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Abstract. This work presents a decision support system for planning a consolidation-based 
urban distribution system, in which inbound freight packed in containers arrives at an 
inter-modal terminal. As the terminal lacks storage and transdock capabilities, containers 
must be transferred to satellites, where their contents are unloaded and redistributed into 
smaller vehicles for final delivery. The problem is approached from the perspective of an 
urban mobility manager, whose goal is to select satellite facilities and vehicle types, define 
vehicle routes and the flow of goods to final customers while optimizing transportation 
resource utilization. The system is modeled using a Mixed-Integer Lin-ear Programming 
(MILP) formulation. To address instances of realistic size, a solution approach based on two 
integrated Adaptive Large Neighborhood Search (ALNS) meta-heuristics is proposed. In 
each iteration of the first ALNS, the selection of satellites and the assignment of containers 
to them are updated. These configurations are then evaluated by the second ALNS, which 
determines the associated second-tier routing and flow decisions. Extensive 
computational experiments are conducted to assess the algorithm’s performance and to 
analyze the practical benefits of the proposed approach, using the city of Cagliari (Italy) as 
a real-world case study. 
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1 Introduction

The freight transport sector plays a vital role in supporting economic growth, but it
also poses significant challenges to urban environments, such as traffic congestion, air
pollution, and noise. In light of evolving political, economic, and societal pressures,
transportation and logistics systems are increasingly expected to become more sustain-
able, without sacrificing efficiency. In response to these demands, innovative business
models — collectively known as City Logistics — have emerged. City Logistics seeks
to reduce the negative externalities of urban freight transport while fostering social and
economic development. These systems are based on freight consolidation strategies and
require coordinated planning across strategic, tactical, and operational levels.

In this work, we address the tactical planning of a Two-Tier City Logistics (2T-
CL) system. First introduced in [3], in these systems inbound freight is moved to City
Distribution Centers (CDCs), which are typically located on the outskirts of urban areas.
From these CDCs, freight is transported by large vehicles to satellites — small transdock
facilities positioned within the inner part of the city. Final deliveries to customers are
then carried out by city freighters, which are smaller, environmentally friendly, and cost-
effective. The resulting two-tier structure presents complex optimization challenges.

This paper examines a 2T-CL system incorporating an intermodal facility (e.g., a
port) that serves as the entry point for inbound containers, each carrying commodities
(or pallets) destined for multiple customers. Unlike traditional systems, where City
Distribution Centers (CDCs) are located on the city’s outskirts, the intermodal facility
is situated within the urban area. Due to space constraints and the need to swiftly clear
the docks for incoming shipments, the deconsolidation of containers is not permitted at
the facility. Instead, containers are transported to satellites — transdock-type facilities
where goods are unpacked, sorted, and dispatched to final destinations using smaller,
environmentally sustainable vehicles. To the best of our knowledge, the tactical planning
aspect of such a system has not yet been investigated in the literature.

Our objective is to address existing knowledge gaps by introducing a novel problem
setting that captures the complexities inherent in both demand and supply dynamics.
Specifically, we define two distinct service types, each corresponding to one tier of the
logistics system: the first type involves the allocation of resources (vehicles, capacities,
infrastructure) for transporting containers from the intermodal terminal to satellites; the
second type concerns the movement of pallets from satellites to final customers using
suitable delivery means. The main aspects investigated include: (1) the selection of
satellites to which inbound containers are assigned; (2) the specification of specialized
vehicles for each tier — large vehicles for container transport in the first tier, and smaller,
more sustainable vehicles for pallet delivery in the second tier; (3) the design of second-
tier delivery routes and the associated flow of commodities; and (4) the incorporation of
system constraints, such as a heterogeneous vehicle fleet and satellite capacity limitations,
expressed in terms of pallet, vehicle, and container handling capabilities.
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The main contributions of this paper are as follows: (1) the definition of a novel
problem setting for 2T-CL systems, in which transportation services must be jointly
selected in both tiers; (2) the formulation of a Location-Network Design model to support
the tactical planning of the proposed 2T-CL system; (3) the development of a solution
approach based on two Adaptive Large Neighborhood Search (ALNS) algorithms tailored
to the problem structure; and (4) the demonstration of the method’s effectiveness through
extensive computational experiments and managerial insights derived from a real-world
case study.

The remainder of the paper is structured as follows. In Section 2 the problem setting
is described. An overview of the literature on two-tiered systems is provided in Section
3. In Section 4 we propose a Mixed-Integer Linear Programming (MILP) formulation
for the problem at hand. In Section 5 the ALNS-based algorithm is presented. The
results of our experiment are shown in Section 6. Finally, in Section 7 we summarize
the main findings, discuss the implications of our results, and indicate potential directions
for future research.

2 Problem setting

The section begins by introducing the 2T-CL system under study, detailing its core
components and operational mechanisms. Emphasis is placed on the novel features of
the proposed approach in comparison with existing literature. The section concludes
with an overview of the tactical planning challenges associated with the system.

2.1 The system

This study addresses the tactical planning problem within a 2T-CL system, schemati-
cally illustrated in Figure 1. The 2T-CL network comprises two types of facilities—the
intermodal terminal and the satellites—as well as customer zones, an external zone, and
a set of connections representing different transportation services. Satellites are typi-
cally located on the outskirts of the city, whereas customer zones are situated within the
urban core, where access for large vehicles is often restricted due to traffic regulations.
Connections linking the intermodal terminal to the satellites define the first tier, while
those connecting satellites to customer zones constitute the second tier.

We focus on inbound demand, where customer zones represent demand destinations
and the external zone serves as the point of origin. Freight must be transported from
this external origin to customers located within the city. A single unit of demand, re-
ferred to as a pallet, is assumed to be the standard unit handled in the 2T-CL system.
Demand is thus quantified in terms of the number of pallets to be transported from
origin to destination. To optimize long-haul transportation toward the intermodal facil-
ity, pallets destined for different customer zones are consolidated into containers. Upon

2
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arrival at the intermodal terminal, containers must be transferred to a satellite facility
for unloading. Notably, the demand for a specific destination may be distributed across
multiple containers. However, due to the rear-loading nature of containers and the op-
erational difficulty of rearranging pallets, each container is assumed to be unpacked at a
single satellite. In the second tier, the demand for a given customer may be split among
multiple delivery vehicles.

Pallet demand is fulfilled through two types of transportation services, one for each
tier of the system. First-tier services are responsible for transporting containers from the
intermodal terminal (e.g., port) to satellite facilities, providing the necessary vehicles,
capacities, and related resources. Second-tier services handle the distribution of pallets
from satellites to customer zones within the city.

In daily operations, containers are transferred from the intermodal facility to satel-
lites using first-tier urban vehicles, also referred to as Container-Compatible Vehicles
(CCVs). Satellites function as transfer points between first-tier and second-tier opera-
tions, typically operating under trans-dock principles, with minimal or no storage ca-
pacity. First-tier and second-tier vehicles may be simultaneously present at a satellite,
potentially competing for limited docking or parking space, as well as for cargo handling
resources. Second-tier deliveries to customer zones are carried out by city freighters or
Pallet-Compatible Vehicles (PCVs), which are better suited to urban environments due
to their smaller size and maneuverability. We assume heterogeneous vehicle fleets in both
tiers with respect to cost structures. While PCVs may vary in pallet-carrying capacity,
all CCVs are assumed to transport only one container at a time.

Finally, all containers are considered available at the intermodal facility at the start
of the workday. PCV routes are assumed to be open, i.e., vehicles do not necessarily
return to their starting points.

2.2 Tactical planning

We assume that the City Logistics (CL) system is planned and managed by a single
decision-maker, although vehicles and satellite facilities may be owned and operated by
multiple public and private stakeholders engaged in a collaborative framework involving
cost and capacity sharing. Within this context, the tactical plan defines the selection of
active satellites, their operational roles, and the set of vehicles required to support the
selected services in both tiers.

This tactical plan is developed for a short-term period, referred to as the schedule
length (e.g., one day), and is intended to be applied repeatedly over a longer planning
horizon (e.g., six months). It is assumed that the core elements of the plan — such as
the selected satellites and vehicle configurations — remain fixed throughout the planning
horizon. Operational adjustments to accommodate fluctuations in daily demand are
handled by modifying routing decisions in real time, which falls outside the scope of this

3
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container assignment

inbound containers from external zone

Figure 1: Two-tier city logistics system.

study.

The proposed Location-Network Design formulation addresses the key tactical plan-
ning decisions for the 2T-CL system, including: (1) selection of satellite facilities capable
of handling all inbound containers from the intermodal terminal; (2) assignment of each
container to a specific satellite; (3) selection of Container-Compatible Vehicles (CCVs)
to transport containers from the terminal to satellites; (4) selection of Pallet-Compatible
Vehicles (PCVs) to fulfill last-mile deliveries; (5) assignment of each selected PCV to a
satellite; (6) routing of each PCV from the assigned satellite to the customer zones; and
(7) determination of the number of pallets delivered by each PCV to each customer.

The objective is to identify the most cost-effective configuration that satisfies demand
requirements using the available sets of satellites and vehicles. The generalized cost func-
tion incorporates all relevant operational costs associated with the selected transportation
and facility services.

3 Literature review

This section begins with a brief overview of the concept of 2T-CL systems. We then shift
our focus to network design problems within this context. Finally, we highlight the main
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research gaps identified in the existing literature.

3.1 Two-tier City Logistics

The concept of Two-Tier City Logistics (2T-CL) systems was first introduced by [3],
who investigated the optimal location of satellite facilities within urban freight distribu-
tion networks. City logistics systems generally comprise one or more layers of facilities
designed to consolidate freight flows through the coordination of transportation, trans-
shipment, and storage activities. These facilities are typically categorized as either City
Distribution Centers (CDCs) or satellites. CDCs primarily receive inbound freight for
storage, sorting, and consolidation, thereby enabling coordinated and efficient deliveries
within urban areas. Satellites, in turn, operate as intermediate facilities within a multi-
tier structure, linking first-tier CDCs with lower-tier facilities and end customers. The
study in [3] demonstrated that implementing a 2T-CL system can significantly reduce the
distance traveled by large trucks within the city, allowing final deliveries to be performed
by smaller, more sustainable vehicles.

A general modeling framework for tactical planning in 2T-CL systems was later pro-
posed by [4], who addressed the temporal characteristics of demand and the need for
coordinated vehicle operations across both tiers. Their study considered a simplified
setting with a single mode of road-based transport per tier and focused exclusively on
inbound demand, with each demand instance pre-assigned to a City Distribution Center
(CDC).

Subsequent research explored related problems such as the Two-Echelon Vehicle Rout-
ing Problem (2E-VRP) and Location Routing Problems [2], even if limited research was
carried out to capture the multi-commodity feature of these problems ([1], [7]).

As for Scheduled Service Network Design (SSND) problems (e.g., [6]), the work by [8],
incorporated demand uncertainty into tactical planning through a two-stage stochastic
programming approach, and analyzed various strategies for adapting plans in response
to real-time demand fluctuations. Building on this, [9] refined the SSND framework to
better reflect the specific requirements of 2T-CL systems.

[11] contributed to the literature by introducing more realistic assumptions, such as
the simultaneous consideration of inbound and outbound flows and multiple transporta-
tion modes. Their approach relied on an SSND model solved via Benders decomposition.
In parallel, [10] investigated the integration of public transport services into two-tier
logistics systems to support freight movement from peripheral areas to satellite facilities.

More recently, [12] examined the conditions under which single-tier or two-tier city
logistics structures are preferable, offering managerial insights for urban logistics design.

It is important to note that existing studies assume the presence of City Distribu-
tion Centers that allow for initial consolidation of freight flows from external regions. In
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contrast, the setting addressed in this work considers an intermodal facility that lacks
consolidation capabilities, thereby requiring containers to be directly transferred to satel-
lites for unpacking and distribution.

3.2 Service Network Design

This study addresses decisions related to the selection of satellites and vehicles, as well
as the design of the service network. Accordingly, we review the relevant literature in
the domains of facility location and service network design. However, unlike traditional
approaches that emphasize resource acquisition — such as selecting vehicle fleets or fa-
cility sites — our focus lies on selecting the services provided by available vehicles and
satellites. Notably, most existing studies concentrate on strategic or integrated strate-
gic–tactical decision-making frameworks, whereas our work emphasizes tactical planning
within a fixed infrastructure context.

In [13], the authors provide a unified framework for problems that integrate facility
location and network design decisions.

[14] propose an optimization model that jointly determines the locations of unca-
pacitated facilities and the design of a transportation network used to move customer
shipments from their origins to the nearest open facility. The objective is to minimize the
total cost, including facility opening, service operation, and shipment routing. Building
upon this work, [15] extend the model to incorporate facility capacity constraints, intro-
ducing a combined facility location and capacitated network design problem. However,
their formulation does not account for the operational resources required to support the
transportation network, such as vehicle availability or service provisioning.

Early studies (e.g., [17], [18]) investigated strategic planning problems that impose
a design-balance constraint, requiring that the number of services entering and leaving
a terminal at any given time be equal. These models typically assume a single type
of resource, with each service supported by one unit of that resource. As a result, the
design-balance constraint ensures temporal and spatial equilibrium of resources across the
network. However, incorporating such constraints significantly increases the complexity
of the problem, as rounding-based solution techniques often lead to infeasible solutions
[26]. In response, several tailored solution methods have been developed to effectively
handle design balance, including those proposed in [19], [20], and [21].

A problem integrating both strategic and tactical planning was addressed by [25] and
[24]. In their approach, tactical decisions involve the selection of transportation services
to operate and the routing of freight through the resulting service and terminal network,
where services are supported by vehicles assigned to specific satellites. Strategic decisions,
on the other hand, encompass the location of facilities and the selection and allocation of
vehicles. Although these decision levels are often treated separately, the authors propose
solving them jointly, allowing strategic resource acquisition and allocation choices to be
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informed by accurate estimates of their impact on operational transportation costs. In
contrast, the present work interprets satellite selection as a service selection decision,
rather than a strategic facility location problem.

[22] examine a combined facility location and network design problem with multiple
types of capacitated links. They propose a mixed-integer programming model to simul-
taneously optimize facility locations and the associated transportation network, aiming
to minimize total transportation and operational costs. The model includes various link
types, each characterized by distinct capacities and fixed costs; however, vehicle selection
is not considered in their framework.

In a related contribution, [23] propose an integrated tactical planning model combin-
ing hub location decisions with the design of a frequency-based service network. Notably,
their formulation assumes that no fixed costs are incurred for using, not using, or opening
hubs, which contrasts with many practical applications where such costs are significant.

3.3 Gaps in the literature

To the best of our knowledge, this is the first work to address a service network design
problem for the tactical planning of a Two-Tier City Logistics (2T-CL) system that in-
tegrates an intermodal facility without deconsolidation capabilities—unlike conventional
City Distribution Centers (CDCs). Uniquely, our model simultaneously considers the
selection of services, vehicles, and satellite facilities, capturing operational constraints
and interdependencies that have been overlooked in prior research.

4 Modeling

The physical distribution network is represented by a directed graph G = (N,A), where
N denotes the set of nodes and A the set of arcs. The node set N includes the port
node p, the set of satellites S and the set of customer locations Γ. The arc set A can be
partitioned into 2 sets: A1, representing the first-tier arcs from the port p ∈ N to each
satellite s ∈ S; and A2, representing second-tier arcs connecting each satellite s ∈ S and
each customer γ ∈ Γ to any other customer within the network.

Let K1 and K2 denote the sets of Container-Compatible Vehicles (CCVs) and Pallet-
Compatible Vehicles (PCVs), respectively. Let C be the set of containers and Πγ

c the
number of pallets for the customer γ ∈ Γ carried by container c ∈ C. The former notation
is also illustrated in Table 1. Accordingly, the total number of pallets in container c ∈ C
is given by Πc :=

∑
γ∈Γ Π

γ
c ,∀c ∈ C and the total number of pallets destined for customer

γ ∈ Γ is given by Πγ :=
∑

c∈C Πγ
c ,∀γ ∈ Γ.

Figure 2 illustrates a simplified configuration involving three containers c1, c2 and c3,
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Symbol Description

p Seaport

C Set of containers

S Set of satellites

Γ Set of customers

K1 Set of CCVs

K2 Set of PCVs

G = (N,A) A directed graph

N {p} ∪ S ∪ Γ

A A1 ∪ A2

A1 {(p, s) : s ∈ S}
A2 {(i, j) i ∈ S ∪ Γ, j ∈ Γ, i ̸= j}

Table 1: Sets

three satellites s1, s2 and s3, and three customers γ1, γ2 and γ3. The total demand for
customer γ2 is 7 pallets: 3 are packed in container c1 and 4 in container c3. If both
containers are assigned to the same satellite, the corresponding pallets can be either
consolidated onto a single PCV for delivery or split among multiple PCVs. The decision
variables and the data in the MILP formulation are defined in Table 2.

1st tier 2nd tier

C S Γ

c1

c2

c3
7 4 7
γ1 γ2 γ3

9 0 9
γ1 γ2 γ3

8 3 7
γ1 γ2 γ3

p

s1 γ1

s2

s3

γ2

γ3

Figure 2: Example of a two tiered system in a maritime city
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Symbol Description

us Maximum number of containers that satellite s ∈ S can handle

vs Upper limit on the number of PCVs assigned to satellite s ∈ S
π1
s Maximum number of pallets that satellite s ∈ S can handle

π2
k Maximum number of pallets that PCV k ∈ K2 can carry

fs Fixed selection cost of satellite s ∈ S
βs Unit cost per pallet served by s ∈ S
λ1ks Fixed operation and handling cost of CCV k ∈ K1 at satellite s ∈ S
λ2ks Fixed operation and handling cost of PCV k ∈ K2 at satellite s ∈ S
µk(i,j) Operation cost of PCV k ∈ K2 traversing arc (i, j) ∈ A2

αkγ(i,j) Unitary transportation cost per pallet for customer γ ∈ Γ carried by
PCV k ∈ K2 along arc (i, j) ∈ A2

ys Satellite selection variable: it takes value 1 if satellite s ∈ S is selected,
0 otherwise

x1ksc Container transportation variable: it takes value 1 if container c ∈ C
is moved by CCV k ∈ K1 from the port to satellite s ∈ S, 0 otherwise

w2
k(i,j) Vehicle routing variable: it takes value 1 if PCV k ∈ K2 traverses arc

(i, j) ∈ A2, 0 otherwise

x2kγ(i,j) Number of pallets shipped along arc (i, j) ∈ A2 to customer γ ∈ Γ by
PCV k ∈ K2, 0 otherwise

Table 2: Data and decision variables

The problem can be formulated as follows.

z∗ = min
∑
s∈S

(
fsys + βs

∑
k∈K1

∑
c∈C

Πcx
1
ksc

)
+
∑
k∈K1

∑
s∈S

∑
c∈C

λ1ksx
1
ksc +

∑
k∈K2

∑
s∈S

∑
j∈Γ

λ2kswk(s,j)

+
∑
k∈K2

∑
(i,j)∈A2

µk(i,j)wk(i,j)

+
∑
k∈K2

∑
γ∈Γ

∑
(i,j)∈A2

αkγ(i,j)x
2
kγ(i,j) (1)

∑
k∈K1

∑
s∈S

x1ksc = 1 ∀c ∈ C (2)∑
s∈S

∑
c∈C

x1ksc ≤ 1 ∀k ∈ K1 (3)∑
s∈S

∑
j∈Γ

wk(s,j) ≤ 1 ∀k ∈ K2 (4)
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∑
k∈K1

∑
c∈C

x1ksc ≤ usys ∀s ∈ S (5)∑
k∈K2

∑
j∈Γ

wk(s,j) ≤ vsys ∀s ∈ S (6)∑
k∈K1

∑
c∈C

Πcx
1
ksc ≤ π1

sys ∀s ∈ S (7)

∑
γ∈Γ

x2kγ(i,j) ≤ π2
kwk(i,j)

∀k ∈ K2,

∀(i, j) ∈ A2

(8)

∑
(j,l)∈A2

wk(j,l) ≤
∑

(i,j)∈A2

wk(i,j)

∀k ∈ K2,

∀j ∈ Γ
(9)

∑
k∈K2

∑
(s,j)∈A2

x2kγ(s,j) −
∑
k∈K1

∑
c∈C

Πγ
cx

1
ksc = 0

∀s ∈ S,
∀γ ∈ Γ

(10)

∑
k∈K2

∑
(i,γ)∈A2

x2kγ(i,γ) − Πγ = 0 ∀γ ∈ Γ (11)

∑
k∈K2

∑
(γ,i)∈A2

x2kγ(γ,i) = 0 ∀γ ∈ Γ (12)

∑
(i,γ′)∈A2

x2kγ(i,γ′) −
∑

(γ′,j)∈A2

x2kγ(γ′,j) = 0
∀k ∈ K2,

∀γ, γ′ ∈ Γ, γ′ ̸= γ
(13)

ys ∈ {0, 1} ∀s ∈ S (14)

x1ksc ∈ {0, 1}
∀k ∈ K1, ∀s ∈ S,

∀c ∈ C
(15)

wk(i,j) ∈ {0, 1}
∀k ∈ K2,

∀(i, j) ∈ A2

(16)

x2kγ(i,j) ∈ N
∀k ∈ K2, ∀γ ∈ Γ,

∀(i, j) ∈ A2

(17)

In (1) we minimize the total cost, which includes: satellite activation costs; vehicle
selection and assignment costs; costs for pallet handling at satellites; and vehicle routing
costs in the second tier. Moreover, it accounts for the transportation cost paid by cus-
tomers for moving pallets across both the first and second tiers. Constraints (2) ensure
that each container c ∈ C is collected from the port and assigned to a satellite s ∈ S
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by a CCV k ∈ K1. Constraints (3) and (4) enforce that each CCV and PCV is assigned
to exactly one satellite, respectively. Constraints (5), (6) and (7) impose upper bounds
on the number of containers, PCVs and pallets assigned to each satellite s ∈ S, ensuring
these do not exceed their respective capacities us, vs and π1

s , provided the satellite is
selected. Constraints (8) link flow and routing variables and ensure that the pallet load
carried by each PCV k ∈ K2 does not exceed its capacity. Constraints (9) enforce the
flow conservation for each PCV at every node in the 2nd tier or the end of its route, if
the last customer is visited. Constraints (10) guarantee that the pallets requested by
each customer γ ∈ Γ pass through the selected satellite s ∈ S. Constraints (11) and
(12) ensure that each customer γ ∈ Γ receives exactly the number of requested pallets
and that no pallets for a customer leave this customer after delivery. Constraints (13)
represent the flow balance of pallets for customer γ ∈ Γ at intermediate customer nodes
γ′ ∈ Γ visited before the final destination. Finally, constraints from (14) to (17) define
the domain for the decision variables.

5 Solution method

In this section, we present an algorithm based on Adaptive Large Neighborhood Search
(ALNS) to solve the proposed problem. ALNS builds upon the Large Neighborhood
Search (LNS) framework originally introduced by Shaw [28], where the solution space is
explored through an iterative destroy-and-repair mechanism. At each iteration, a destroy
operator partially removes elements from the current solution, and a repair operator
reconstructs a complete solution by reinserting the removed components. This approach
enables the exploration of large neighborhoods, thereby enhancing the ability to escape
local optima [29]. ALNS extends the LNS framework by incorporating an adaptive
mechanism that dynamically selects the most promising destroy and repair operators
during the search process, based on their historical performance [30].

ALNS has been effectively applied to various extensions of the Vehicle Routing Prob-
lem (VRP), including the Two-Echelon VRP (2E-VRP) and the Location-Routing Prob-
lem (LRP). For example, Grangier et al. [31] developed ALNS-based approaches for
solving the 2E-VRP, Schiffer et al. [32] employed ALNS for the LRP and Hemmelmayr
et al. [5] proposed an ALNS heuristic for both 2E-VRP and LRP. A comprehensive
review of ALNS algorithms was recently provided by Mara et al. [33].

The key idea of the proposed solution approach is to decompose the overall problem
into two interrelated components, referred to as the main problem and the sub-problem.
The main problem, denoted as Prob1, focuses on exploring feasible configurations of
satellite selection and container assignments. For each candidate configuration generated
in Prob1, the associated second-tier decisions are determined by solving a corresponding
sub-problem that is consistent with the chosen configuration. The overall procedure
proceeds through the following steps:
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1. A configuration s1 of satellites and container assignments is determined.

2. The sub-problem, denoted as Prob2(s1), is solved within the framework of Prob1
to determine the distribution of pallets to customers, based on the configuration
defined in s1. Let s2 represent the corresponding solution to this sub-problem.

3. The solution to the complete problem (s1, s2) is built from s1 and s2 and compared
against the best incumbent solution (s∗1, s

∗
2).

A high-level flowchart of the solution method is presented in Figure 3. The method
follows a nested loop structure. In each iteration of the outer loop, a new configuration s′1
is generated and an initial feasible solution s2 is built for the corresponding sub-problem
Prob2(s

′
1). In the inner loop, s2 is iteratively modified by generating new candidate

solutions s′2, which are accepted or rejected based on their quality and possibly stored
as the best solution sb2 to Prob2(s

′
1). When the stopping criterion of the inner loop is

satisfied, the combined solution (s′1, s
b
2) is compared with the current solution (s1, s2)

and the best overall solution (s∗1, s
∗
2), updating them if improvements are observed. The

process repeats until the global termination criterion is reached.

The configurations s1 and the corresponding solutions s2 are obtained by two ALNS
metaheuristics, referred to as ALNS1 and ALNS2, which are described in Section 5.1
and Section 5.7, respectively.

5.1 ALNS1

We present the algorithm ALNS1, which is designed to modify satellite configurations
and the assignment of containers to satellites. At each iteration of ALNS1, the current
solution s1 is transformed into a new configuration s′1, and the associated sub-problem
Prob2(s

′
1) is solved to evaluate the resulting solution.

In ALNS1, the destroy-and-repair process operates on s1 as follows: a number nC

of containers is removed from their assigned satellites by a destroy operator, placed into
a temporary pool, and then reassigned to any open satellite by a repair operator. The
value of nC is selected at each iteration within a predefined range [nmin

C , nmax
C ], which is an

algorithmic hyperparameter. The longer the number of iterations since the last accepted
solution, the larger the value of nC , thus promoting diversification (see Section 6.2).

Some destroy operators are designed to explicitly open or close satellites, thereby
exploring a wider solution space, while others perform more localized modifications, pre-
serving the current satellite configuration. Destroy-repair operator pairs are selected
using a roulette-wheel mechanism based on their past performance. Each pair is associ-
ated with a score that reflects its past effectiveness, influencing its selection probability
in subsequent iterations (see Section 5.8 for further details).

12

A Double ALNS Metaheuristic for the Multi-commodity Location-Network Design Problem with Heterogeneous Vehicles for the Multi- 
commodity Location-Network Design

CIRRELT-2025-23



Start

(s1, s2)← initial solution()

(s∗1, s
∗
2)← (s1, s2)

Prob1

s′1 ← new solution(s1)

s2, s
b
2 ← initial solution(s′1)

Prob2(s
′
1)

s′2 ← new solution(s2)

accept/reject s′2 against s2

accept/reject s′2 against sb2

Stop?

accept/reject (s′1, s
b
2) against (s1, s2)

accept/reject (s′1, s
b
2) against (s

∗
1, s

∗
2)

Stop?

return (s∗1, s
∗
2)

Yes

Yes

No No
A
L
N
S
2

A
L
N
S
1

Figure 3: General flowchart of the solution method

The algorithm proceeds as outlined in Algorithm 1. An initial solution (s1, s2) for
the overall problem is generated using a greedy heuristic (see line 1 and refer to Section 5.3
for details). At each iteration, a pair of destroy and repair operators is selected to modify
the configuration s1. Specifically, a destroy operator removes container assignments from
satellites, and a repair operator reassigns them to available satellites.

Two categories of destroy operators are employed in ALNS1: small-impact destroy
operators, denoted by DS (see line 9 and Section 5.5), which only remove container
assignments without altering the satellite configuration; large-impact destroy operators,
denoted by DL (see line 7 and Section 5.4), which may also open or close satellites,
thereby resulting in a relevant change of the overall configuration. These are applied
every τ iterations since the last accepted solution, to force diversification when the search
stagnates. When DL is executed, the number of containers removed is set to nC = nmax

C .

Repair operators, denoted by R, are responsible for reassigning the removed con-
tainers to the current set of open satellites. The destroy–repair procedure results in a
new configuration s′1, and the corresponding sub-problem Prob2(s

′
1) is solved (line 13,

function solve Prob2(s
′
1), yielding a solution (s′1, s

′
2).
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The acceptance of this new solution is determined with respect to the current one
(s1, s2). If a large-impact destroy operator was used, the solution is automatically ac-
cepted (free pass). Otherwise, acceptance occurs only if the new solution strictly improves
upon the current one. This mechanism balances diversification and intensification by al-
lowing broader exploration when necessary, while focusing on refinement under stable
configurations.

The iterative process continues until a predefined time limit is reached or a specified
number of consecutive non-improving iterations occur, at which point the best-found
solution (s∗1, s

∗
2) is returned.

Algorithm 1 : ALNS1

1: (s1, s2)← initial solution()
2: (s∗1, s

∗
2)← (s1, s2)

3: initialize scores(σ)
4: i← 0
5: repeat
6: if i == τ then
7: N− ← select destroy operator(DL, σ)
8: else
9: N− ← select destroy operator(DS, σ)
10: end if
11: N+ ← select repair operator(R, σ)
12: s′1 ← destroy repair(s1, N

−, N+)
13: s′2 ← solve Prob2(s

′
1)

14: if i == τ or f(s′1, s
′
2) < f(s1, s2) then

15: s1 ← s′1
16: s2 ← s′2
17: i← 0
18: if f(s1, s2) < f(s∗1, s

∗
2) then

19: s∗1 ← s1
20: s∗2 ← s2
21: end if
22: else
23: i← i+ 1
24: end if
25: update scores(σ)
26: until stopping condition is met
27: return (s∗1, s

∗
2)

Note that:

• The operators in DL are applied less frequently (every time τ iterations since the
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last accepted solution).

• The operators in DS are applied at every iteration, except when a large-impact
operator from DL is selected.

In line 13 of ALNS1, the sub-problem Prob2(s1) is a multi-commodity multi-depot net-
work design problem. To tackle this sub-problem efficiently, we introduce a dedicated
ALNS metaheuristic, referred to as ALNS2, which is detailed in Section 5.7.

5.2 Penalized cost function

During the search process, infeasible solutions may also be explored due to potential
violations of satellite capacity constraints related to containers, pallets, and PCVs (i.e.,
constraints 5, 6, and 7 in Section 4). To account for such infeasibilities, a penalty
is imposed for each violated constraint and added to the objective value of the new
incumbent solution. Specifically, for a given solution (s1, s2), a weighted penalty function
f̄(s1, s2) is used to account for these violations:

f(s1, s2) = z(s1, s2) + ω
∑
s∈S

ū(s, s1)fs + ϵ
∑
s∈S

π̄1(s, s1)fs + ψ
∑
s∈S

v̄(s, s1)fs (18)

where z(s1, s2) is the cost associated with solution (s1, s2), while ū(s, s1), π̄
1(s, s1), and

v̄(s, s1) quantify the violations of, respectively, the container (CCV), pallet, and PCV
capacity constraints at satellite s ∈ S under configuration s1. The scalar coefficients ω,
ϵ, and ψ are penalty weights (or hyperparameters) used to modulate the impact of each
type of violation in the penalized objective function, and must be properly calibrated.

5.3 Initial solution

This solution method requires a feasible initial solution to initialize the optimization
process. To this end, we propose a simple constructive heuristic capable of generating
a feasible solution for the full problem. The procedure starts with all satellites initially
closed. At each iteration, a container is assigned to the satellite that yields the minimum
incremental cost, computed as the sum of (i) the cost of serving the pallets within the
container and (ii) the cost of opening the satellite, if currently closed. When a satel-
lite is selected and not yet active, it is opened. Once all containers are assigned, the
corresponding second-tier routing is determined by sequentially serving customers in a
random order using randomly chosen PCVs without violating their capacity, until the
entire demand is satisfied.
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5.4 Large-impact destroy operators

Large-impact destroy operators modify the satellite configuration by opening or closing
one or more satellites and, when applicable, remove nC containers affected by the resulting
configuration change. The removed containers are transferred to a container pool for
subsequent reassignment by a repair operator.

• Satellite closing: An open satellite is closed and all its containers and routes are
removed. This operator can be selected only if at least one satellite is open. Five
different selection mechanisms are defined, each resulting in a different operator:

– Most penalized (penalized c): The satellite with the highest penalty is
chosen.

– Random (random c): This operator randomly selects a satellite from the
set of currently open facilities and marks it for closure.

– Least Used (emptiest c): This operator selects the satellite that handles
the fewest number of pallets. The rationale is the assignment of containers to
fewer satellites by closing the one with the least number of pallets.

– Worst (worst c): The satellite with the highest removal gain is selected.
Specifically, the removal gain is computed as the difference between the total
cost of the current solution and the cost after removing the satellite, normal-
ized by the number of pallets processed at that satellite. This metric reflects
the cost-efficiency of each satellite in serving pallets, and the least efficient
satellite — i.e., the one with the highest cost per pallet — is chosen for re-
moval.

– Most-selected (most selected c): The satellite with the highest cumula-
tive number of container assignments across all iterations of the algorithm is
selected. The underlying rationale is to discourage over-reliance on frequently
chosen satellites by promoting diversification in the solution space.

• Satellite opening: A closed satellite is selected for opening, and the nC containers
that have been assigned to it the fewest number of times throughout the search are
removed from their current satellites and placed in the container pool. If no closed
satellites are available, this operator is deactivated. Although a satellite is opened,
the operator is categorized as a destroy operator, as it disrupts the current solution
by unassigning containers, which must subsequently be reassigned during the repair
phase. Five distinct selection strategies are implemented, each defining a different
variant of this operator:

– Largest (largest o): The satellite with the highest pallet handling capacity
π1
s is selected for opening;

– Random (random o): A random satellite is selected from the set of cur-
rently closed satellites;
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– Smallest (smallest o): The satellite with lowest pallet handling capacity π1
s

is selected for opening;

– Best (best o): The satellite with the lowest estimated cost is selected. This
estimate is calculated as the average per-pallet transportation cost from the
port to the customers via the satellite, computed and updated throughout the
algorithm’s iterations;

– Least-selected (least selected o): The satellite with the lowest cumulative
number of container assignments across all iterations of the algorithm is se-
lected. This strategy aims to prioritize underutilized satellites for the potential
reassignment of containers.

• Satellite swap: An open satellite is closed while simultaneously opening a previ-
ously closed satellite. All containers and routes associated with the closed satellite
are transferred to the newly opened one. Consequently, this operator inherently
performs the repair phase by reassigning containers from the pool during the trans-
fer. Despite incorporating repair actions, due to its substantial impact on the
overall solution, it is still classified as a large-impact operator. Five distinct se-
lection mechanisms are defined, each corresponding to a different variant of this
operator:

– Most penalized (penalized s): The open satellite with the highest penalty
is closed, while the closed satellite with the highest pallet capacity is opened;

– Random (random s): Two satellites are randomly selected;

– Least used (emptiest s): The open satellite managing the fewest pallets and
the closed satellite with the smallest pallet capacity are selected; the former
is closed, and the latter is opened;

– Worst (worst s): The satellite with the highest removal gain is closed, and
the satellite with the best cost estimate is opened;

– Most-selected (most selected s): The satellites with the highest and low-
est total container assignments across all iterations are selected: the former is
closed, and the latter is opened.

5.5 Small-impact destroy operators

Small-impact destroy operators remove (when applicable) nC containers without altering
the satellite configuration. The removed containers are placed into a container pool for
subsequent reassignment.

• Container removal: This operator directly selects the containers to be removed
from their current satellites. Five distinct container selection mechanisms are de-
fined, each giving rise to a different operator:
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– Most penalized (penalized r): Containers are removed from the satellites with
the highest penalty;

– Random removal (random r): Containers are randomly selected;

– Least-used removal (emptiest r): Containers are removed from satellites that
currently serve the fewest number of pallets;

– Worst removal (worst r): Containers are removed from the satellites with the
highest removal gain;

– Most-selected removal (most selected r): Containers are removed from the
satellites with the highest number of assignments.

• Container removal from satellite: this operator selects a satellite and removes
at most nC random containers from this satellite. Five different satellite selection
mechanisms are defined, each resulting in a different operator:

– Most penalized (penalized rs): This operator selects the satellite with the high-
est penalty;

– Random removal (random rs): This operator selects a random satellite;

– Least-used removal (emptiest rs): This operator selects the satellite with the
lowest number of pallets;

– Worst removal (worst rs): The satellite with the highest removal gain is se-
lected;

– Most-selected removal (most selected rs): The satellite with the highest cumu-
lative number of container assignments across all iterations of the algorithm
is selected.

5.6 Repair operators

The repair operators reassign containers from the pool to open satellites. Containers
are selected in random order, and after each assignment, the solution is immediately
updated. Three distinct assignment mechanisms are defined, each corresponding to a
different repair operator:

• Most-used insertion (most used i): Assignment to the satellite with the high-
est number of pallets;

• Best insertion (best i): Assignment to the best estimated satellite;

• Least-selected insertion (least selected i): Assignment to the least selected
satellite.

18

A Double ALNS Metaheuristic for the Multi-commodity Location-Network Design Problem with Heterogeneous Vehicles for the Multi- 
commodity Location-Network Design

CIRRELT-2025-23



For all these operators, ”noised” and ”forbidden” versions are considered. In the first
case, a random multiplicative noise in the range [0.85,1.15] is applied to the evaluation
metric used to select the satellite for container assignment. This stochastic perturba-
tion promotes exploration by preventing overly deterministic behavior and encouraging
alternative choices. In the second case, the satellite to which a container was previ-
ously assigned is excluded from the candidate set during reassignment. This mechanism
enforces diversification by discouraging the re-selection of recently used configurations,
thereby promoting exploration of new assignment patterns.

5.7 ALNS2

For each solution s′1 generated through a destroy–repair pair in ALNS1, the associated
sub-problem Prob2(s

′
1) must be solved to construct a complete solution (s′1, s

′
2) to the

overall problem. Given a fixed configuration s1 defining the set of active satellites and
the assignment of containers to them, Prob2(s1) determines the distribution of pallets
to customers. Specifically, it returns vehicle routing decisions (i.e., customer sequences
for each vehicle) and the associated pallet flows, all consistent with the configuration
imposed by s1.

To solve Prob2(s
′1) efficiently, we propose a dedicated ALNS-based metaheuristic,

denoted as ALNS2, and described inAlgorithm 2. At each iteration, a destroy operator
removes a subset of nΓ customers from their assigned routes and places them into a
customer pool. Subsequently, a repair operator reinserts the customers into the solution.
The value of nΓ is dynamically selected at each iteration from the interval [nminΓ, nmaxΓ],
which is a hyperparameter of the algorithm. This value increases with the number of
consecutive non-improving iterations (see Section 6.2).

This search is restricted to feasible solutions only. When a customer is removed,
the associated pallet flow is also eliminated to maintain consistency. As in ALNS1,
destroy–repair operator pairs are selected using a roulette-wheel mechanism, guided by
a scoring system based on past performance. Higher scores increase the likelihood of
selecting more effective operator pairs in subsequent iterations (see Section 5.8 for
details).

Whenever a new configuration s′1 is generated, an initial feasible solution s2 for
Prob2(s

′
1) is constructed as follows: customers affected by changes in the satellite config-

uration or in container-to-satellite assignments are randomly assigned to available PCVs
with sufficient remaining capacity. If required, PCVs are redistributed across satellites
to ensure that each satellite has adequate transportation capacity. In cases where the
construction of a feasible initial solution is not possible due to an insufficient number of
PCVs, the configuration s′1 is deemed infeasible and discarded, and the associated search
in ALNS2 is not performed.

During this search process, a destroy operator removes a subset of customers from
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their current PCV routes, and a repair operator subsequently reinserts them (see line 7 of
Algorithm 2). This destroy–repair process generates a new solution s′2, which replaces
the current solution s2 if its objective value lies within a threshold θ% of the best solution
found so far, denoted by sb2 (see line 9 of the algorithm).

Algorithm 2 : ALNS2

1: sb2, s2 ← initial solution Prob2(s
′
1)

2: initialize scores(σ)
3: if sb2 is feasible then
4: repeat
5: N−

2 ← select destroy operator(D2, σ)
6: N+

2 ← select repair operator(R2, σ)
7: s′2 ← destroy repair(s2, N

−
2 , N

+
2 )

8: if f2(s
′
2) < f2(s

b
2) ∗ (1 + θ) then

9: s2 ← s′2
10: if f2(s

′
2) < f2(s

b
2) then

11: sb2 ← s′2
12: end if
13: end if
14: update scores(σ)
15: until stopping condition for ALNS2 is met
16: end if
17: return sb2

The destroy and repair operators of ALNS2 are described in Section 5.7.1 and
Section 5.7.2, respectively.

5.7.1 Destroy operators

Destroy operators in ALNS2 remove, when applicable, nΓ customers from their current
routes, along with the associated pallet flows. The destroy operators are formally defined
as follows.

• Random Route removal (route r): a route is randomly selected, and all cus-
tomers assigned to it are removed from the solution along with their corresponding
pallet flows;

• Partial customer removal: Customers are selected and removed from one of their
assigned routes (remember that split deliveries may allow a customer to appear in
multiple routes). Three distinct versions of this operator are implemented, each
differing in the criteria used to select both the customers and the specific routes
from which they are removed:
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– Random (random r): randomly selected customers are removed from one of
their routes, with the specific route also chosen at random.

– Worst (worst r): customers are removed from the route that yields the highest
removal gain, defined as the difference in the total solution cost before and
after the customer’s removal.

– Smallest (smallest r): customers are removed from the route delivering the
fewest number of pallets.

• Customer removal: this operator removes a subset of selected customers from
all their routes. Three variants are proposed, differing in the method used to select
customers:

– Random (random rs): customers are randomly selected.

– Worst (worst rs): customers with the highest removal gain are selected.

– Most fragmented (most fragmented rs): customers with the highest number of
visits by PCVs are selected.

5.7.2 Repair operators

The repair operators assign PCVs to deliver pallets to customers in the pool, respecting
the residual capacity of the selected PCVs. A customer remains in the pool until its
entire pallet demand is fulfilled. Customers in the pool are processed in random order.
Five distinct methods for selecting PCVs are proposed, each defining a different repair
operator:

• Greedy delivery insertion (greedy i): for each customer, select the PCV minimizing
the customer’s insertion cost.

• Best fit delivery insertion (best fit i): for each customer, select the PCV with the
smallest residual capacity to accommodate the residual demand of the customer.

• Best delivery insertion (best i): for each customer, the PCV minimizing the esti-
mated insertion cost is selected.

• Least selected delivery insertion (least selected i): for each customer, select the
PCV that has served that customer the fewest number of times.

• Largest delivery insertion (largest i): for each customer, the largest PCV is selected.

Even in this case, a ”noised” version of the operators is considered as well.
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5.8 Selection of operators

At each iteration of both ALNS algorithms, operator pairs are selected using a roulette
wheel mechanism, where selection probabilities are based on scores assigned to individual
destroy-repair pairs. All scores are initialized to a common value σ at the start of
the algorithm and are updated during its execution, based on the quality of incumbent
solutions produced by the destroy-repair process. Higher scores reflect more effective
operator pairs, increasing their likelihood of being selected in subsequent iterations.

In ALNS1, two separate roulette wheels are used: one for large-impact pairs and
another for small-impact pairs. This separation ensures that pairs from different cate-
gories are selected independently. Large-impact destroy operators, which cause significant
changes to the solution, are applied every τ consecutive iterations without improvement,
while small-impact operators are applied during all other iterations. The score associated
with each operator pair i is denoted by ρi, and its selection probability ϕi is calculated
as the ratio of ρi to the sum of all scores within the corresponding roulette wheel:

ϕi :=

{
ρi/
∑

j∈N1
L
ρj if i ∈ N1

L

ρi/
∑

j∈N1
S
ρj if i ∈ N1

S

for ALNS1 (19)

ϕi := ρi/
∑
j∈N2

ρj if i ∈ N2 for ALNS2 (20)

Given the pair of destroy-repair operators i and the incumbent solution s′, σs′ represents
the score obtained by the pair i that generated the incumbent solution s′. This score
depends on whether the incumbent solution is accepted or not:

σs′ :=


σ+ if s′ is the new best solution

σ if s′ is an accepted solution

σ− otherwise

(21)

Finally, the score ρi is updated as the weighted average between the previous score and
the score σs′ :

ρi := ρi(1− ζ) + σs′ζ (22)

The scores of all pairs range in the interval [σ−, σ+]; setting σ− with a positive value
ensures that the least performing pairs are not totally excluded and have the chance to
improve their score in the following iterations of the algorithm. σ−, σ, σ+, ζ are hyper-
parameters of the algorithm. Usually, one expects 0 ≤ σ− ≤ σ ≤ σ+ and 0 ≤ ζ ≤ 1.
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6 Experimentation

We conduct computational experiments to tune parameter values and identify effective
configurations for the ALNS algorithm, which are then benchmarked against a MILP
solver. Additionally, we compare the performance of our proposed system with that
of a traditional distribution system, where shippers predefine their partners, including
container-to-satellite assignments and vehicle selections.

The algorithm was implemented in Microsoft Visual C++ 2022, compiled with the
Visual C++ compiler, and executed on a 2.9 GHz AMD Ryzen 7 4800H processor. To
solve the proposed MILP model, we employed IBM ILOG CPLEX Concert Technology
for C++ (version 22.1.1). Section 6.1 presents the instance set used in the experiments.
The parameter calibration procedure is outlined in Section 6.2. In Section 6.3, we re-
port a comparison between our algorithm and the CPLEX branch-and-cut solver. Finally,
Section 6.4 evaluates the performance of the 2T-CL system relative to the traditional
distribution system.

6.1 Instance description

We generate a set of instances based on a real-world scenario centered around the city
of Cagliari, Italy. Customer locations within the city are randomly selected from among
commercial sites, while transportation-related facilities — such as satellites and vehicle
depots — are chosen from actual logistics hubs located on the outskirts. Real driving
distances are computed for each arc of the graph formed by the selected nodes.

Each container is assumed to carry 18 pallets, and customer pallet demands are set
to 3, 6, or 9 units. Customers may be served via split deliveries, allowing their pallets to
be transported in different containers. Cost parameters are derived from actual logistics
contracts. Fixed selection costs for PCVs, CCVs, and satellites are generated within
ranges observed in the analyzed contracts. The unit cross-docking cost per pallet is
negatively correlated with satellite size, reflecting the expectation that larger satellites
offer greater efficiency in unloading operations.

Vehicle operating costs are set within the ranges of [2.00, 2.20] per kilometer for CCVs
and [1.80, 2.00] for PCVs. Average per-pallet, per-kilometer transportation costs are
estimated from the data of a real logistics provider and are perturbed using a random
multiplicative coefficient in the range [0.85, 1.15] to reflect variability across different
commodities. Additional random noise within the same range is applied to all generated
costs to simulate broader data variability.

Two sets of instances were created: 45 small instances featuring 3 satellites, 3–5
containers, and 6–30 customers; and 30 large instances with 10–16 satellites, 25–75 con-
tainers, and 50–300 customers. All instances are available upon request.
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6.2 Parameter calibration

Several parameters of the ALNS algorithm require tuning. To identify suitable values, we
conducted a calibration experiment on a subset of 15 selected small instances, referred to
as the calibration set. For each instance, multiple parameter configurations were tested,
with each configuration evaluated over 15 independent runs, each limited to a maximum
runtime of one hour. The final configuration was selected based on the best average
performance, measured by the gap to the best bound obtained by the CPLEX solver
within the same time limit.

Given the high dimensionality of the parameter space, an exhaustive search was
deemed computationally impractical. Therefore, the calibration process was structured
into sequential steps, each focusing on a subset of parameters while keeping the others
fixed. Parameters optimized in one step were held constant in subsequent steps. The ini-
tial values used prior to calibration are presented in Table 3. As the process progresses,
parameters are updated at each step. Table 4 summarizes the final calibrated values,
along with parameter descriptions.

The first step of the calibration focuses on tuning the parameters [nminC, nmaxC] and
[nminΓ, nmaxΓ], which govern the level of destruction in both ALNS algorithms. The
destruction level, when used, increases proportionally with the number of consecutive
iterations without improvement. These parameters define the minimum and maximum
destruction rates that a destroy operator can apply, expressed as percentages of the solu-
tion affected. A limited set of candidate value pairs was considered for each parameter:
[10%, 30%], [10%, 50%], [10%, 70%], [20%, 50%], [20%, 70%], and [30%, 50%].

All possible combinations of these candidate pairs were tested for [nminC, nmaxC] and
[nminΓ, nmaxΓ]. Following this step, the parameters τ ,M1, andM2 were calibrated. Here,
τ represents the number of consecutive iterations without an accepted solution before
triggering the application of large-impact destroy operators. The parametersM1 andM2

define the maximum number of iterations allowed for ALNS1 and ALNS2, respectively.
A constraint was imposed to fix the product M1 ·M2 = 500, 000, in order to maintain
consistent total computational effort across different configurations.

Several combinations of τ ,M1, andM2 were evaluated to identify a balanced trade-off
between solution quality and computational time:

1. τ = 10,M1 = 500,M2 = 1000,

2. τ = 20,M1 = 500,M2 = 1000,

3. τ = 10,M1 = 1000,M2 = 500,

4. τ = 20,M1 = 1000,M2 = 500,

5. τ = 50,M1 = 1000,M2 = 500,
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6. τ = 20,M1 = 2000,M2 = 250

7. τ = 50,M1 = 2000,M2 = 250.

Next, the parameter θ, which defines the threshold of acceptability relative to the
best solution found by ALNS2, was calibrated. The tested values for θ were 0%, 1%,
2%, and 5%.

Following this, the parameters governing the score assignment to destroy-repair op-
erator pairs — namely ζ, σ−, σ, and σ+ — were calibrated. The parameter ζ, which
determines the weight assigned to recent performance in score updates, was fixed at 0.5.
The following value sets were evaluated for σ−, σ, and σ+: [0, 1, 2], [0, 1, 4], and [0, 1, 1.5].

Lastly, the parameters of the penalized objective function — ω, ϵ, and ψ — were
assigned the same value within each configuration. The values tested for these parameters
were: 1.25, 1.50, 2.00, and 2.25.

Parameter Description Value
τ max iterations satellite configuration 10
nC destruction percentage range in ALNS1 [10%, 50%]
M1 max iterations without improvement ALNS1 2000
θ acceptance threshold ALNS2 5%
nΓ destruction percentage range in ALNS2 [10%, 50%]
M2 max iterations without improvement ALNS2 250
ω CCV capacity penalty weight 1.50
ϵ pallet capacity penalty weight 1.50
ψ PCV capacity penalty weight 1.50
ζ scores update weight 0.5
σ− rejected solution score 0.5
σ initial score / accepted solution score 1.0
σ+ best solution score 2.0

Table 3: Parameter setting before the calibration phase

For both ALNS variants, we conducted an additional calibration phase focused on
evaluating the effectiveness of the proposed operators, based on the best-performing
parameter configuration. This analysis was performed on the same calibration set of
instances, with each instance solved three times under a time limit of one hour per
run. For each run and for each destroy-repair operator pair, we recorded the average
computational time required to perform the operation and the average number of times
the pair contributed to finding a new best solution.

Based on these metrics, an overall ranking of operator pairs was established. Each
pair was evaluated using two criteria: a speed score, reflecting its average computational
efficiency, and a quality score, representing its average contribution to discovering im-
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Parameter Description Value
τ max iterations for satellite configuration 20
nC destruction percentage range in ALNS1 [10%, 50%]
M1 max iterations without improvement ALNS1 1000
θ acceptance threshold ALNS2 2%
nΓ destruction percentage range in ALNS2 [10%, 50%]
M2 max iterations without improvement ALNS2 500
ω CCV capacity penalty weight 1.25
ϵ pallet capacity penalty weight 1.25
ψ PCV capacity penalty weight 1.25
ζ scores update weight 0.5
σ− rejected solution score 0.5
σ initial score / accepted solution score 1.0
σ+ best solution score 2.0

Table 4: Parameter setting after the calibration phase

proved solutions. Both scores were averaged across all instances in the calibration set.
The top operator pairs in this ranking were selected for inclusion in the final algorithm.

Table 5 presents the top 20 operator pairs for both ALNS variants. The quality and
speed columns report the respective quality score and speed score for each pair, while
the overall column indicates their average score.

ALNS1 ALNS2

destroy repair overall speed quality destroy repair overall speed quality
worst rs best in 0,39 0,62 0,36 route r best fit i 0,57 0,88 0,40
worst rs most used in 0,39 0,55 0,43 route r smallest i 0,59 0,88 0,43
random r most used in 0,39 0,47 0,46 route r largest i 0,60 0,88 0,43
worst rs best if 0,40 0,84 0,26 route r best fit in 0,61 0,85 0,48
random rs best in 0,40 0,63 0,31 smallest rs greedy in 0,63 0,82 0,51
random r most used i 0,40 0,70 0,37 smallest r greedy in 0,63 0,74 0,55
worst rs least selected i 0,40 0,80 0,26 smallest rs greedy i 0,63 0,84 0,51
worst r least selected if 0,40 0,74 0,29 route r smallest in 0,64 0,85 0,50
penalized r best if 0,41 0,68 0,43 route r greedy in 0,64 0,89 0,50
penalized r best i 0,41 0,66 0,41 smallest r greedy i 0,64 0,76 0,55
penalized r most used i 0,42 0,70 0,43 route r greedy i 0,64 0,90 0,50
random s random s 0,42 0,76 0,34 route r largest in 0,65 0,85 0,52
worst r best if 0,42 0,74 0,32 random r greedy in 0,66 0,86 0,52
penalized s penalized s 0,42 0,71 0,43 random rs greedy in 0,66 0,82 0,54
worst c best if 0,42 0,68 0,43 route r best in 0,66 0,86 0,53
penalized rs best i 0,45 0,70 0,45 route r best i 0,67 0,88 0,52
random rs fullest i 0,45 0,85 0,40 random r greedy i 0,67 0,88 0,53
most selected rs best i 0,45 0,66 0,43 random rs greedy i 0,67 0,84 0,55
worst rs most used if 0,46 0,76 0,38 fragmented rs greedy in 0,74 0,77 0,74
penalized r least selected if 0,48 0,68 0,51 fragmented rs greedy i 0,76 0,80 0,75

Table 5: Top 20 pairs of operators sorted by overall score

Table 6 presents a comparison, on the calibration set, between the branch-and-cut
algorithm implemented in the CPLEX MILP solver and our algorithm, with results
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averaged over 15 runs. Three different configurations are considered, labeled as top-20,
top-10, and full in the table. The top-20 and top-10 configurations include the 20 and 10
highest-ranked destroy-repair operator pairs, respectively, as identified in Table 5. The
full configuration includes all available operator pairs.

In both the top-20 and top-10 configurations, the highest-ranked pair containing an
opening operator was explicitly added to ALNS1 to ensure that both satellite opening
and closing functionalities were available.

In Table 6, the column avg. gap (%) reports the average optimality gap between
the solutions obtained by each algorithm and the best lower bounds identified by the
MILP solver. The column avg. T(s) reports the average computational time required.

Algorithm avg. gap(%) avg. T(s)
top− 20 1,54 21,74
top− 10 1,64 22,55
full 1,65 19,24
MILP 7,06 2039,15

Table 6: Average results after the selection of operators

For the remainder of the experimental analysis, we adopt the top-20 configuration,
as it achieved the best performance on the calibration set in terms of average optimality
gap with respect to the best lower bound obtained by the MILP solver.

6.3 Computational results

Table 7 presents a comparison between two variants of the top-20 ALNS configuration
and the MILP solver, focusing on the set of small instances. Results for the ALNS
algorithms are averaged over 15 independent runs. In the first variant, denoted as ALNS-
1000, the parameters maxit1 and maxit2 are set to 1000 and 500, respectively. In the
second variant, ALNS-500, these parameters are set to 500 and 250. As such, ALNS-
1000 is expected to yield higher-quality solutions, while ALNS-500 is designed to reduce
computational time.

Table 7 reports the characteristics of each instance, including the number of satel-
lites (S), containers (C), customers (Γ), CCVs (K1), and PCVs (K2). The column gap
represents the optimality gap between the obtained solutions and the best lower bounds
determined by the MILP solver. For the ALNS algorithms, the columns avg gap and
min gap report the average and minimum gaps, respectively. The column T indicates
the total runtime (in seconds), while T ∗ denotes the time at which the best solution was
found during each run.

Table 8 summarizes these results by reporting average values across all small in-
stances in the test set.
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The ALNS-1000 variant demonstrates strong performance in terms of both solution
quality and computational efficiency. Across the 45 small instances, it achieved optimal
solutions in 9 cases, improved upon the MILP solver’s results in 16 instances — primarily
among the largest — and returned slightly worse solutions in 20 cases. Notably, ALNS-
1000 consistently required less computational time to reach its best solution compared
to the MILP solver. In cases where ALNS-1000 produced suboptimal solutions, the
deviations from the MILP results were minimal.

The ALNS-500 variant, while offering faster runtimes, generally produced solutions
slightly worse than those of ALNS-1000. However, it still outperformed the MILP solver
in some instances, highlighting its potential as a viable, time-efficient alternative.

DATA MILP ALNS − 1000 ALNS − 500
# S C Γ K1 K2 gap(%) T ∗(s) T (s) avg gap(%) min gap(%) T ∗(s) avg T (s) avg gap(%) min gap(%) avg T ∗(s) avg T (s)
1 3 3 6 4 16 0 0,57 2,85 0,04 0,04 0,36 4,37 0,04 0,04 0,29 1,31
2 3 3 6 5 15 0 0,93 3,41 0 0 0,20 3,71 0,29 0,19 0,52 1,38
3 3 3 6 5 15 0 0,30 4,37 0 0 1,45 5,16 0,79 0,30 0,71 1,53
4 3 3 6 5 11 0 0,41 3,04 0,03 0,03 1,57 5,54 0,27 0,04 0,71 1,64
5 3 3 6 5 14 0 2,94 3 0,12 0,08 3,33 8,44 1,03 0,63 0,89 2,06
6 3 3 9 4 11 0 13,39 54,80 0,10 0,01 3,05 7,74 0,39 0,01 0,71 1,85
7 3 3 9 4 16 0 5,18 10,48 0 0 0,80 6,40 0,41 0,03 0,69 1,78
8 3 3 9 4 18 0 6,63 89,36 0 0 3,71 9,21 1,05 0,63 0,66 2,13
9 3 3 9 5 12 0 1,88 6,31 0 0 0,90 6,37 1,24 0,91 1,16 2,29
10 3 3 9 4 16 0 0,89 2,08 0 0 1,49 7,30 0,82 0,54 1,49 2,63
11 3 3 18 4 13 0,47 1676,35 TL 0,44 0,42 9,00 17,34 1,96 1,70 2,15 4,22
12 3 3 18 4 13 1,53 1338,98 TL 1,50 1,37 5,86 14,97 3,86 3,15 1,99 3,94
13 3 3 18 5 12 5,12 1493,60 TL 6,74 4,56 4,25 11,51 10,48 5,12 0,86 2,57
14 3 3 18 5 14 0,17 3317,87 TL 0,16 0,16 6,63 16,62 1,05 0,27 1,62 3,65
15 3 3 18 4 10 0,41 3297,39 TL 0,32 0,31 6,64 15,18 0,89 0,44 1,32 3,26

16 3 4 8 6 13 0 10,87 30,56 0,16 0,06 2,22 7,62 0,36 0,16 0,84 2,02
17 3 4 8 6 21 0 14,59 17,96 0,21 0,20 2,35 8,27 0,80 0,62 1,38 2,77
18 3 4 8 5 18 0 8,26 8,33 0 0 0,34 6,92 1,00 0,74 0,80 2,20
19 3 4 8 6 18 0 4,91 5,05 0 0 4,77 11,13 1,09 0,44 0,97 2,41
20 3 4 8 5 18 0 98,24 98,83 0 0 2,03 7,91 0,42 0,42 0,46 1,83
21 3 4 12 6 20 0,89 2484,79 TL 0,96 0,94 8,78 20,20 2,20 1,79 1,54 3,49
22 3 4 12 6 17 0 179,69 206,88 0,02 0,02 3,67 10,55 0,90 0,72 1,15 2,84
23 3 4 12 6 18 0,61 18,78 TL 0,53 0,52 6,50 13,41 1,48 1,30 0,98 2,58
24 3 4 12 6 16 0 147,38 153,31 0,10 0,02 2,51 9,58 0,14 0,12 1,90 3,73
25 3 4 12 5 18 0 61,97 151,41 0,10 0,10 3,38 11,19 0,51 0,46 1,38 3,14
26 3 4 24 6 15 0,61 3278,98 TL 0,44 0,42 13,02 27,70 1,61 1,36 2,97 6,01
27 3 4 24 6 16 1,50 3392,55 TL 1,09 1,03 16,24 33,93 2,00 1,73 1,75 4,85
28 3 4 24 5 17 3,33 985,33 TL 1,58 1,49 10,47 25,30 2,22 1,86 2,55 5,68
29 3 4 24 6 18 5,43 3062,82 TL 2,43 2,16 13,99 31,58 4,70 3,79 2,24 5,15
30 3 4 24 6 17 6,83 1267,39 TL 3,17 2,62 9,02 25,60 4,21 3,61 2,33 5,06

31 3 5 10 6 19 0,79 3447,85 TL 1,17 0,84 10,17 19,37 5,00 2,34 1,79 3,74
32 3 5 10 8 21 0 148,32 180,52 0,88 0,06 7,08 17,23 3,34 1,74 1,62 3,72
33 3 5 10 6 21 0 518,37 566,71 0,50 0,22 7,39 18,70 2,70 1,78 1,60 3,82
34 3 5 10 7 23 1,51 1061,64 TL 3,47 3,05 10,38 21,86 5,32 4,50 1,72 4,08
35 3 5 10 7 22 0,65 2151,74 TL 0,76 0,67 11,10 21,90 5,45 3,42 1,40 3,49

36 3 5 15 7 27 0,68 3059,64 TL 0,81 0,73 15,71 36,41 2,51 2,24 2,00 5,27
37 3 5 15 7 23 3,70 304,11 TL 3,50 3,40 18,67 35,94 7,11 5,98 2,21 5,19
38 4 5 15 6 20 2,58 2116,52 TL 10,06 4,49 12,69 26,98 10,69 4,73 1,61 4,29
39 3 5 15 8 23 0,71 639,46 TL 0,72 0,72 10,60 26,29 2,72 1,28 1,56 4,39
40 3 5 15 8 25 2,26 2403,02 TL 6,57 2,59 16,57 34,11 13,89 8,01 1,42 4,18

41 3 5 30 7 21 NF 0,43 TL 2,59 2,25 31,58 65,04 4,55 3,85 3,04 7,70
42 3 5 30 7 23 87,89 3597,48 TL 5,90 5,63 30,88 67,17 10,30 9,04 4,19 9,19
43 3 5 30 8 22 27,42 3589,31 TL 4,00 3,86 38,94 75,90 5,60 5,10 3,90 9,30
44 3 5 30 8 24 12,24 3594,15 TL 7,79 6,63 28,92 63,05 9,55 8,35 3,15 7,65
45 3 5 30 7 20 50,78 3572,05 TL 0,62 0,44 23,94 57,64 1,89 1,42 4,39 9,62

Table 7: Comparison of result between ALNS and MILP solver on small instances. The
best gaps are underlined.

Table 9 compares the performance of ALNS-500 and ALNS-1000 on the set of
large instances, with results averaged over 15 runs. Let obj denote the average objective
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Algorithm avg gap(%) avg T (s) avg T ∗(s)
ALNS − 1000 1,55 21,74 9,40
ALNS − 500 3,08 3,90 1,66
MILP 7,07 2039,15 1253,24

Table 8: Results averaged over the instances of the set

value of the solutions obtained by each algorithm. The columns #S and #K2 report the
average number of selected satellites and PCVs, respectively. Column T indicates the
total runtime in seconds, while column T ∗ specifies the time at which the best solution
was found.

As expected, ALNS-500 achieves significantly shorter computational times across
all instances, due to the reduced number of iterations. For ALNS-1000, the average
time to reach the best solution and the total runtime increase by 54.17% and 66.89%,
respectively. While ALNS-1000 consistently yields better objective values, the average
difference between the solutions of the two variants is only 1.85%, indicating that ALNS-
500 provides comparable solution quality with substantially lower computational effort.

6.4 Management insights

In this section, we compare the proposed city logistics system with a traditional system
in which shippers have a priori commercial agreements. In such a system, satellite
configurations, container-to-satellite assignments, and vehicle selections are predefined.
In addition, we evaluate three hybrid configurations in which some of these decisions are
fixed, while the remaining ones are optimized by the urban mobility manager. Specifically,
five configurations—referred to as rigidity levels—are considered in the analysis:

0% City logistics without predefined decisions.

25% City logistics with 25% of predefined defined decisions according to existing con-
tracts (i.e., 75% of decisions are made by the urban mobility manager).

50% City logistics with 50% of predefined defined decisions according to existing con-
tracts.

75% City logistics with 75% of predefined decisions according to existing contracts.

100% City logistics with 100% of predefined decisions according to existing contracts.

The experimental analysis is conducted using the ALNS-500 algorithm on the set
of large instances, with results averaged over 15 runs per instance. The comparison
focuses on two primary performance indicators: economic efficiency, measured by the
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DATA ALNS − 500 ALNS − 1000
# S C Γ K1 K2 obj #S #K2 T ∗(s) T (s) obj #S #K2 T ∗(s) T (s)
0 20 25 75 26 62 14636,45 4 56 32,79 52,13 14635,10 4 57 164,21 231,78
1 20 25 75 26 63 14557,00 3 56 14,31 34,29 14393,67 3 56 25,21 78,88
2 20 25 75 26 69 15826,32 4 60 19,23 43,66 15714,16 4 61 79,41 157,39
3 20 25 75 26 63 14667,65 4 57 26,46 46,28 14345,28 3 56 70,21 140,69
4 20 25 75 26 65 14858,48 4 57 10,76 32,60 14696,74 4 58 31,44 116,85
5 20 25 50 26 64 14699,04 4 58 2,69 17,52 13895,81 3 55 85,13 141,99
6 20 25 50 26 61 13537,47 3 53 5,74 19,85 13515,09 3 53 49,03 97,93
7 20 25 50 26 65 14144,53 3 55 21,01 34,37 13282,82 4 55 54,12 100,43
8 20 25 50 26 60 14520,95 4 54 5,72 20,55 14042,66 3 55 72,93 121,91
9 20 25 50 26 62 14017,70 3 55 6,25 20,01 13889,33 3 56 17,90 71,80
10 25 50 150 51 124 30592,56 9 117 159,42 349,91 30290,49 9 117 1102,30 1778,36
11 25 50 150 51 121 31117,25 10 113 134,08 288,27 30055,85 9 113 180,98 874,14
12 25 50 150 51 124 29469,98 7 114 249,07 450,36 28520,75 9 114 389,82 981,61
13 25 50 150 51 123 29275,09 8 113 327,07 508,86 29172,52 9 112 633,32 1294,63
14 25 50 150 51 122 30133,51 10 111 118,74 300,49 29649,34 8 114 91,49 726,54
15 25 50 100 51 130 30572,87 9 120 184,29 347,26 30097,35 8 116 565,51 1176,24
16 25 50 100 51 126 30705,51 8 117 73,66 222,43 30407,99 9 116 317,34 927,79
17 25 50 100 51 124 29775,22 8 116 328,46 494,66 29475,07 8 113 402,33 950,39
18 25 50 100 51 129 29648,72 7 118 485,03 635,08 29355,68 7 117 321,71 873,87
19 25 50 100 51 124 30329,02 8 116 204,52 348,28 29315,44 7 114 1235,45 1791,48
20 30 75 225 76 184 45343,36 14 173 945,22 1508,78 44658,08 13 175 3425,14 3600,24
21 30 75 225 76 183 44325,42 11 174 453,18 995,48 43344,30 10 172 1811,11 3600,23
22 30 75 225 76 189 47768,94 16 176 667,14 1229,68 46304,89 16 175 3355,02 3600,23
23 30 75 225 76 190 46062,80 11 176 873,95 1484,75 44958,24 13 177 2968,00 3600,23
24 30 75 225 76 182 46170,70 13 172 956,51 1458,30 44865,82 12 171 738,17 2897,18
25 30 75 150 77 189 44716,38 12 176 467,13 940,21 43936,90 11 176 724,78 2611,37
26 30 75 150 76 182 45033,99 14 173 88,80 527,60 45015,56 13 172 598,74 2316,76
27 30 75 150 77 181 45534,15 14 169 400,46 848,13 45436,02 13 169 1116,46 2746,97
28 30 75 150 77 190 45325,61 14 176 107,93 511,90 44786,79 13 176 615,16 2242,55
29 30 75 150 77 188 45623,15 14 175 321,53 801,39 45526,70 13 176 313,31 1879,17

Table 9: Comparison between ALNS − 500 and ALNS − 1000 on large instances

total distribution cost, and the impact on urban traffic, evaluated by the number of
vehicles deployed during the distribution process.

Figure 4 shows the average number of satellites selected for each rigidity level. The
results are reported for the instances with 25, 50, and 75 containers.

As expected, the average number of selected satellites increases with the level of rigid-
ity. In instances with 25 containers, the average number of satellites selected increases
from 3.42 with predefined selections 0% to 12.25 with predefined decisions 100%, which
represents a significant increase of 258%. This shows the greatest relative growth. In
instances with 50 containers, the number of satellites increases from 8.75 with 0% rigidity
level to 20.33 with 100%, i.e. an increase of 132%. In instances with 75 containers, the
number of satellites increases from 13.58 with predefined selections of 0% to 26.75 with
100%, resulting in an increase of 97%. Generally speaking, the largest decrease in the
average number of satellites arises when the rigidity is changed from 100% to 75% and
from 75% to 50%.

As expected, the average number of selected satellites increases with the level of rigid-

30

A Double ALNS Metaheuristic for the Multi-commodity Location-Network Design Problem with Heterogeneous Vehicles for the Multi- 
commodity Location-Network Design

CIRRELT-2025-23



Figure 4: Average number of satellites selected as a function of the rigidity level.

ity in the system configuration. In instances with 25 containers, the average number of
selected satellites rises from 3.42 under 0% predefined decisions to 12.25 under 100% pre-
defined decisions — an increase of 258%. For instances with 50 containers, the number
of satellites increases from 8.75 to 20.33 across the same range of rigidity levels, corre-
sponding to an increase of 132%. Similarly, in instances with 75 containers, the number
of satellites grows from 13.58 to 26.75, reflecting a 97% increase.

Overall, the most substantial reductions in the average number of satellites occur
when decreasing the rigidity level from 100% to 75% and from 75% to 50%.

Figure 5 illustrates the average distribution costs across the five system configura-
tions, grouped by the number of containers (25, 50, and 75). The total cost is broken
down into three components: PCV costs (including selection costs, routing costs, and
pallet flow costs incurred by PCVs), satellite costs (comprising satellite selection costs
and total pallet cross-docking costs at the selected satellites), and CCV costs (covering
selection costs for CCVs). For each cost category, the percentage increase relative to the
base configuration of the two-tiered system is reported, allowing for a detailed comparison
of how rigidity levels affect the cost structure.

As expected, cost percentages tend to increase with higher rigidity levels. The CCV
selection cost is the least affected by the increase in predefined selections, as the same
number of containers must always be transported from the port to the satellites, regard-
less of the configuration. In contrast, satellite costs are the most significantly impacted,
showing an increase of 54% in the fully traditional system (i.e., with 100% of rigidity
level).

The cost of PCVs displays a non-linear trend relative to the rigidity level. From 0% to
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Figure 5: Comparison of system costs by rigidity level and container group. Costs for
PCVs, satellites, and CCVs are reported in green, red, and blue, respectively.

25 Containers 50 Containers 75 Containers
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

CCV 0% 0% 0% 0% 0% 0% 0% -1% 0% 0% 0% -3%
Sat. 15% 42% 54% 57% 10% 22% 40% 46% 1% 5% 27% 37%
PCV 0% 2% 1% 19% 0% 0% 0% 15% 1% 0% 1% 15%
Total 4% 19% 29% 46% 3% 7% 17% 32% 1% 1% 11% 24%

Table 10: The percentage of cost increases with respect to the 0% rigidity level.

75% predefined selections, PCV-related costs remain stable or even decrease. However,
when the rigidity level exceeds 75%, PCV costs increase substantially. This behavior can
be attributed to the greater number of available satellites at lower rigidity levels, which
allows PCVs to be more geographically dispersed across the city, thereby reducing their
average travel distances. Furthermore, even at higher rigidity levels, no significant issues
are observed regarding the saturation of PCVs’ capacities.

Overall, the total cost increases by 46%, 32%, and 24% when moving from 0% to
100% rigidity in the instances with 25, 50, and 75 containers, respectively.

Table 10 reports the average percentage cost increase - total and by type - for all
levels of rigidity and instance sizes. Generally speaking, the largest cost decrease occurs
when switching the rigidity from 100% to 75% and from 75% to 50%.

Finally, Figure 6 compares the average number of PCVs used for each rigidity con-
figuration. Three trends are reported, one for each group of instances.

The average number of PCVs increases with the level of predefined selections. In
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Figure 6: Average number of PCVs selected as a function of the rigidity level.

instances with 25 containers, the number of PCVs rises from 55.83 at 0% rigidity to
62.50 at 100% rigidity, corresponding to an increase of 11.94%. These instances show
the highest sensitivity to changes in rigidity. In the 50-container group, the number of
PCVs increases from 114.67 to 122.75, marking a 7.04% increase. For instances with
75 containers, the variation is less pronounced, with the number rising from 171.92 to
182.00, which represents a 5.87% increase.

Overall, the most significant reduction in the average number of PCVs occurs when
decreasing the rigidity level from 100% to 75%, indicating that even partial flexibility in
operational decisions can lead to a meaningful reduction in vehicle usage.

7 Conclusion

In this work, we investigated a two-tiered multi-commodity service network design prob-
lem inspired by urban contexts featuring large intermodal terminals without transdock
capabilities (e.g., ports). To the best of our knowledge, this problem has not yet been
explored in the literature. The main contributions of this paper are as follows:

• The formulation of a Mixed Integer Linear Programming (MILP) model that cap-
tures the essential features of the problem. The model integrates facility location
and network design decisions, considers multi-commodity flows, and includes the
selection of vehicles from a heterogeneous fleet, accounting for varying capacities
and cost structures.
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• The design and implementation of an effective solution method based on two in-
teracting Adaptive Large Neighborhood Search (ALNS) metaheuristics, tailored
to efficiently solve large-scale instances. Specifically, the first ALNS addresses the
configuration of satellites and the assignment of containers to satellites, while the
second ALNS handles the second-tier decisions given a fixed satellite configuration
and container assignment.

A logistic analysis was conducted to assess the impact of progressively incorporat-
ing decision-making capabilities into the proposed framework. We evaluated several
key aspects of the resulting solutions, including satellite and vehicle selection and cost
distribution. Experimental results indicate that the most significant gains occur when
transitioning from no decision of the mobility manager to the adoption of approximately
25% of the available decision options. This highlights the strategic value of introducing
city logistics initiatives, particularly in the early stages, rather than merely expanding
existing systems.

Future research will explore exact solution methods for this problem and investigate
extensions to more complex and realistic scenarios in city logistics and multi-tier systems.
Notably, time dependency and the synchronization of CCV and PCV arrivals at satel-
lites represent critical enhancements to improve model applicability. Further extensions
will include satellite-to-satellite transfers, container repositioning, and increased hetero-
geneity in container and pallet types, which would enhance both the scope and practical
relevance of the problem.
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