ.

The operation of loading demand onto railcars at the origin terminal is represented by inter-
layer ContainerLoad arcs Adin = ∪θ∈ΘAdin

θ = {a = (i, j)|t(i) = t(j), i ∈ N din
θ , j ∈ N co

θ , θ ∈
Θ} linking din nodes in the container layer to container-railcar loading nodes co in the car
layer. The container-to-railcar assignments and loading are performed according to the rules
introduced in Section 2.
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G = (N ,A) Time-space network, sets of nodes N and arcs A
θ(i), t(i) Terminal and time moment of node i ∈ N
T Schedule length
ua Capacity of arc a ∈ A
Train Layer
N tin Train-service arrival nodes & times at terminals (tin), = ∪θ∈ΘN tin

θ

N tout Train-service departure nodes & times at terminals (tout), =
∪θ∈ΘN tout

θ

Atm
σ TrainMoving (tout, tin) moving arcs of service σ ∈ Σ
Autm

σ Leg set of extra train service σ ∈ Σextra for which a minimum load Uσ

is required in order for the service to be considered for selection
Ath

σ TrainHandling (tin, tout) handling arcs at terminals serviced by σ ∈ Σ
Ba Set of blocks on train-service arc a ∈ Atm

σ ∪ Ath
σ

Block Layer
N bo

θ Block forming nodes (bo)
N bd

θ Block-at-destination nodes (bd)
N bt

θ Block transfer and assembly nodes (bt)
B+θ Blocks formed at terminal θ ∈ Θ
B+θi Blocks formed at terminal θ ∈ Θ, t(i) = αb, i ∈ N pool−

θ

B−θi Blocks dismanteled at terminal θ ∈ Θ, t(i) = βb, i ∈ N pool+
θ

Abb BlockBuild arcs moving new blocks to the assembly node (bt)
Abt BlockTransfer inter-layer arcs, bring transferred blocks to the assembly

node
Aba BlockAttach inter-layer arcs, move collected blocks to the outgoing train
Abd BlockDismantle inter-layer arcs, take blocks off trains at destination

Car Layer
N pool Railcar-inventory nodes (pool), = ∪θ∈ΘN pool

θ

N pool
θ Terminal θ ∈ Θ railcar-inventory nodes,

= N pool+
θ ∪N pool−

θ = ∪γ∈Γ{N pool+
γθ ∪N pool−

γθ }
N pool+

γθ Terminal θ ∈ Θ inventory nodes linked to the arrival of trains

with possibly increasing railcar-type γ ∈ Γ inventory
N pool−

γθ Terminal θ ∈ Θ inventory nodes linked to the departure of trains

with possibly decreasing railcar-type γ ∈ Γ inventory
N co

θ Container-to-railcar loading nodes (co), θ ∈ Θ
N cd

θ Container-from-railcar unloading nodes (cd), θ ∈ Θ
App Pool2Pool railcar inventory carrying arcs
Apl Pool2Load empty-railcar-to-container assignment & loading arcs
Apb Pool2Block empty-railcar inter-layer blocking arcs
Acb Cars2Blocks loaded-railcar inter-layer blocking arcs
Aep Empty2Pool empty-railcar at destination inter-layer disassemble arcs
Acd CarsDest loaded-railcar at destination inter-layer disassemble arcs
Aup Unloaded2Pool arcs moving unloaded (empty) railcars to their inventory

pool

Container Layer
N din Demand-arrival din nodes, = ∪θ∈ΘN din

θ

N din
ok
⊆ N din

θ Possible din nodes for demand k ∈ K
N dout Demand-at-destination dout nodes, = ∪θ∈ΘN dout

θ

Adin = ∪θ∈ΘAdin
θ ContainerLoad container-to-car origin inter-layer arcs

Adwt ContainerWait arcs
Adout ContainerDest car-to-container destination inter-layer arcs

Table 2: Time-space network notation
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4.2.2 The Car Layer

Four main activities are modeled in this layer: container loading (and unloading), railcar-to-
block assignment, railcar fleet management, and the initial dimensioning of the fleet and its
assignment to terminals.

We explicitly represent the railcar circulation within the cyclic scheduled service network
to control the inventories and flows of each railcar type. For this purpose, we introduce pool
nodes to model inventory changes to each railcar type at each terminal and relevant time
moment. Railcar inventories at terminals decrease when railcars are assigned loaded or empty
to a block. We define the associated set of inventory nodes linked to departing trains N pool−

θ =
∪γ∈ΓN pool−

γθ := {i | t(i) = ασ, αj(σ), j(σ) = 1, . . . , |Θint
σ |, σ ∈ Σ}, γ ∈ Γ, θ ∈ Θ. We model

the assignment of loaded and empty railcars to blocks with intra-layer arcs Pool2Load Apl :=
∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈ N pool−

θ , j ∈ N co
θ , θ ∈ Θ} and inter-layer arcs Pool2Block

Apb := ∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈ N pool−
θ , j ∈ N bo

θ , θ ∈ Θ}, respectively, connecting the
pool to the block-forming bo node in the block layer. Let B+θ = ∪i∈N pool−

θ
B+θi = {b ∈ B | ob =

θ(i), αb = t(i), i ∈ N pool−
θ , θ ∈ Θ} stand for the blocks, containing these empty and loaded

railcars, formed at their origin terminal θ at the corresponding train-departure time.
Analogously, inventories increase when blocks are dismantled (see Section 4.4), with associ-

ated set of inventory nodes, linked to the arrival of a train, N pool+
θ = ∪γ∈ΓN pool+

γθ = {i | t(i) =
βσ, βj(σ), j(σ) = 1, . . . , |Θint

σ |, σ ∈ Σ}, γ ∈ Γ, θ ∈ Θ. We denote the set of all pool nodes

N pool
θ := ∪γ∈Γ{N pool+

γθ ∪N pool−
γθ } for each terminal θ ∈ Θ, and N pool := ∪θ∈ΘN pool

θ .
Pool2Pool arcs App := ∪θ∈Θ{a = (i, j), j = i+ 1, i, j ∈ N pool

θ } connect successive inventory
nodes at each terminal, and carry the flows of available empty railcars. To ensure the cyclic
nature of the service network and schedule, each arc a ∈ App, starting from the node i ∈
N pool

θ , θ ∈ Θ, with the closest time t(i) to the end of the schedule T , wraps around to the first
node i ∈ N pool

θ following the starting of the schedule, that is, to the first train-service arrival
or departure moment to/from the associated terminal θ ∈ Θ.

Inter-layer Car2Block arcs Acb = ∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈ N co
θ , j ∈ N bo

θ , θ ∈ Θ}
model the car-to-block assignment decisions, linking the corresponding nodes in the car (co)
and block (bo) layers.

4.2.3 The Block Layer

Blocks are built by consolidating empty and loaded railcars brought to a block-forming node bo
by the Pool2Block (Apb) and Car2Block (Acb) arcs, respectively. The just-built blocks are to
be attached to the train leaving at the tout time moment of the blocking operation, together
with blocks delivered earlier to the terminal to be transferred to the same train as part of their
journeys (see Section 4.3). Let bt identify a block transfer and assembly node. TheBlockBuild
arcs Abb = ∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈ N bo

θ , j ∈ N bt
θ ), θ ∈ Θ} then bring the newly built

blocks to the assembly node, where they are joined by the transferred blocks brought by the
inter-layer arcs Abt (see Section 4.3). Inter-layer BlockAttach arcs Aba = ∪θ∈Θ{a = (i, j)|t(i) =
t(j), i ∈ N bt

θ , j ∈ N tout
θ ), θ ∈ Θ} then move the collected blocks from the assembly node to the

tout node of the outgoing train service to which they are assigned.

4.3 Moving Between Terminals – The Train Layer

Two sets of arcs define the train-service operations. The set of TrainMoving arcs Atm
σ = {a =

(i, j), i ∈ N tout
σ , j ∈ N tin

σ ), σ ∈ Σ} link consecutive departure (tout) and arrival (tin) nodes
of train services moving between terminals. Set Autm

σ ⊆ Atm
σ , σ ∈ Σextra, contains the legs

of an extra train service for which a minimum load is required in order for the service to be
considered for selection. The TrainHandling arcs, collected in the set Ath

σ = {a = (i, j), i ∈
N tin

σ , j ∈ N tout
σ ), σ ∈ Σ}, connect consecutive arrival (tin) and departure (tout) nodes of
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train services, representing the time spent in the terminal to perform block pick-up and drop-
off activities (and other maintenance work).

Train services are made up of, and move, blocks. Let Ba, a ∈ Ath
σ , be the set of the blocks

that stay on the train service σ ∈ Σ while terminal activities take place on its Train-Handling
arc a. Similarly, let Ba, a ∈ Atm

σ , be the set of blocks making up train service σ on its Train-
Moving arc a. The load hauled on each of these arcs a ∈ Atm = ∪σ∈ΣAtm

σ is limited by capacity
ua. Note that no capacity is enforced on TrainHandling arcs as modeling terminal operations
is not part of our problem.

A block is moved by a sequence of train services, its journey corresponding to a path of Train-
Moving and Train-Handling arcs, transfers taking place when the entire block changes trains
at intermediary terminals. Inter-layer BlockTransfer arcs, gathered in set Abt = ∪θ∈Θ{a =
(i, j), i ∈ N tin

θ , j ∈ N bt
θ ), θ ∈ Θ}, model this activity linking the train and block layers. Let

ttrans be the time required for executing a block transfer. tin nodes in the train layer are thus
linked to all bt nodes of the corresponding terminal such that ttrans ≤ t(i)− t(j), i ∈ N bt

θ , j ∈
N tin

θ , θ ∈ Θ.

4.4 Disembarking From a Train

Blocks, and the railcars and containers making them up, are taken off the last train service at the
destination terminal and are dismantled. Railcars carrying containers are then at destination
and, once their containers are unloaded, they join the empty railcars which were in the block
(if any) in the appropriate inventory pool. The unloaded containers are delivered to their
consignees. We follow these activities, completing the time-space network definition, in the
reverse order of the embarking activities (see Section 4.2).

4.4.1 The Block Layer

The blocks arriving at destination are taken off the train and dismantled. Inter-layer Block-
Dismantle arcs Abd = ∪θ∈Θ{a = (i, j)|t(i) = t(j), j ∈ N tin

θ , j ∈ N bd
θ ), θ ∈ Θ} model these

activities, moving the blocks from the train tin nodes to the corresponding block-at-destination
bd node at the destination terminal.

Let B−θi = {b ∈ B | db = θ(i), βb = t(i), i ∈ N pool+
θ , θ ∈ Θ} stand for the blocks dropped at

their destination terminal θ at the corresponding train-arrival time. Their dismantlement yields
empty railcars, increasing the inventory of the terminal as described next.

4.4.2 The Car Layer

Dismantled blocks yield empty and loaded railcars, of various types, which increase their avail-
ability at the terminal. Inter-layer Empty2Pool arcs in Aep = ∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈
N bd

θ , j ∈ N pool+
θ ), θ ∈ Θ} model the former activity, moving empty railcars from block-at-

destination bd nodes, in the block layer, directly to the corresponding pool nodes in the car
layer.

Loaded railcars must first be unloaded before being added to the inventories corresponding
to their types held in the terminal pool. CarsDest inter-layer arcs Acd = ∪θ∈Θ{a = (i, j)|t(i) =
t(j), i ∈ N bd

θ , j ∈ N cd
θ , θ ∈ Θ} bring the loaded railcars from bd nodes to the railcar-unloading

cd nodes in the car layer. The Unloaded2Pool arcs Aup = ∪θ∈Θ{a = (i, j)|t(i) = t(j), i ∈
N cd

θ , j ∈ N pool+
θ , θ ∈ Θ} then bring the now-empty railcars to the pool of the terminal.

4.4.3 The Container Layer

Demand flows exit the system through the container layer. The set of ContainerDest inter-
layer arcs Adout = ∪θ∈Θ{(i, j)|t(i) = t(j), i ∈ N cd

θ , j ∈ N dout
θ , θ ∈ Θ} groups the arcs bringing

unloaded containers from the nodes cd in the car layer, to the i ∈ N dout destination nodes
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(dout) in the container layer. Being in the yard of the destination terminal marks the end of a
demand’s freight journey. The final delivery to customers is then modeled by the arc linking the
dout node to the container-sink node csink collecting all demand flows sent to the terminal.

The time-space network is completed by the artificial arcs capturing the demand volumes
not assigned to services in Σ, due to transport capacity issues. An artificial arc is defined for
demand k ∈ K from its last feasible din node, i.e., the last moment demand k may leave its
origin terminal and still get at its destination on time, and the container-sink node csink of its
destination.

5 The SSND-RM Formulation

The SSND-RM formulation for the intermodal rail blocking and railcar management problem
includes the following design and flow decision variables:

sσ = 1, if train service σ ∈ Σextra is selected, 0 otherwise;

yb = 1, if block b ∈ B is selected, 0 otherwise;

zbk, number of containers of demand k ∈ K on block b ∈ Bk;

zk, number of containers of demand k ∈ K on the artificial arc associated with this demand;

xγb , number of loaded railcars of type γ ∈ Γ assigned to block b;

wγ
b , number of empty railcars of type γ ∈ Γ assigned to block b;

wγ
θ , number of empty railcars of type γ ∈ Γ allocated to terminal θ ∈ Θ;

wγ
θi, number of empty railcars of type γ ∈ Γ in pool node i ∈ N pool

θ of terminal θ ∈ Θ;

ντ,τ
′

bπ number of platforms of type π ∈ Π loaded with two containers of types τ and τ ′ ∈ T
(no container type τ53 on bottom slot of π40 platforms);

ντbπ, number of platforms of type π ∈ Π loaded with a single container of type τ ∈ T
(no container type τ53 on π40 platforms).

The ILP of our problem is:

Minimize
∑

σ∈Σextra

fσsσ+
∑
b∈B

fbyb+
∑
b∈B

∑
k∈Kb

cbkzbk+
∑
k∈K

ckzk+
∑
b∈B

∑
γ∈Γ

cbγw
γ
b +

∑
γ∈Γ

∑
θ∈Θ

cγθw
γ
θ (1)

Subject to:∑
b∈Bk

zbk + zk = υk, k ∈ K, (2)

zbk ≤ υkyb, b ∈ Bk, k ∈ K, (3)∑
k∈Kb|τk=τ

zbk =
∑
π∈Π

ντbπ + 2ντ,τbπ +
∑

τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , τ ∈ T , b ∈ B, (4)

∑
γ∈Γ

ηγπx
γ
b ≥

∑
τ∈T

ντbπ + ντ,τbπ +
1

2

∑
τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , π ∈ Π, b ∈ B, (5)

∑
γ∈Γπ

xγb ≤
∑
τ∈T

ντbπ + ντ,τbπ +
1

2

∑
τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , π ∈ Π, b ∈ B, (6)

∑
γ∈Γ

⌈
ηγπ40

2

⌉
xγb ≥ ντ40,τ53bπ40

, b ∈ B, (7)
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∑
γ∈Γ

λγ(x
γ
b + wγ

b ) ≤ ubyb, b ∈ B, (8)

wγ
θi−1 +

∑
b∈B−

θi

(wγ
b + xγb ) = wγ

θi +
∑
b∈B+

θi

(wγ
b + xγb ), i ∈ N pool

θ , γ ∈ Γ, θ ∈ Θ, (9)

wγ
θ = wγ

θn +
∑

b∈B+
θ |αb>βb

(wγ
b + xγb ), γ ∈ Γ, θ ∈ Θ, (10)

∑
θ∈Θ

wγ
θ ≤ Hγ , γ ∈ Γ, (11)∑

b∈Ba

∑
γ∈Γ

λγ(x
γ
b + wγ

b ) ≤ ua, a ∈ Atm
σ , σ ∈ Σinit, (12)

∑
b∈Ba

∑
γ∈Γ

λγ(x
γ
b + wγ

b ) ≤ sσua, a ∈ Atm
σ , σ ∈ Σextra, (13)

1

ua

∑
b∈Ba

∑
γ∈Γ

λγ(x
γ
b + wγ

b ) ≥ Uσsσ, a ∈ Autm
σ , σ ∈ Σextra, (14)

yb ∈ {0, 1}, b ∈ B,
sσ ∈ {0, 1}, σ ∈ Σextra,

xγb , w
γ
θ , w

γ
b , w

γ
θi, zbk, zk, ν

ττ ′
bπ , ντbπ ∈ N, k ∈ K, b ∈ B, τ ∈ T , τ ′ ∈ T , π ∈ Π,

i ∈ N , j ∈ N , γ ∈ Γ, θ ∈ Θ.

The objective function (1) minimizes the total cost of selecting extra trains (when relevant),
selecting and building blocks, routing demand flows on blocks and artificial arcs, moving empty
railcars, and allocating railcars to terminals initially.

Constraints (2) ensure that all the volume of each demand is transported either on blocks
(train services) or on the artificial arcs. The linking constraints (3) enforce containers to be
moved on selected blocks only, limiting the volume of any demand moving on a particular block
to the total volume of that demand. Constraints (4) define the total container-flow (of a given
type) moved by a particular block as the number of platforms (loaded with containers of that
type) on the railcars within the block. Notice that, jointly with the railcar-to-block linking
constraints (8), Constraints (4) enforce the flow of containers to be loaded on selected blocks
only.

Recall that, a railcar is considered loaded as soon as at least one platform carries a container,
even if the other platforms are empty. Consequently, Constraints (5) ensure that, the number
of platforms, of a given type, making up the loaded railcars of a block is at least equal to the
number of platforms of that type used on the block. Similarly, Constraints (6) ensure that the
number of loaded railcars composed of platforms of a certain type on a block is not larger than
the number of platforms of that type used on the block. Constraints (7) address the particular
restrictions regarding the number of 40-on-bottom-53-on-top configurations on 40-ft platforms
imposed by the physical rules of loading (see Section 2 for more details).

Constraints (8) link the utilization of blocks by loaded and empty railcars to the selection
of the block and its length. Constraints (9) enforce the conservation of empty-railcar flows, of
all types, at the pool nodes of the terminals. Constraints (10) count the number of railcars of
each type needed at every terminal (initial allocation). The limits on the initial allocations are
imposed through Constraints (11). Note that one may impose an initial allocation Hγ

θ to each
terminal or let the tactical planning model decide on the best allocation, with or without a Hγ

θ

limit.
Constraints (12) and (13) enforce the capacities of the regular and extra train services,

respectively, on each of their legs. The latter also link the utilization of extra services to their
selection. Finally, constraints (14) enforce the condition that an extra train may be added to
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the schedule only if it is to be loaded at more than Uσ% of its capacity on a set of its legs.

6 Solution Approach

Before presenting our solution approach, we discuss key distinctive features of the SSND-RM
formulation and outline the practical considerations that guided our work.

The SSND-RM formulation is based on a time-space network whose discretization is gov-
erned by the train schedule. Except for the selection of extra trains, the schedule is fixed and
given. The set of extra train selection variables is particularly challenging because it introduces
an additional layer of design decisions that constrain block selection decisions. The feasible set
of blocks B is large, but is restricted by the train schedule. In addition, the demand and railcar
flow variables are integers and are strongly linked through the platform loading constraints.

Given the tactical nature of the problem, an overnight computation time budget is considered
acceptable. For deployment of a decision-support system based on the model, reliability and
code maintenance are important considerations. For these reasons, we give priority to solution
approaches using general-purpose MILP solvers as a black box, and algorithms with solution
quality guarantees.

For our application, preliminary experiments using a general-purpose MILP solver based on
an a priori enumeration of the set of block paths B revealed large optimality gaps even after 12
hours of computation. However, it is well known that relatively simple heuristics combined with
general-purpose MILP solvers can yield substantial computation speed-ups (e.g., Fischetti and
Monaci 2017, Joncour et al. 2023). Inspired by such ideas, we propose a construction heuristic
close to the relax-and-fix procedure described in Section 3.6.1 in Pochet and Wolsey (2006).
We use the resulting feasible solution as a warm start for a general-purpose solver. Thus, the
overall solution approach we propose remains exact.

We partition the decision variables into three disjoint sets. The first set contains the most
challenging variables, in our case, the binary extra-train variables. The second set orders groups
of decision variables in decreasing order of perceived impact on the structure of the solution,
R := ({yb, xγb , b ∈ B, γ ∈ Γ}, {wγ

b , w
γ
θ , w

γ
θi; b ∈ B, θ ∈ Θ, i ∈ N pool

θ , γ ∈ Γ}). The third set groups

container and platform assignment to block decision variables, S := {zbk, zk, ντbπ, ν
τ,τ ′

bπ ; b ∈ B, k ∈
K, π ∈ Π, τ, τ ′ ∈ T }.

Algorithm 1 Compute warm-start solution

Require: Extra train variables Σextra, ordered sequence of sets of decision variables R, set S,
and precision ε > 0,

1: argrelax ← Solve continuous relaxation of SSND-RM ▷ Values of relaxed decision variables
2: restrictedModel ← Fix to zero all variables in Σextra whose value in argrelax is less than ε;

Impose integrality on the other variables in Σextra

3: argrestrict ← Solve restrictedModel
4: restrictedModel ← Fix all variables in Σextra to their values in argrestrict
5: for all sets of decision variables R[i] do
6: restrictedModel ← Fix to zero all variables in R[i] whose value in argrestrict is less than

ε; Impose integrality on the other variables in R[i]
7: if i = last(R) then
8: restrictedModel ← Impose integrality on all variables in S
9: end if

10: argrestrict ← Solve restrictedModel
11: end for
12: return argrestrict

Algorithm 1 provides the details. The first five steps are dedicated to the extra train
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variables. Steps 6-10 concern the ordered sequence of decision variables R where we apply an
iterative round-and-fix procedure that only rounds down and fix the variables whose values are
close to zero. In the last iteration, we impose integrality on the decision variables S for which
the rounding-and-fixing scheme could cause feasibility issues (Steps 8-10). Finally, we note that
the precision ε should be close to zero; we use 1e−5.

7 Numerical Results

In this section, we report results using the large network of our industrial partner. Their network
spans a large share of North America (see illustration in Figure 6 in the Appendix). To increase
variability and protect confidentiality, we simulate instances based on a real historical train
schedule and demand data. We describe the experimental setup in Section 7.1, followed by an
analysis of the results in Section 7.2. We conclude by providing managerial insights based on
the results.

7.1 Experimental Setup

In the following we provide details around our experimental setup.

Objective function. The objective function is a specific case of (1). The associated pa-
rameter values have been carefully tuned in collaboration with subject matter experts of our
industrial partner to ensure that the model generates realistic solutions. We refer to Appendix B
for details.

Extra Trains. To evaluate the impact of extra trains we consider a setting where any of the
existing train services in the schedule can be duplicated. Moreover, we fix the threshold Uσ of
minimum capacity to fill to select an extra train in (14) to 50% for all σ ∈ Σextra.

Block Generation. We restrict the set of potential blocks B to those that are considered
feasible in practice. While generating the paths in a depth-first search, we impose practical
constraints given by the train schedule. We note that for all instances it takes 51 seconds (the
variance is close to zero) to generate all the blocks (around 47,000). Since this time is constant,
it is not included in the computing times reported in Section 7.2.

Demand. To keep real data confidential, we simulate five realistic demand instances based
on actual values. There are 165 OD pairs in our network. To maintain the realism with respect
to the scheduled train services (network capacity) that are fixed, we vary the characteristics of
the demand while keeping overall demand volumes in the network intact. For this purpose, we
randomly generate the proportion of 40-ft versus 53-ft containers for each OD pair. In Figure 4,
we show that this leads to instances that have different characteristics. We display two box
plots, each having one bar per instance (x-axis). The y-axis in the left-hand plot displays
demand asymmetry. Based on total weekly volume for each pair of locations, it is computed
as the percentage difference in volume (i.e., relative difference in demand between locations A
to B, compared to B to A). The plot on the right-hand side, displays the percentage of 40-ft
containers for each OD pair. First, we note that few OD pairs are perfectly symmetrical (zero
percentage difference) and most are highly asymmetrical. Moreover, the percentage of 40-ft
containers vary across ODs and across instances.

Railcar fleet. To assess the impact of different railcar types, we consider seven different
railcar fleet scenarios:
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Figure 4: Illustration of how the demands are unbalanced and their types

1. 1-platform 53-ft (1x53)

2. 1-platform 40-ft, and 1-platform 53-ft (1x40,1x53)

3. 3-platforms 53-ft (3x53)

4. 3-platforms 40-ft, and 3-platforms 53-ft (3x40,3x53)

5. 5-platforms 53-ft (5x53)

6. 5-platforms 40-ft, and 5-platforms 53-ft (5x40,5x53)

7. All six types (All)

These scenarios cover different extreme cases: the most flexible cars in terms of loading but
least efficient in terms of capacity usage (1x53), the most efficient in terms of capacity usage
but most restricted in terms of loading (5x40), and the most flexible scenario from a network
planning perspective (All).

Baseline Models. We assess the value of the proposed model by comparing it to two base-
lines. First, a model that does not manage the railcar fleet hence assuming an infinite fleet, but
that takes into account loading restrictions (called Unrestricted Fleet Model). Second, a model
that, in addition to ignoring the railcar fleet management, does not take into account loading
constraints (called Unrestricted Loading Model). The former model resembles the one proposed
by Morganti et al. (2020). The latter model simply uses a formula that transforms a number
of containers into capacity usage (train length) by using railcar lengths and assuming double
stacking is always possible. We detail the integer linear formulations of the baseline models in
Appendices C and D.

Solution Approaches and Hardware. All experiments were performed using an Intel Core
i9-10980XE 3.00 GHz processor with 128 GB of RAM. We used ILOG CPLEX 22.1.1, restricting
the solver to a single thread, with a time limit of 12 hours and a stopping criteria of 2.5%
optimality gap. We compare the total solving times using CPLEX with our warm start approach
to the time it takes to solve the SSND-RM formulation directly (without warm start).

Performance metrics. We use standard performance metrics: computing time in CPU sec-
onds, optimality gap, root gap (optimality gap at the first found feasible solution) and number
of instances that reach the time limit. We provide interpretability by computing overall capacity
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utilization, percentage of railcar slot utilization, percentage of unsatisfied demand, fleet com-
position statistics, number of extra trains (if applicable), number of platforms, and number of
railcars. These metrics are described in more detail next to the results. We solve five instances
(demand scenarios) for each railcar scenario and version of the model/algorithm. Unless stated
otherwise, we report an average over the five instances for each performance metric.

7.2 Results

The results are structured around the key takeaways. Namely, the warm-start solutions are of
high quality, which leads to a significant speed up (Section 7.2.1), the baseline models are faster
to solve but importantly underestimate the required capacity (Section 7.2.2), and railcar fleet
management favours five-platform and 40-ft railcars whenever possible depending on the mix
of container types to transport (Section 7.2.3).

7.2.1 High-quality Warm-start Solutions Yield Significant Computational Speed-
ups

To assess computational performance, we solve the model with and without the extra train
selection variables. Table 3 reports the computing times for the different railcar fleet scenarios.

Focusing on the left-hand side of the table, we note that it is relatively fast to compute
the warm-start solutions. As expected, instances with extra trains are considerably more time
consuming to solve than those without extra trains. The resulting warm-start solutions for
the former instances are of high quality, which leads to a total average computing time within
3.25 hours. Note that the performance metrics consider instances that reached the time limit
and we report the number of such instances in column (#Timed-Out). Hence, the average
optimality gap may be higher than the 2.5% stopping criterion without reaching the 12 hour
time limit on average (excluding such instances results in a total average time of 1,627 seconds
for scenario 3x53, 998 seconds for scenario 3x40, 3x53, and 731 seconds for scenario 5x40,
5x53). Interestingly, 5x40, 5x53 (and not All) is the railcar scenario with the highest number
of instances reaching the time limit. This may be due to symmetry issues.

In the case of no extra trains, the quality of the warm-start solutions is already below the
2.5% optimality gap stopping criteria. We note that the averages are inflated by a few large
values. The median time to compute a warm-start solution is 37 seconds for the model without
extra trains, and 392 seconds for the model with extra trains.

Now, turning to the right-hand side of the table, we note that the warm start outperforms
the general-purpose solver alone across all railcar scenarios, with and without extra trains. A
total of 39 instances time-out, 20 in the extra train case. All of them concern a railcar scenario
with a mix of 40-ft and 53-ft platform railcars.

7.2.2 Baseline Models Underestimate the Required Capacity

As described in Section 7.1, we assess the value of the SSND-RM formulation by comparing
solutions with those obtained from two simpler baseline models. We focus on assessing how
they differ in the estimation of required capacity, hence we limit the comparison to instances
without extra trains. None of those instances reached the time limit. The results are presented
in Table 4 and we note that the computing time for SSND-RM is the same as the corresponding
results in Table 3. The rightmost sets of columns report results for the unrestricted fleet and
unrestricted loading models, respectively.

In addition to computing time, we report the percentage of unsatisfied demand (i.e., demand
volumes assigned to artificial arcs compared to total demand volumes in the network), and the
relative difference in network capacity usage for each model compared to the SSND-RM. We
measure capacity in train length distance (train service capacity multiplied by the distance
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Table 3: Average computing times with and without warm start, for instances with and without
extra trains

Scenario
Extra Trains - With Warm start Extra Trains - Without Warm start

Warm start Time (s) Total Time (s) #Timed-Out Root Gap Opt Gap Time (s) #Timed-Out Root Gap Opt Gap

1x53 672 1,017 0 4.18% 2.40% 3,691 0 87.01% 2.42%
1x40,1x53 3,435 13,313 0 3.44% 2.45% 43,257 5 97.36% 56.34%
3x53 78 9,916 1 6.32% 2.49% 3,757 0 97.29% 2.42%
3x40,3x53 4,707 17,820 2 3.24% 2.61% 43,257 5 97.51% 48.42%
5x53 24 31 0 1.94% 1.94% 565 0 97.46% 1.94%
5x40,5x53 368 26,125 3 3.28% 2.66% 43,257 5 97.57% 82.84%
All 1,393 13,522 0 2.74% 2.38% 43,261 5 97.58% 97.58%

Scenario
No Extra Trains - With Warm start No Extra Trains - Without Warm start

Warm start Time (s) Total Time (s) #Timed-Out Root Gap Opt Gap Time (s) #Timed-Out Root Gap Opt Gap

1x53 16 19 0 0.70% 0.70% 308 0 92.71% 1.32%
1x40,1x53 38 68 0 2.26% 2.26% 3,691 4 95.16% 2.24%
3x53 15 19 0 0.79% 0.79% 427 0 95.24% 0.82%
3x40,3x53 1,317 1,479 0 2.07% 2.00% 43,257 5 97.18% 25.88%
5x53 15 22 0 1.45% 1.44% 232 0 96.88% 1.97%
5x40,5x53 159 184 0 1.50% 1.51% 43,257 5 97.56% 82.84%
All 7,258 7,453 0 1.78% 1.78% 43,261 5 97.26% 97.24%

covered by each train leg). The capacity usage is then calculated as the train service used
capacity multiplied by distance, divided by total network capacity in the same unit. The
figures in the table correspond to the percentage difference compared to the capacity usage of
the SSND-RM (which therefore has a usage difference of 0%).

As expected, the SSND-RM model is harder to solve than the baseline models (its average
computing times are considerably larger), but it accurately models the repositioning of empty
railcars, as well as the loading restrictions specific to each railcar type. Ignoring the repositioning
of empty railcars (as in the Unrestricted Fleet model), means that the train capacity required
for this purpose is considered available to transport demand. This represents an average of 2-6%
of the network capacity. That is, using the unrestricted fleet model leads to an underestimation
of the capacity needed by an average of 2-6%, depending on the railcar scenario.

Ignoring intermodal loading constraints, in addition to railcar fleet management, has a larger
impact, as can be seen from the solutions to the Unrestricted Loading model. The average
underestimation of capacity usage ranges from 17% to 27%, depending on the railcar scenario.

We note that the reduction in unsatisfied demand aligns with the underestimation of required
capacity: the larger the underestimation, the more capacity appears available, enabling more
demand to be fulfilled. Finally, we note that the usage difference in the Unrestricted Loading
Model varies as a result of changes in the capacity usage of the SSND-RM model, rather than
fluctuations in its own usage. Indeed, as expected, it remains constant across railcar scenarios,
as evidenced by the constant computing time and percentage of unsatisfied demand.

Table 4: Comparison to model baselines on instances without extra trains (averages over five
instances)

Scenario
SSND-RM (with warm start) Unrestricted Fleet Model Unrestricted Loading Model

Time (s) Uns. Dem. Usage Diff Time (s) Uns. Dem. Usage Diff Time (s) Uns. Dem. Usage Diff

1x53 19.4 5.20% 0% 3.7 5.12% 5% 1.8 1.58% 27%
1x40,1x53 68.3 1.64% 0% 5.7 1.64% 6% 1.8 1.58% 25%
3x53 18.3 2.56% 0% 4.1 2.55% 5% 1.8 1.58% 25%
3x40,3x53 1,478.6 0.63% 0% 27.1 0.62% 4% 1.8 1.58% 20%
5x53 21.8 0.80% 0% 4.1 0.80% 4% 1.8 1.58% 20%
5x40,5x53 184.4 0.55% 0% 8.0 0.55% 4% 1.8 1.58% 17%
All 7,453.4 0.56% 0% 11.9 0.56% 2% 1.8 1.58% 18%
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7.2.3 Railcar Fleet Management Favors Five-platform and 40-ft Railcars When-
ever the Mix of Container Types Allows

Table 5 reports more detailed results on the selection of extra trains and the composition of
the railcar fleet. More precisely, we report the average number of extra trains, the number of
platforms and railcars, their slot utilization (the number of slots used compared to the total
number of slots available on railcars), and the composition of railcar types in the selected fleet.
Since the number of platforms varies across railcar scenarios, we separate the percentage of 53-ft
platforms and the percentage of one-, three-, and five-platform railcars.

At our tactical level, the plan is repeated every week. Unsatisfied demand therefore accu-
mulates unless extra resources are used. As expected, extra trains reduce the percentage of
unsatisfied demand. Since we impose a minimum capacity usage for such trains, it nevertheless
remains non-zero. We note that the number of extra trains varies depending on the railcar
scenario.

Recall that railcar fleet management needs to strike the right balance between loading flex-
ibility and capacity usage. The 53-ft one-platform railcars are the most flexible in terms of
loading, while they make the least efficient use of capacity. On the other side of the spectrum,
the 40-ft five-platform railcars are the most restrictive in terms of loading, but they make the
most efficient use of capacity (measured by the number of containers per train foot). Relatively
few extra trains are required when the model can choose among the most capacity-efficient rail-
cars (two extra trains on average, compared to 14.2 on average when restricted to using 53-ft
one-platform railcars).

Next, turning to the average slot utilization (%slotUsed in Table 5), we note that it is
relatively stable across the different railcar scenarios. As expected, it decreases as the percentage
of five-platform railcars increases in the fleet. When the model can select railcars of any type, on
average, 70% of the platforms are on five-platform cars (68% in the case of extra trains). We note
that whenever the model can select between 40-ft and 53-ft railcars, with only one exception,
a majority of the platforms are 40-ft (the average percentage of 53-ft platforms varies between
24% and 45%, with one exception at 55%). The exception concerns the extra train instances,
because the demand satisfied by the extra trains is mostly 53-ft containers.

Table 5: Results on railcar fleet composition (averages over five instances)

Scenario
Extra Trains

Time (s) Uns. Dem. #extra nbPlatforms nbRailcars %slotUsed %53Ftplat. %1plat. %3plat. %5plat.

1x53 1,017 0.43% 14.2 14,752 14,752 91% 100% 100% 0% 0%
1x40,1x53 13,313 0.32% 5 14,726 14,726 90% 27% 100% 0% 0%
3x53 9,916 0.34% 9 15,043 5,014 84% 100% 0% 100% 0%
3x40,3x53 17,820 0.26% 2.2 14,860 4,953 83% 36% 0% 100% 0%
5x53 31 0.27% 3 15,013 3,003 80% 100% 0% 0% 100%
5x40,5x53 26,125 0.23% 2 15,275 3,055 78% 42% 0% 0% 100%
All 13,522 0.21% 2 15,080 3,993 79% 55% 29% 3% 68%

Scenario
No Extra Trains

Time (s) Uns. Dem. #extra nbPlatforms nbRailcars %slotUsed %53Ftplat. %1plat. %3plat. %5plat.

1x53 19 5.20% 0 13,229 13,229 92% 100% 100% 0% 0%
1x40,1x53 68 1.64% 0 14,607 14,607 90% 24% 100% 0% 0%
3x53 18 2.56% 0 13,955 4,652 85% 100% 0% 100% 0%
3x40,3x53 1,479 0.63% 0 14,561 4,854 83% 33% 0% 100% 0%
5x53 22 0.80% 0 14,635 2,927 80% 100% 0% 0% 100%
5x40,5x53 184 0.55% 0 14,931 2,998 79% 39% 0% 0% 100%
All 7,453 0.56% 0 14,758 3,664 81% 45% 19% 11% 70%

Through the loading constraints, the composition of the railcar fleet is determined by the
mix of container sizes in the demand volumes. To better analyze why, we provide a more
granular view of the solutions in Figure 5. To avoid instances that reached the time limit, we
use only those without extra trains. The figure displays four scatter plots, one for each railcar
scenario that allows selection between 40-ft and 53-ft railcars. Each dot represents a block in the
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five instances over which we averaged the statistics in the previous tables. The x-axis displays
the ratio of 40-ft platforms in a given block, and the y-axis shows the ratio of 40-ft containers
in the demand assigned to that block. The size and the shade of gray of each dot vary: the
size increases with increasing density of dots in each plot. Dots of different shades may overlap,
each dot’s size will vary according to the density of its respective shade. The legend for the
shades of gray of the dot is shown on the right and represents the slot utilization, ranging from
relatively low (light shade) to high (dark shade).

Figure 5: Fleet composition for railcar scenarios with 40-ft and 53-ft platforms without extra
trains

Each plot has a large dot at (1, 1), meaning that in each railcar scenario many blocks are
made of 40-ft platforms that exclusively transport 40-ft containers. Similarly, each plot has
a large dot at (0, 0), meaning that in each scenario many blocks are made of 53-ft platforms
that transport exclusively 53-ft containers. The plots differ at (0, 1), which represents blocks
made entirely of 53-ft platforms transporting exclusively 40-ft containers. This inefficient use
of capacity is explained by unbalanced demand and the need to reposition railcars. The figure
displayed above each of the dots at (0, 1) represents the total number of blocks, without taking
into account the shade. Observe that, when the model is free to select any railcar type (bottom
right), it sacrifices loading capacity efficiency (larger figure) in exchange for better use of the
available platforms (larger black (0, 1) dot). Comparing the different plots at this point, we
note that the total slot utilization improves when the model can select any railcar type.

The upper-left plot in Figure 5 displays a linear function between (0, 1) and (1, 0.5) that
can be explained by the fact that the minimum ratio of 40-ft containers is half the ratio of the
40-ft platforms. Indeed, if only railcars with 40-ft platforms are available, at least half of the
containers must be 40-ft, since 53-ft containers can only be loaded on top of 40-ft containers on
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40-ft platforms. For all other railcar scenarios, some points are under this linear function, as
some platforms can be empty.

7.3 Managerial Insights

Based on the results in the previous section, several general managerial insights emerge.
It is crucial to consider loading constraints for intermodal rail network planning. Ignoring

such constraints can lead to a significant underestimation of the required capacity. In practice,
this may lead to increased operational costs by requiring the addition of costly capacity on an
ad hoc basis, and it may negatively impact customer service through delays.

The results also underline the importance of managing the railcar fleet. That is, accounting
for the repositioning of empty railcars is important to adequately estimate network capacity
usage. There is another side benefit: empty railcar repositioning represents unproductive moves
of equipment. An accurate representation of such capacity can provide valuable information for
adjusting the pricing strategy to better leverage this capacity and enhance profitability.

An adequate railcar fleet composition is important for the efficient use of network capacity.
If demand in the network at a block level is characterized by a majority of 40-ft containers, then
40-ft railcars should be favored. For networks characterized by a high degree of variation in the
mix of container types, the fleet should consist primarily of 53-ft platform railcars to ensure
greater flexibility.

From a capacity usage point of view, there is a clear positive effect of using multi-platform
railcars. Slot utilization per block is often used as a performance metric, especially to measure
terminal productivity (loading at the origin of a block). Our results show that this metric alone
may not be adequate. As an extreme example, a high average slot utilization can be achieved at
a terminal level using one-platform 53-ft railcars, which may nevertheless result in poor overall
network capacity utilization.

8 Conclusion

We introduced a new problem for tactical planning of intermodal railway transport. The prob-
lem considers several interrelated decision-making problems capturing three consolidation pro-
cesses and the management of a heterogeneous railcar fleet. We proposed a relatively simple
solution approach that consists of generating warm-start solutions with a construction heuristic
inspired by a relax-and-fix procedure. From a practical point of view, it has the advantage of
leveraging a general-purpose solver as a black box.

Results based on realistic instances from our industrial partner, the Canadian National
Railway Company, showed that we can solve large-scale instances down to an optimality gap
of 2.5% in a reasonable amount of time. We analyzed computational performance and the
railcar fleet management solutions. Moreover, a comparison with solutions obtained by solving
simpler baseline models showed that this new problem has high value. Based on the results,
we drew managerial insights that are valuable to any railway company transporting intermodal
containers on double-stack railcars.

This work opens up several avenues for future research. We solved a deterministic formu-
lation of the problem, but at the tactical planning level there is typically uncertainty in the
demand to be transported. A contextual stochastic formulation (Sadana et al. 2025) could lead
to more resilient solutions. However, it poses significant computational challenges, especially
since the demand distributions are expected to be decision-dependent (Frejinger and Hewitt
2025). Another important direction for future research is to tackle the corresponding opera-
tional network planning problem. In this case, there is less uncertainty about demand, but
it is necessary to adapt the tactical plan to account for unforeseen events, such as equipment
failures. In turn, this would require managing the railcar fleet at an even more granular level.
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A Intermodal network

Figure 6: Canadian National Intermodal Network (Canadian National Railway Company 2025)

B Objective Function Parameter Values

The objective function for our application is the following:

Minimize
∑
b∈B

(cbuild + ctransntrans
b ) yb + (cwaittwaitb + cbordnbord

b + ckmdb)

∑
k∈Kb

zbk +
∑
γ∈Γ

wγ
b


+
∑
b∈B

∑
k∈K

clatetlatebk zbk +
∑
γ∈Γ

∑
θ∈Θ

ηγcallocwγ
θ +

∑
k∈K

cndelzk +
∑

σ∈Σextra

cfix + cvar ∗
∑

a∈Atm
σ

ua ∗ da

 sσ

(15)

It incorporates several cost components reflecting operational considerations. A construction
cost cbuild is incurred for each block built, while a transfer cost ctrans is charged for every block
transferred between trains (ntrans

b ), penalizing the monetary and temporal burden of such
operations. Transfers also generate a waiting cost cwait per empty railcar or demand for each
minute of transfer time (twaitb ). A cost cbord is incurred for every border crossing (nbord

b ).
To discourage circuitous routes, a distance cost ckm is applied per kilometer traveled (db),
complemented by a lateness cost clate per demand for each minute exceeding the shortest-path
travel time (tlatebk ). An allocation cost calloc per platform is introduced for assigning railcars
at the start of the horizon, scaled by the number of platforms (ηγ) of each railcar type γ ∈ Γ.
To ensure high service quality, unmet demands (i.e., flows using artificial arcs) incur a large
penalty cost cndel. Finally, additional trains incur a fixed cost cfix and a variable cost dependent
on capacity and distance traveled. No explicit loading cost is included, as the loading process
implicitly enforces maximum utilization of preferred platforms.

The cost values were established in close collaboration with our industrial partner. They
are the following: cbuild = 100, ctrans = 10020, cwait = 1, cbord = 1000, ckm = 0.75, clate = 1,
calloc = 200, cndel = 100000, cfix = 700000, cvar = 0.01. It is important to note that these do
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not represent the real monetary costs that the company pays to route demands through their
railroad network.

C Unrestricted Fleet Model

The model without fleet management can be written as:

Minimize
∑

σ∈Σextra

fσsσ +
∑
b∈B

fbyb +
∑
b∈B

∑
k∈Kb

cbkzbk +
∑
k∈K

ckzk (16)

Subject to:∑
b∈Bk

zbk + zk = υk, k ∈ K, (17)

zbk ≤ υkyb, b ∈ Bk, k ∈ K, (18)∑
k∈Kb|τk=τ

zbk =
∑
π∈Π

ντbπ + 2ντ,τbπ +
∑

τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , τ ∈ T , b ∈ B, (19)

∑
γ∈Γ

ηγπx
γ
b ≥

∑
τ∈T

ντbπ + ντ,τbπ +
1

2

∑
τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , π ∈ Π, b ∈ B, (20)

∑
γ∈Γπ

xγb ≤
∑
τ∈T

ντbπ + ντ,τbπ +
1

2

∑
τ ′∈T |τ ′ ̸=τ

ντ,τ
′

bπ

 , π ∈ Π, b ∈ B, (21)

∑
γ∈Γ

⌈
ηγπ40

2

⌉
xγb ≥ ντ40,τ53bπ40

, b ∈ B, (22)

∑
γ∈Γ

λγx
γ
b ≤ ubyb, b ∈ B, (23)

∑
b∈Ba

∑
γ∈Γ

λγx
γ
b ≤ ua, a ∈ Atm

σ , σ ∈ Σinit, (24)

∑
b∈Ba

∑
γ∈Γ

λγx
γ
b ≤ sσua, a ∈ Atm

σ , σ ∈ Σextra, (25)

1

ua

∑
b∈Ba

∑
γ∈Γ

λγx
γ
b ≥ Uσsσ, a ∈ Autm

σ , σ ∈ Σextra, (26)

yb ∈ {0, 1}, b ∈ B,
sσ ∈ {0, 1}, σ ∈ Σextra,

xγb , zbk, zk, ν
ττ ′
bπ , ντbπ ∈ N, k ∈ K, b ∈ B, τ ∈ T , τ ′ ∈ T , π ∈ Π,

a ∈ A, i ∈ N , j ∈ N , γ ∈ Γ, θ ∈ Θ.

The objective function (16) minimizes the total cost of selecting extra trains (when relevant),
selecting and building blocks, routing demand flows on blocks and artificial arcs.

Constraints (17) to (22) are the same as constraints (2) to (7) in the SSND-RM formulation.
Constraints (23) to (26) have the same role as Constraints (8), and (12) to (14) in the SSND-RM
formulation, but do not take into account the repositioning of empty railcars when calculating
capacity usage.

30

The Intermodal Railroad Blocking and Railcar  Fleet-Management Planning Problem 

CIRRELT-2025-36



D Unrestricted Loading Model

The model without fleet management and loading is:

Minimize
∑

σ∈Σextra

fσsσ +
∑
b∈B

fbyb +
∑
b∈B

∑
k∈Kb

cbkzbk +
∑
k∈K

ckzk (27)

Subject to:∑
b∈Bk

zbk + zk = υk, k ∈ K, (28)

zbk ≤ υkyb, b ∈ Bk, k ∈ K, (29)

1

2

∑
τ∈T

∑
k∈Kb|τk=τ

λτzbk ≤ ubyb, b ∈ B, (30)

1

2

∑
b∈Ba

∑
τ∈T

∑
k∈Kb|τk=τ

λτzbk ≤ ua, a ∈ Atm
σ , σ ∈ Σinit, (31)

1

2

∑
b∈Ba

∑
τ∈T

∑
k∈Kb|τk=τ

λτzbk ≤ sσua, a ∈ Atm
σ , σ ∈ Σextra, (32)

1

2ua

∑
b∈Ba

∑
τ∈T

∑
k∈Kb|τk=τ

λτzbk ≥ Uσsσ, a ∈ Atm
σ , σ ∈ Σextra, (33)

yb ∈ {0, 1}, b ∈ B,
sσ ∈ {0, 1}, σ ∈ Σextra,

zbk, zk ∈ N, k ∈ K, b ∈ B, τ ∈ T , τ ′ ∈ T , π ∈ Π,

a ∈ A, i ∈ N , j ∈ N , γ ∈ Γ, θ ∈ Θ.

Objective function (27) minimizes the total cost of selecting extra trains (when relevant),
selecting and building blocks and routing demand flows on blocks and artificial arcs.

Constraints (28) and (29) are the same as Constraints (2) and (3) in the SSND-RM for-
mulation. Constraints (30) to (33) have the same role as constraints (8) and (12) to (14) in
the SSND-RM formulation, but do not take into account the repositioning of empty railcars
and loading of containers when calculating capacity usage. The formula transforms a number
of containers into capacity usage (train length) by using railcar lengths and assuming double
stacking is always possible.
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