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1 Introduction

Technological improvement has significantly transformed our social, economic, and personal lives. The

use of unmanned aerial vehicles (UAVs), such as drones, exemplifies this transformation in environ-

mental, defense, and civil applications, including soil and air quality monitoring, border surveillance,

delivery to war zones, humanitarian logistics, and disaster management [2, 16, 18]. Although drone

deliveries are not yet widely used, many companies such as Amazon, Google, and FedEx have carried

out pilot tests, and this technology is likely to become more common in the near future [3]. These

technological advances, on the other hand, impose operational challenges. In some applications, such

as rescue operations, post-disaster relief, or environmental mapping, traditional single-vehicle sys-

tems may not yield the best solutions, which has motivated research involving multi-vehicle systems

[5, 14, 19]. The same applies to last-mile delivery, which has also necessitated new perspectives on

how transportation is carried out. Recent research has explored the possibility of utilizing secondary

routes, potentially via drones [8, 17].

The cooperation and coordination of heterogeneous vehicles with complementary capabilities is an

alternative with great potential [13]. Specifically, a two-vehicle system known as the carrier-vehicle

has garnered attention in the past decade due to the development of planning and control algorithms,

which are characterized by their broad applicability and simplicity of representation [5]. This system

comprises a slow vehicle, commonly referred to as a carrier, which typically operates with uncon-

strained autonomy and transports a fast vehicle with limited autonomy. The fast vehicle performs

deliveries or other activities to some targets, aiming to minimize the total travel time or distance. This

problem was presented by Garone et al. [6], who studied the case in which the carrier moves freely

in the Cartesian space, as in applications involving a ship carrying a helicopter. The authors then

defined two variants: one in which the customer visiting sequences are predefined and the model must

only prescribe the locations of the takeoff and landing points; in the second variant, called the Car-

rier/Carried Traveling Salesman Problem (CCTSP), the visiting sequence must also be determined.

Later, this problem was referred to as the Carrier-Vehicle TSP (CVTSP) [4, 5] and the Mothership

and Drone Routing Problem [15].

Gambella et al. [5] proposed a mixed-integer second-order conic programming (MISOCP) model and

a ranking-based solution algorithm to solve new instances with up to 15 customers. Erdoğan and

Yıldırım [4] presented some valid inequalities and improvements to that model and optimally solved

instances with up to 20 customers. They also proposed an Iterated Local Search algorithm to provide
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solutions for instances with up to 50 customers. Poikonen and Golden [15] have also optimally solved

instances with up to 20 customers using an MISOCP approach.

A variant of this problem, arising in truck transportation, was introduced by Murray and Chu [12]

and is called the Flying Sidekick TSP. The difference is that takeoff and landing points can only occur

at customers or the depot. A mixed-integer linear programming (MILP) formulation was introduced,

and four heuristics were tested on 72 instances with 10 customer locations. In none of the instances

was the MILP formulation able to find a proven optimal solution. Other problems involving drone

routing combined with other vehicles can be found in Macrina et al. [11]. These problems, defined

on a graph with limited takeoff and landing locations, are arguably simpler, as the distances between

all locations are known a priori. In the CVTSP studied in this paper, the carrier vehicle travels on

a continuous space; hence, the locations for takeoff and landing are decision variables, and thus, the

distances to be traveled by the drone are also decision variables.

Several others have explored problems that share similarities with the CVTSP, particularly those

involving the coordination between a mothership and aerial vehicles. In Li et al. [9], the authors

address the Joint Vessel-UAV Routing Problem, where multiple ships, each equipped with a UAV, are

tasked with inspecting offshore oil platforms. Although the problem bears conceptual resemblance to

the CVTSP, its operational context and constraints differ significantly. Similarly, Zhuge et al. [20]

consider the use of UAVs launched from ships for monitoring emissions, but the mothership’s route is

fixed over discrete points, in contrast with the continuous planning space considered in our problem.

Amorosi et al. [1] study a problem involving the routing of multiple drones from a mothership, focusing

on covering arcs rather than nodes. Finally, Irawan et al. [7] examine a continuous location and routing

problem in offshore wind farms, where multiple delivery and retrieval trips are required for maintenance

tasks, and route durations depend on the time needed for both maintenance and travel. While each of

these contributions offers valuable insights into hybrid vehicle coordination, the present study differs

in that it addresses a continuous-space variant and focuses on exact optimization.

In this paper, a two-vehicle system consists of a single slow mothership carrying a fast vehicle, such

as a drone, which takes off from the mothership and must make deliveries to a set of customers before

returning to the mothership. The objective is to minimize the total travel time of the mothership.

We employ a nonlinear model and propose an approximate linearization cast as an MILP model.

We introduce an exact algorithm based on branch-and-cut that iteratively refines any approximation

errors and finds proven optimal solutions for the original problem, or provides a valid lower bound on
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the objective function value, in addition to valid solutions.

The results of our exact method outperform all previous exact and heuristic approaches in the lit-

erature, either in terms of objective value or computational time, across a wide range of instances

from the literature. We solve to optimality all benchmark instances with up to 25 customers, and

notably, prove an optimal solution for one instance with 35 customers, the largest known instance

solved to optimality in the literature. We show that the linearization and correction procedure en-

sures convergence to globally optimal solutions and preserves the validity of the lower bound with

respect to the original MINLP model. Finally, a set of valid inequalities is introduced based on the

drone-mothership coordination, which is proved to be highly effective in improving computational

performance and tightening bounds throughout the branch-and-cut process.

The remainder of this paper is organized as follows. In Section 2, we provide a formal description of the

problem along with mathematical models, including the nonlinear and linearized formulations. Our

main algorithmic developments are presented in Section 3. We describe the computational experiments

used to validate our procedure on benchmark instances from the literature in Section 4, and our

conclusions follow in Section 5.

2 Problem description and mathematical formulations

The problem consists of a single slow carrier, referred to as a mothership, which moves freely in the

Cartesian space with speed V m, carrying a fast vehicle, such as a drone, which takes off from the

mothership and travels at speed V d > V m. The drone must make deliveries to a set C of customers

and return to the mothership. The mothership must then return to its home position, node 0, also

included in the set C. The drone’s travel distance and time must be less than its autonomy K and T ,

respectively. After each drone’s return, it is assumed to be ready for a new trip with full autonomy.

We define an event e ∈ E when the drone takes off (e = 0) and lands (e = 1).

The problem consists of determining the mothership’s route and the locations of the events to visit

all customers to minimize the total delivery time z. Formally, each customer i ∈ C is located at

(Xi, Yi) and the event of the drone to depart towards and return from customer i happens at location

(xie, yie). We define a binary variable uieje′ equal to one if and only if events e of customer i and e′

of customer j happen consecutively. The distances between two consecutive events of the mothership

are measured by the variable dmieje′ , which is positive only when uieje′ is equal to 1. Distances between
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the mothership and customers, traveled by the drone, are represented by ddie. Due to the distance

equations, the model becomes an MINLP, which will be linearized and solved as an MILP. We present

the MINLP formulation and its corresponding MILP model in the following sections. The MINLP

notation is summarized in Table 1.

Sets

C Set of customers plus origin/destination point.

E Set of events for each customer (landing (e = 1), takeoff (e = 0))

Parameters

V d Drone speed

V m Mothership speed

K Maximum drone distance per round trip

Xi, Yi Coordinates of customer i

Variables

xie, yie Coordinates of event e of customer i

uieje′ Binary variables that indicate if event e of customer i is followed by event e′ of customerj ≥ i

dmieje′
Continuous variables representing the distance traveled by the mothership between event e

of customer i and event e′ of customer j

ddie
Continuous variables representing the distance traveled by the drone between customer i and

event e

z Total travel time of the mothership

Table 1: Notation used in the MINLP model

2.1 Mixed-integer nonlinear programming formulation

The MINLP model (P ) can be formulated as follows:

(P ) min z =
1

V m
max

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

(j>i∧e′ ̸=e) ∨
(j=i ∧ e′>e)

dmieje′ (1)

subject to
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∑
e∈E

ddie ≤ K i ∈ C (2)

∑
e∈E

dd0e = 0 (3)

dmieje′ ≥
√

(xie − xje′)2 + (yie − yje′)2 − (1− uieje′)M

i, j ∈ C, e, e′ ∈ E : (j > i ∧ e′ ̸= e) ∨ (j = i ∧ e′ > e) (4)

ddie ≥
√
(xie −Xi)2 + (yie − Yi)2 e ∈ E , i ∈ C (5)

∑
j∈C

∑
e′∈E:
j>i ∨

(j=i ∧e′>e)

uieje′ +
∑
j∈C

∑
e′∈E:
j<i ∨

(j=i ∧e′>e)

uje′ie = 2 i ∈ C, e ∈ E (6)

ui0i1 = 1 i ∈ C (7)

∑
i∈S

∑
e∈E

∑
j∈S

∑
e′∈E:
j>i ∨

(j=i ∧e′>e)

uieje′ ≤ |S| − 1 S ⊂ C, |S| ≥ 2 (8)

dmi0i1
V m
max

=

∑
e∈E d

d
ie

V d
max

i ∈ C. (9)

uieje′ ∈ {0, 1} i, j ∈ C, e, e′ ∈ E :

(j > i ∧ e′ ̸= e) ∨ (j = i ∧ e′ > e). (10)

The objective function (1) minimizes the total travel time. Constraints (2) ensure that each drone’s

round trip respects its autonomy. Equation (3) defines that the mothership departs from the origin and

returns to the destination. Constraints (4) define the distances between two events of the mothership.

Constraints (5) are analogous to (4), but define distances between the location of an event e and a

customer i. Constraints (6) are the degree equations, which guarantee that every event is linked to

two other events. Constraints (7) guarantee that after a takeoff to a customer, there will always be a

landing from the same customer. Inequalities (8) are the subtour elimination constraints. Constraints

(9) derive from Erdoğan and Yıldırım [4], who have proven that in an optimal solution, the carrier

and the drone travel at their maximum speed and meet synchronously, that is, neither of them waits

for the other. Thus, the distances covered by the mothership and the drone are proportional to their

speeds. Constraints (10) define the binary nature of the u variables.
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2.2 Mixed-integer linear programming formulation

The model’s nonlinearities occur due to the distance constraints associated with dmieje′ and ddie. Next,

we demonstrate how to linearize constraints (4) and (5). Figure 1 illustrates the situation at hand.

ddie =
√

(Yi − yie)2 + (Xi − xie)2

(xie, yie)

(Xi, Yi)

Yi − yie

Xi − xie

α

Figure 1: Representation of the variables ddie

In the example of Figure 1, we can write Yi − yie and Xi − xie as follows:

ddie sinα = Yi − yie

ddie cosα = Xi − xie.
(11)

We can also write the fundamental trigonometric identity, multiplied by ddie on both sides of the

equality, and develop as follows:

(sin2 α+ cos2 α)ddie = ddie

ddie sinα sinα+ ddie cosα cosα = ddie.
(12)

Using (11) on (12) we obtain:

ddie = (Yi − yie) sinα+ (Xi − xie) cosα. (13)

Finally, we can define:

ddie =
√
(Yi − yie)2 + (Xi − xie)2

= (Yi − yie) sinα+ (Xi − xie) cosα.
(14)

It turns out that the values of variables xie and yie are not known, and therefore, we also do not know

the angle α. However, we can ensure that if the angle is different from its correct value, the value
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computed using the right-hand side of equation (14) will underestimate the distance value, according

to the following proposition.

Proposition 1: For any value of α, the following inequality holds:

√
(Yi − yie)2 + (Xi − xie)2 = ddie

≥ (Yi − yie) sinα+ (Xi − xie) cosα.
(15)

Proof: To demonstrate that the maximum value of the right-hand side of the inequality is at most

equal to the left-hand side of the inequality, we differentiate it with respect to α and set it to zero.

To prove that it is a maximum point, we differentiate it again with respect to α and verify that the

value is negative. Differentiating the right-hand side of the inequality with respect to α, we have:

d

dα

[
(Yi − yie) sinα+ (Xi − xie) cosα

]
= (Yi − yie) cosα− (Xi − xie) sinα = 0.

Dividing both sides by cosα and solving for α:

(Yi − yie)−
(Xi − xie) sinα

cosα
= 0

(Xi − xie) tanα = (Yi − yie).

α = arctan

(
Yi − yie
Xi − xie

)
= arcsin

(
Yi − yie

ddie

)
= arccos

(
Xi − xie

ddie

)
.

Then, we can write the right side of inequality (15) as:

(Yi − yie) sin arcsin

(
Yi − yie

ddie

)
+ (Xi − xie) cos arccos

(
Xi − xie

ddie

)
.

Therefore, considering that ddie =
√
(Yi − yie)2 + (Xi − xie)2, a critical point of the right-hand side of

(15) is:

(Yi − yie)
2 + (Xi − xie)

2

ddie
=

√
(Yi − yie)2 + (Xi − xie)2,
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which is equal to the left-hand side of inequality (15). It then remains to prove that this critical point

is a maximum point. To do this, we show that the second derivative of the right-hand side of (15) is

negative for any value of α:

d2

dα2
[(Yi − yie) sinα+ (Xi − xie) cosα]

= − [(Yi − yie) sinα+ (Xi − xie) cosα]

≤ 0.

Using (14), we get:

−
√

(Yi − yie)2 + (Xi − xie)2 ≤ 0.

Showing that inequality (15) holds for any value of α. □

Corollary 1: As a result of Proposition 1, we can conclude that it is possible to define as many

inequalities (15) as desired, with different values of α for the same distance variable, without making

the problem infeasible or losing optimality.

In fact, the more inequalities are defined (i.e., with several values of α), the closer the linearization

gets to the original function. When the inequality is written for the correct angle α, it computes the

exact distance; for all other values of α, the inequality provides an underapproximation of the distance

value.

We can now define the MILP notation, which uses sets to indicate the angles of the linearization

planes used to approximate each distance variable. We define dd∗ie and dm∗
ieje′ as the linearized distance

variables, to approximate ddie and dmieje′ of the original model. Let Lie (Lieje′) be the set of linearization

planes for each distance variable dd∗ie (dm∗
ieje′). Let Al be the angle in degrees of inequality l. In Figure

2, we illustrate this linearization. In Figure 2a, we have the representation of the continuous nonlinear

distance constraints, such as modeled exactly by constraints (4) and (5). As inequalities define these

constraints, the distance variables can take on any value within the internal region of the shape. To

see this, take any point in the (x, y) horizontal plane, and move upwards parallel to the z axis until

the cone boundary is reached. The distance from the (x, y) plane where z = 0 to the boundary of

the cone determines the correct distance value. By continuing to move upwards (inside the cone), the

distance only increases, so the objective function ensures that the minimum possible value is used and
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that the distance to the boundary of the cone is considered.

In Figures 2b and 2c, we show the domain of linearized distance variables, after the inclusion of |L| = 4

and |L| = 12 inequalities. Each inequality represents a plane that touches a single straight line of the

original conic figure and limits the domain of the linearized variables. Observe that from the (x, y)

plane where z = 0 and up until a plane defined by one inequality represents a lower bound on the

actual distance. As more planes are added, the distance approximation is refined and gets closer to

the actual distance. For a given location (i.e., a given (x, y) coordinate), our procedure described in

Section 3 determines the plane defined by the exact angle required to compute the distance exactly.

x
y

(a) Example of ddie variable

x
y

(b) Example of dd∗ie variable, with |L| = 4

x
y

(c) Example of dd∗ie variable, with |L| = 12

Figure 2: Linear and nonlinear representations of distance variables

With this understanding, we can establish another consequence of Proposition 1.

Corollary 2: The optimal solution value of the MILP model is also a lower bound to that of the

MINLP model.

The MILP formulation is similar to the MINLP model, except that (1)–(5) must be replaced respec-

tively by (16)–(20), defined next. In particular, constraints (19) and (20) are those that linearize

model (P ) using l inequalities for each distance variable, exploiting the observation from Corollary 1.

All extra notation required for the MILP model is presented in Table 2. The MILP model (L) is then:

(L) min z =
1

V m
max

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

(j>i∧e′ ̸=e) ∨
(j=i ∧ e′>e)

dm∗
ieje′ (16)

subject to
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Sets

B Set of customer pairs whose distance between them is less than T (V d
max + V m

max)

Lie, Lieje′ Set of angles for inequalities (19) and (20)

Parameters

Al Angle of linearization plane l tangent to the nonlinear distance curve, underestimating it

Dij Distance between nodes i and j, Dij =
√

(Xi −Xj)2 + (Yi − Yj)2

T Maximum drone flying time per trip, T = K
V d
max

Variables

dm∗
ieje′ Underestimated distance between event e of customer i and event e′ of customer j

dd∗ie Underestimated drone travel distance between the mothership and event e of customer i

ti Drone travel time to and from customer i

Table 2: MILP notation used in the model

∑
e∈E

dd∗ie ≤ K i ∈ C (17)

∑
e∈E

dd∗0e = 0 (18)

dm∗
ieje′ ≥ cos

(
πAl

180

)
(xie − xje′) + sin

(
πAl

180

)
(yie − yje′)

− (1− uieje′)M l ∈ Lieje′ , (e, e
′) ∈ E

(j > i ∧ e′ ̸= e) ∨ (j = i ∧ e′ > e), i, j ∈ C

(19)

dd∗ie ≥ cos

(
πAl

180

)
(xie −Xi) + sin

(
πAl

180

)
(yie − Yi)

l ∈ Lie, e ∈ E , i ∈ C.
(20)

The objective function (16) and constraints (17) and (18) are equivalent to those of model (P ).

Constraints (19) define the underestimated distances between two linked points of the mothership,

considering the angles at which some planes are tangent to the distance function. Constraints (20)

are analogous to (19), but define underestimated distances between the location of an event e and a

customer i.

2.3 Valid inequalities

Erdoğan and Yıldırım [4] have defined tighter bounds for the dd variables, which we describe in (22)
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and (23). To help understand these inequalities, we define ti in (21) as the travel time of the drone to

and from customer i.

ti = T

∑
e∈E d

d
ie

K
i ∈ C (21)

ddie ≤
ti(V

d
max + V m

max)

2
i ∈ C, e ∈ E (22)

ddie ≥
ti(V

d
max − V m

max)

2
i ∈ C, e ∈ E . (23)

Since the distances are symmetric, the direction of the route in which customers are visited yields two

solutions of the same cost; the models presented above already exploit this fact in the definition of

the u variables, and our constraints consider only half of the symmetric graph. However, there is still

another important symmetry that can be considered. It is always possible to reverse all takeoff and

landing points and obtain an equivalent solution. This symmetry can be broken by:

∑
j∈C\{0}

ju01j0 ≥
∑

k∈C\{0}

ku00k1. (24)

The next set of valid inequalities is based on the idea that for a predetermined sequence of customers,

the total distance traveled by the drone, whether transported by the mothership or flying alone, must

be greater than or equal to the total distance traveled by a TSP tour with this same sequence of

customers. Figure 3 highlights this property, making it easy to see that the route taken by the drone,

whether alone or transported, is not shorter than the corresponding TSP tour. Mathematically, this

can be expressed as follows:

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

j>i ∧(e′ ̸=e)

dmieje′ +
∑
i∈C

∑
e∈E

ddie ≥

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

j>i ∧(e′ ̸=e)

uieje′Dij .
(25)

This idea can be refined by increasing the right-hand side of the inequality as follows. For each pair of

connected customers, if the distance between them exceeds Dij , the excess is added to the right-hand

side of the expression. To model this, we define penalty variables pieje′ , which capture this excess via

inequalities (26):
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Doi Doj

Dij

dmieje′

ddie

ddie′

dmoeie′ dmoe′je

ddje′
ddje

o

i j

Path of the drone
(transported or flying)

Customer distances

Only mothership

Figure 3: Example with two customers and one depot

pieje′ ≥ddie + ddje′ + dmieje′ −Dij − (1− uieje′)M

(e, e′) ∈ E : (j > i ∧ e′ ̸= e), i, j ∈ C.
(26)

We could introduce the sum of these pieje′ variables on the right-hand side of inequality (25). However,

it will prove convenient to define a variable to represent this sum. We denote this variable by g,

representing the total penalty associated with the pairs of connected customers, as defined in inequality

(27). We then include this variable in inequality (25), resulting in (28).

g ≥
∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

j>i ∧(e′ ̸=e)

pieje′ (27)

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

j>i ∧(e′ ̸=e)

dmieje′ +
∑
i∈C

∑
e∈E

ddie ≥

∑
i∈C

∑
j∈C

∑
e∈E

∑
e′∈E:

j>i ∧(e′ ̸=e)

uieje′Dij + g.
(28)

This idea can be further refined by introducing variables that capture the penalties associated with

three customers visited consecutively, with j being the one in the middle. Figure 4 illustrates this

configuration.

Observe that dmieje′ + dmjeje′ + dmjeke′ ≥ Dik. To transform the path represented on the left side of the

inequality into the path of interest, that is, one in which the drone is either transported or flying

alone, we subtract dmjeje′ and add the sum of ddje and ddje′ to both sides, resulting in:

dmieje′ + ddje + ddje′ + dmjeke′ ≥ Dik + ddje.+ ddje′ − dmjeje′ .
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Dij

Djk
Dik

dmieje′
ddje

ddje′

dmjeke′

dmjeje′

k

i j

Path of the drone
(transported or flying)

Customer distances

Only mothership

Figure 4: Example of three connected customers

Since there is a proportional relationship between dmjeje′ and the sum of ddje and ddje′ (see equations

(9)), we can reformulate the right-hand side as follows:

dmieje′ + ddje + ddje′ + dmjeke′ ≥ Dik + dmjeje′

(
V d
max

V m
max

− 1

)
.

Since the goal is to increase the right-hand side of inequality (28), which already considers Dij and

Djk, we must subtract these constants to isolate the penalty δijk associated with the three customers.

Note that the greater the ratio between V d
max and V m

max, the greater the penalty tends to be, and the

stronger the inequality becomes.

δijk ≥Dik + dmjeje′

(
V d
max

V m
max

− 1

)
−Dij −Djk

− (2− uieje′ − uje′ke)M.

(29)

We now introduce the variables δijk for a set R of customer tuples with positive penalties for a given

solution, and link their sum to the previously defined penalty variable g, as shown in (30).

g ≥
∑

(i,j,k)∈R

δijk. (30)

The summation can be performed as long as penalties associated with the same edges are not included

more than once. This means that, in any given solution, whether fractional or integer, a customer

serving as the central node in one tuple cannot appear as either the central or an extreme node in

another tuple. However, a customer positioned as an extreme node in one tuple may reappear as an

extreme node in another. Thus, for any fractional or integer solution, we can evaluate which customer

tuples generate positive penalties and solve a knapsack model to determine which tuples should be

selected. Each tuple is defined by three indices: two extremes i and k, and a central customer j.

A binary variable pijk indicates whether the tuple (i, j, k) is selected. Each tuple has an associated
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penalty δijk, treated here as a parameter whose value is determined by inequalities (29). The resulting

model (H) is then:

(H) max
∑

(i,j,k)∈R

pijkδijk (31)

|R|
∑

(j=m)|
(i,j,k)∈R

pijk +
∑

(i=m∨k=m)
|(i,j,k)∈R

pijk ≤ |R| ∀m ∈ C (32)

pijk ∈ {0, 1}, ∀(i, j, k) ∈ R. (33)

The objective function (31) maximizes the total penalty associated with the selected tuples. Con-

straints (32) ensure that each customer appears as a central node in at most one chosen tuple and

does not simultaneously appear as an extreme node; at the same time, if a customer is not selected

as a central node, they are allowed to appear as an extreme node in multiple tuples. Constraints (33)

define the binary domain of the variables.

3 Solution algorithm

The model defined by constraints (6)–(10) and (16)–(20) cannot be fed into a general MILP solver as

there is an exponential number of subtour elimination constraints (8) and an infinite number of distance

constraints (19) and (20) as the values taken by the angle α are continuous. To this end, we develop an

exact branch-and-cut algorithm where these constraints must be dynamically generated throughout

the search process, only when they are found to be violated. Initially, none of these constraints are

generated, and we solve the model by branch-and-bound. At a generic node of the search tree, the

linear program containing the model with a subset of the subtour elimination constraints is solved.

A search for violated inequalities (8) is performed. The ones found to be violated are dynamically

generated and added to the model being solved, which is then reoptimized. The process continues

until an integer solution without subtours is found.

After eliminating subtours, the algorithm corrects distance errors due to the linearization. To better

understand this part of the algorithm, it is helpful to observe that every feasible solution of uieje′

variables for model (L) is also feasible for model (P). Observe that only constraints (2) and (3) limit

the distance variables in model (P). Given that variables dd∗ie in the linear formulation can assume values

smaller than those of the ddie variables in the nonlinear one, there may be a solution of the linear model
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(L) that violates constraints (2) in model (P). However, given that there are no constraints on the

maximum distance travelled by the mothership, it is always possible to increase its distance and get

closer to each client, as much as necessary, until the variables dd∗ie respect the range constraints of the

drones.

Moreover, every feasible solution of xie and yie variables for model (P) is also feasible for model (L).

Again, the constraints that limit xie and yie are those related to the autonomy of the drones. Indeed,

all distances (ddie, d
d∗
ie , d

m
ie , and dm∗

ie ) are functions of xie and yie; moreover, as seen before, ddie ≥ dd∗ie

and dmie ≥ dm∗
ie . Then, the domains of variables xie and yie in the linear model necessarily include their

domains in the nonlinear model. Hence, any solution for xie and yie in the nonlinear model is feasible

to the linear model as it respects the drone autonomy constraints.

Upon finding an integer solution without subtours, the algorithm begins correcting the error caused

by linearization. The values of the variables uieje′ of the linear model (L) are fixed, and model (P)

is solved. From the values obtained for the variables xie, yie, d
d
ie, and dmieje′ , new constraints (19)

and (20) are defined in model (L) with the angles Al obtained from model (P). If the new objective

value of the solution of model (L) does not converge to a value sufficiently close to that of model (P),

it means that model (L) found an intermediate solution and the process is iterated by inserting the

constraints associated with the angles from the current solution of model (L). The complete procedure

is described in Algorithm 1.

4 Computational experiments

This section describes the extensive computational experiments conducted to evaluate our algorithm

on established benchmark sets and compare it with competing exact and heuristic algorithms from the

literature. Our algorithms were implemented in C++ and used Gurobi 12.0.2 as the solver. We run

our tests on a machine equipped with two Intel Xeon 6548N processors clocked at 2.80 GHz and up

to 128 GB of RAM. We allowed 1 hour of runtime for all instances except those with 200 customers,

for which we ran for 2 hours.

We used all benchmark instances available from the works of Gambella et al. [5], Poikonen and Golden

[15], and Erdoğan and Yıldırım [4], varying from 10 to 200 locations. The details of the instances are

described next. Erdoğan and Yıldırım [4] used CPLEX 12.8.0 as a mixed-integer second-order conic

optimization solver in their exact approaches and conducted experiments on the nodes of the Balena
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Algorithm 1 Exact branch-and-cut algorithm

1: Input: Al, percentage of fractional nodes to which subtour elimination constraints are added,

percentage of fractional nodes to which penalty constraints are added

2: Begin optimization of model (L) with linearizations in angles Al for each distance variable

3: while there are nodes to be explored do

4: if some uieje′ is fractional then

5: With a given probability, separate subtour elimination constraints (8)

6: With a given probability, find positive penalties δijk and solve model (H) to separate con-

straints (30)

7: else if the solution contains subtours then

8: Add subtour elimination constraints (8)

9: else

10: Solve model (P) with variables uieje′ fixed from model (L)

11: Define new linear cutting planes at the angles defined by the solution of model (P)

12: if the objective value of model (P) is smaller than the incumbent of the model (L) then

13: Provide the solution from model (P) to model (L)

14: else if the solution of model (L) does not converge to that of model (P) then

15: Define new linear cutting planes at the angles defined by the solution of model (P)

16: end if

17: end if

18: end while

19: Return the best found solution
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computing cluster hosted at the University of Bath (Intel Xeon E5-2650 v2 CPUs @ 2.60 GHz). They

implemented the model of Gambella et al. [5] on the same platform and limited both models to use a

single thread. Poikonen and Golden [15] conducted their experiments on an Intel i7-6700 @ 3.40 GHz

with 16 GB of RAM.

Based on preliminary experiments, we initiate model (L) with |L| = 4 and Al = 0, 90, 180, 270 for each

distance variable. Subtour elimination constraints were separated for 10% of the fractional nodes using

the CVRPSep package [10]. Model (H) for the knapsack problem was invoked for 2% of the fractional

nodes for the instances of Gambella et al. [5] and Erdoğan and Yıldırım [4], and not used for the

Poikonen and Golden [15] instances. The reason is the higher ratio between V d
max and V m

max observed

in the Gambella et al. [5] and Erdoğan and Yıldırım [4] instances, which explain the performance gains

of constaints (30) in those cases.

4.1 Impact of Valid Inequalities

To evaluate the impact of each group of valid inequalities (VIs) on the performance of our algorithm,

we conducted a series of tests in which different versions of the model were applied to a diverse set of

instances. These versions are built cumulatively, allowing us to isolate the individual contribution of

each family of VIs. Recall that constraints (21)–(23) are derived from the literature, while the others

are original from this work. Table 3 summarizes the performance of each version of the model across

selected instances, reporting objective value (z), lower bound (LB), optimality gap, and computa-

tional time. The results illustrate the progressive improvement in solution quality and computational

efficiency as more refined VIs are incorporated.

Table 3 presents a comparison of five versions of our algorithm, progressively incorporating VIs. A

clear trend can be observed: the computational performance improves consistently up to VI (28), as

stronger formulations lead to faster convergence and tighter bounds. However, the difference after the

inclusion of inequalities (29) and (30) is more nuanced. For the Poikonen and Golden instances (i.e.,

those with prefix PK), this inclusion performs slightly worse in terms of total time. For the small-

and mid-sized instances from Gambella et al. and Erdoğan and Yıldırım (up to 45 customers), the

results are very similar between the two versions, with a marginal drop in performance in some cases.

In contrast, for the largest Erdoğan and Yıldırım instances (with 50 customers), the inclusion of (29)

and (30) yields a clear improvement, achieving lower gaps and better bounds. This indicates that

the additional inequalities introduced are particularly effective for larger instances and when the ratio
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between V d
max and V m

max is greater.

4.2 Instances of Gambella et al. [5]

The instances proposed by Gambella et al. [5] are small and contain between 10 and 15 targets. For

all of them, V d
max = 5, V m

max = 1, and T = 1 are defined. These instances are organized into four

sets (SD, MD, LD, VLD), which are grouped into two categories based on the spatial distribution of

customers. In the first group (SD and MD), customer coordinates are sampled uniformly within a

[−25, 25]2 square. The MD set differs from SD by enforcing a minimum distance between customers.

The second group (LD and VLD) uses a wider [−50, 50]2 region. Again, VLD differs from LD by

introducing a minimum inter-customer distance. Optimal solutions are known for most instances

in this set. Erdoğan and Yıldırım [4] compared the performance of their MISOCP model (called

CVTSP1’) with the original MISOCP formulation (called MISOCP) from Gambella et al. [5]. We

report the numbers provided by Erdoğan and Yıldırım [4].
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Table 3: Performance comparison of different versions of our algorithm.

Instance
Model (L) Model (L) +(21)–(23) Model (L)+(21)–(25) Model (L)+(21)–(28) Model (L)+(21)–(30)

z LB Gap (%) Time (s) z LB Gap (%) Time (s) z LB Gap (%) Time (s) z LB Gap (%) Time (s) z LB Gap (%) Time (s)

PK10 10 223.39 223.39 0.00 37.85 223.39 223.39 0.00 34.00 223.39 223.39 0.00 10.65 223.39 223.39 0.00 3.51 223.39 223.39 0.00 4.54

PK15 5 242.04 242.04 0.00 3170 242.04 242.04 0.00 1835 242.04 242.03 0.00 152.12 242.04 242.03 0.00 8.31 242.04 242.03 0.00 13.47

PK20 0 282.56 164.39 41.82 3600 280.53 164.40 41.39 3600 280.53 258.74 7.77 3600 280.53 280.53 0.00 129.01 280.53 280.53 0.00 379.08

SD11 1 108.76 108.76 0.00 0.63 108.76 108.76 0.00 0.71 108.76 108.76 0.00 0.35 108.76 108.76 0.00 0.41 108.76 108.76 0.00 0.38

VLD16 3 306.00 305.99 0.00 2.57 306.00 306.00 0.00 2.02 306.00 305.99 0.00 0.92 306.00 306.00 0.00 0.75 306.00 305.99 0.00 0.84

LD20 1 376.88 376.88 0.00 7.00 376.88 376.88 0.00 8.45 376.88 376.88 0.00 2.60 376.88 376.87 0.00 1.00 376.88 376.87 0.00 0.99

SD26 1 393.55 393.55 0.00 133.87 393.55 393.55 0.00 150.46 393.55 393.55 0.00 31.43 393.55 393.55 0.00 16.75 393.55 393.55 0.00 18.34

SD36 1 477.51 432.26 9.48 3600 477.51 436.48 8.59 3600 477.51 443.60 7.10 3600 477.51 454.41 4.84 3600 477.51 451.38 5.47 3600

MD46 1 470.34 396.94 15.61 3600 470.28 398.49 15.26 3600 470.34 415.17 11.73 3600 470.28 437.45 6.98 3600 470.28 432.97 7.93 3600

LD51 1 504.69 400.79 20.59 3600 504.69 406.64 19.43 3600 504.69 429.89 14.82 3600 504.69 446.001 11.63 3600 504.60 452.47 10.33 3600

LD51 3 494.31 326.85 33.88 3600 494.31 350.30 29.13 3600 493.20 422.69 14.30 3600 493.21 442.816 10.22 3600 493.21 445.52 9.67 3600

MD51 2 497.64 408.37 17.94 3600 494.21 410.15 17.01 3600 495.86 429.16 13.45 3600 495.52 446.847 9.82 3600 494.70 444.31 10.18 3600

SD51 1 449.02 339.75 24.34 3600 448.45 344.39 23.20 3600 448.49 367.33 18.10 3600 448.45 383.401 14.50 3600 448.45 393.60 12.23 3600

Average 371.28 316.92 12.59 2196.27 370.81 320.11 11.85 2094.64 370.86 339.78 6.71 1953.70 370.83 349.39 4.46 1673.83 370.76 350.11 4.29 1693.67
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While these instances are small, in a few cases, optimality has not been proven in the literature. For

example, instance SD15 3 reached the time limit (3600 seconds) without a proven optimal solution

in the earlier works. Our algorithm, however, successfully proved optimality for all instances (it took

less than 15s for SD15 3), as reported in Table 4.

Table 4: Comparison of the performances of competing exact methods on the Gambella et al. [5] instances.

Instance Optimal UB
MISOCP [5]

Time (s)

CVTSP1’ [4]

Time (s)

Our algorithm

Time (s)

SD11 1 108.757 1.96 17.06 0.47

SD11 2 113.919 8.62 68.36 0.83

SD11 3 125.186 1.93 15.16 0.41

MD11 1 146.851 0.19 5.28 0.22

MD11 2 132.116 0.60 9.53 0.24

MD11 3 133.416 0.76 10.86 0.35

LD11 1 311.549 0.06 2.45 0.16

LD11 2 345.195 0.23 3.84 0.15

LD11 3 299.534 0.21 4.52 0.19

VLD11 1 257.237 0.31 3.67 0.33

VLD11 2 324.747 0.08 4.36 0.13

VLD11 3 226.129 0.14 4.34 0.18

SD12 1 107.603 2.28 12.47 0.37

SD12 2 153.936 1.96 23.67 0.35

SD12 3 118.606 8.76 22.56 0.64

MD12 1 157.736 2.15 15.86 0.41

MD12 2 165.631 1.98 23.69 0.34

MD12 3 121.237 1.58 19.03 0.41

LD12 1 296.068 0.29 4.77 0.24

LD12 2 308.263 0.69 6.53 0.32

LD12 3 270.310 0.16 3.67 0.18

VLD12 1 326.036 0.14 4.69 0.18

VLD12 2 274.192 0.21 4.44 0.18

VLD12 3 281.940 0.50 4.81 0.22

SD13 1 116.117 4.12 22.84 0.35

SD13 2 136.855 137.52 919.78 1.59

SD13 3 121.473 13.11 36.53 0.54

MD13 1 150.894 15.25 63.75 0.64

MD13 2 130.994 16.92 42.75 0.39

MD13 3 150.368 12.72 29.38 0.47

LD13 1 261.637 1.43 10.98 0.33

LD13 2 294.855 2.16 8.69 0.26

LD13 3 307.339 2.39 7.64 0.28

VLD13 1 316.709 4.26 16.13 0.5

VLD13 2 239.259 1.56 8.08 0.23
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Table 4 – Continued

Instance Optimal UB
MISOCP [5]

Time (s)

CVTSP1’ [4]

Time (s)

Our algorithm

Time (s)

VLD13 3 281.329 0.98 7.61 0.27

SD14 1 128.137 201.05 128.36 0.76

SD14 2 124.663 152.53 134.48 0.94

SD14 3 138.071 103.62 69.44 0.52

MD14 1 146.951 24.23 65.61 0.47

MD14 2 163.589 54.06 83.95 0.53

MD14 3 153.006 38.34 44.95 0.43

LD14 1 319.795 5.84 7.94 0.36

LD14 2 282.915 23.94 28.98 0.44

LD14 3 301.595 5.35 8.42 0.54

VLD14 1 319.628 11.69 26.55 0.49

VLD14 2 300.168 2.38 10.14 0.49

VLD14 3 280.366 3.79 10.5 0.21

SD15 1 123.668 403.20 240.83 0.76

SD15 2 136.101 643.02 436.47 0.95

SD15 3 132.717 3600 3600.03 14.59

MD15 1 168.238 1476.65 789.94 1.29

MD15 2 136.935 1277.98 234.95 0.72

MD15 3 157.864 624.48 656.53 0.79

LD15 1 299.037 45.95 28.67 0.48

LD15 2 314.008 160.9 25.47 0.39

LD15 3 324.791 440.25 74.16 0.82

VLD15 1 295.334 2.18 15.61 0.45

VLD15 2 314.700 50.91 14.89 0.35

VLD15 3 264.946 5.16 13.63 0.33

SD16 1 145.096 3600.00 346.86 0.84

SD16 2 155.355 3600.00 2228.28 2.62

SD16 3 128.385 3600.00 2060.22 2.19

MD16 1 166.214 3600.00 1716.09 1.82

MD16 2 177.235 3232.09 420.25 0.94

MD16 3 164.369 3600.00 198.94 0.82

LD16 1 322.053 350.77 13.53 0.3

LD16 2 338.704 2726.22 75.34 0.67

LD16 3 353.867 2403.94 35.42 0.69

VLD16 1 379.909 624.76 35.06 0.49

VLD16 2 355.422 861.46 62.16 0.52

VLD16 3 305.995 3600 157.83 0.79

Average 575.07 216.26 0.75

In addition to comparing our approach with exact methods, we also evaluated it against the heuristic

algorithms proposed by the same authors. Table 5 presents this comparison, showing the upper bounds
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and times obtained by the Iterated Local Search (ILS) of Erdoğan and Yıldırım [4], the ranking-based

solution (RBA) algorithm of Gambella et al. [5], and our exact method. The results show that, despite

being an exact approach, our method achieved equal or better upper bounds in all instances while

requiring significantly less computational time in most cases.

Table 5: Comparison of the performances of heuristics and our algorithm on the Gambella et al. [5] instances.

Instance
ILS [4] RBA [5] Our algorithm

UB Time (s) UB Time (s) UB Time (s)

SD11 1 108.76 9.11 108.76 2.52 108.76 0.47

SD11 2 113.92 7.95 113.92 15.19 113.92 0.83

SD11 3 125.19 9.24 125.19 3.29 125.19 0.41

MD11 1 146.85 9.49 146.85 0.31 146.85 0.22

MD11 2 132.12 9.59 132.12 0.65 132.12 0.24

MD11 3 133.48 9.18 133.42 1.11 133.42 0.35

LD11 1 311.55 10.62 311.55 0.08 311.55 0.16

LD11 2 345.20 10.15 345.19 0.34 345.20 0.15

LD11 3 299.53 10.05 299.53 0.41 299.53 0.19

VLD11 1 257.24 10.51 257.24 0.38 257.24 0.33

VLD11 2 324.75 11.13 324.75 0.12 324.75 0.13

VLD11 3 226.13 10.92 226.13 0.21 226.13 0.18

SD12 1 107.60 12.44 107.60 2.96 107.60 0.37

SD12 2 154.02 12.25 153.94 2.24 153.94 0.35

SD12 3 118.61 12.47 118.61 12.80 118.61 0.64

MD12 1 157.85 13.31 157.74 2.44 157.74 0.41

MD12 2 165.74 13.51 165.63 2.44 165.63 0.34

MD12 3 121.24 12.45 121.24 2.05 121.24 0.41

LD12 1 296.07 12.55 296.07 0.25 296.07 0.24

LD12 2 308.26 12.59 308.26 0.85 308.26 0.32

LD12 3 270.31 14.08 270.31 0.22 270.31 0.18

VLD12 1 326.04 14.59 326.04 0.18 326.04 0.18

VLD12 2 274.19 15.67 274.19 0.30 274.19 0.18

VLD12 3 281.94 13.48 281.94 0.55 281.94 0.22

SD13 1 116.12 17.61 116.12 4.33 116.12 0.35

SD13 2 137.06 14.29 136.86 211.11 136.86 1.59

SD13 3 121.47 17.04 121.47 13.78 121.47 0.54

MD13 1 151.11 15.54 150.89 12.68 150.89 0.64

MD13 2 131.35 16.53 130.99 14.32 130.99 0.39

MD13 3 150.37 16.10 150.37 10.28 150.37 0.47

LD13 1 261.64 17.24 261.64 1.33 261.64 0.33

LD13 2 294.85 16.99 294.85 2.15 294.86 0.26

LD13 3 307.34 17.32 307.34 1.36 307.34 0.28

VLD13 1 316.74 19.59 316.71 4.30 316.71 0.50

VLD13 2 239.26 18.62 239.26 1.60 239.26 0.23

VLD13 3 281.33 18.24 281.33 1.03 281.33 0.27
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Table 5 – Continued

Instance
ILS [4] RBA [5] Our algorithm

UB Time (s) UB Time (s) UB Time (s)

SD14 1 128.14 21.65 128.14 199.36 128.14 0.76

SD14 2 124.66 19.45 124.66 123.07 124.66 0.94

SD14 3 138.07 20.05 138.07 56.12 138.07 0.52

MD14 1 146.95 19.52 146.95 20.23 146.95 0.47

MD14 2 163.59 18.82 163.59 36.10 163.59 0.53

MD14 3 153.01 19.44 153.01 24.68 153.01 0.43

LD14 1 319.80 21.41 319.80 4.29 319.80 0.36

LD14 2 282.92 19.64 282.91 17.30 282.92 0.44

LD14 3 301.60 22.22 301.60 2.93 301.60 0.54

VLD14 1 319.63 23.04 319.63 6.89 319.63 0.49

VLD14 2 300.17 25.53 300.17 2.28 300.17 0.49

VLD14 3 280.37 25.28 280.37 2.77 280.37 0.21

SD15 1 125.79 24.03 123.67 277.22 123.67 0.76

SD15 2 136.64 25.18 136.10 259.27 136.10 0.95

SD15 3 134.37 23.38 132.72 3,600.00 132.72 14.59

MD15 1 168.24 23.17 168.24 1,468.48 168.24 1.29

MD15 2 136.94 23.15 136.94 478.55 136.94 0.72

MD15 3 157.86 23.72 157.86 413.02 157.86 0.79

LD15 1 299.04 26.32 299.04 28.30 299.04 0.48

LD15 2 314.01 24.94 314.01 20.97 314.01 0.39

LD15 3 324.79 25.70 324.79 152.35 324.79 0.82

VLD15 1 295.33 28.47 295.33 1.90 295.33 0.45

VLD15 2 314.70 30.90 314.70 10.64 314.70 0.35

VLD15 3 264.95 29.80 264.95 5.90 264.95 0.33

SD16 1 145.10 32.21 145.10 673.47 145.10 0.84

SD16 2 155.58 30.37 155.36 2,837.07 155.36 2.62

SD16 3 128.38 31.21 128.38 3,600.00 128.38 2.19

MD16 1 166.21 34.78 166.21 3,600.00 166.21 1.82

MD16 2 177.50 30.46 177.23 1,176.74 177.23 0.94

MD16 3 164.37 29.75 164.37 2,661.46 164.37 0.82

LD16 1 322.05 31.75 322.05 43.64 322.05 0.30

LD16 2 338.70 31.20 338.70 104.96 338.70 0.67

LD16 3 354.89 29.38 353.87 1,024.65 353.87 0.69

VLD16 1 379.91 31.04 379.91 65.06 379.91 0.49

VLD16 2 355.42 35.41 355.42 121.26 355.42 0.52

VLD16 3 306.32 31.14 305.99 722.48 305.99 0.79

Average 221.41 19.80 221.30 335.74 221.30 0.75

These results demonstrate a clear advantage of our exact algorithm. While previous models, namely,

the MISOCP model of Gambella et al. [5] and the CVTSP1’ model of Erdoğan and Yıldırım [4],

struggled with several instances (with some exceeding 3600 seconds), our approach consistently solved
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all instances to optimality (most of them in under 3 seconds). The average runtime of our method

was only 0.75 seconds, compared to 216.26 seconds for CVTSP1’ and 575.07 seconds for the MISOC

model. These strong results highlight the effectiveness of the proposed formulation and its potential

for scaling to larger problem instances.

4.3 Instances of Erdoğan and Yıldırım [4]

Erdoğan and Yıldırım [4] generated larger instances using the same scheme of Gambella et al. [5]. The

new instances contain from 16 to 50 customers. For those with fewer than 20 customers, Erdoğan and

Yıldırım [4] tested their method as well as that of Gambella et al. [5]. For instances with 25 to 50

customers, Erdoğan and Yıldırım [4] only used the ILS procedure. In what follows, we compare the

results of our exact algorithm against all these results.

4.3.1 Instances with 16–20 customers

For the instances with 16–20 customers, the results of Table 6 confirm the superiority of our method.

The model of Gambella et al. [5] could not prove optimality for any of the 60 instances in this set,

reaching the 2-hour time limit for all instances with an average gap of 142.13%. The model proposed

by Erdoğan and Yıldırım [4] performs significantly better, finding an optimal solution for all but one

instance, with an average runtime of 695 seconds and an average gap of 0.05%. Our method quickly

proved optimality for all instances with an average time of 1.45 seconds.

Table 6: Comparison of the performances of competing exact methods on the Erdoğan and Yıldırım [4]

instances with 16 to 20 customers.

MISOCP [5] CVTSP1’ [4] Our algorithm

Instance UB LB Gap (%) Time (s) UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

SD17 1 295.33 234.76 25.80 7,200 285.58 285.58 0.00 36.98 285.59 285.59 0.00 0.53

SD17 2 357.74 204.54 74.90 7,200 341.49 341.49 0.00 190.38 341.49 341.49 0.00 0.70

SD17 3 286.28 155.62 83.96 7,200 270.31 270.31 0.00 107.42 270.31 270.31 0.00 0.77

SD18 1 351.79 222.06 58.42 7,200 329.47 329.47 0.00 104.69 329.47 329.47 0.00 0.76

SD18 2 338.97 206.07 64.49 7,200 314.49 314.49 0.00 58.15 314.49 314.49 0.00 0.82

SD18 3 381.83 179.94 112.20 7,200 341.80 341.80 0.00 262.13 341.80 341.80 0.00 1.21

SD19 1 390.30 191.75 103.55 7,200 359.70 359.70 0.00 1,327.38 359.70 359.70 0.00 2.56

SD19 2 372.80 179.37 107.84 7,200 312.15 312.15 0.00 51.94 312.15 312.15 0.00 0.46

SD19 3 388.31 212.70 82.57 7,200 379.31 379.31 0.00 429.47 379.31 379.31 0.00 1.11

SD20 1 396.96 166.23 138.80 7,200 365.93 365.93 0.00 2,317.80 365.93 365.93 0.00 2.46

SD20 2 366.12 223.80 63.59 7,200 355.71 355.71 0.00 2,857.17 355.71 355.71 0.00 1.65

An Exact Linearization-Based Refinement Algorithm to the Carrier-Vehicle Traveling Salesman Problem 

CIRRELT-2025-2224



Table 6 – Continued

MISOCP [5] CVTSP1’ [4] Our algorithm

Instance UB LB Gap (%) Time (s) UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

SD20 3 431.74 144.93 197.90 7,200 341.76 341.76 0.00 403.03 341.76 341.76 0.00 1.15

SD21 1 434.67 209.44 107.54 7,200 371.82 371.82 0.00 78.72 371.82 371.82 0.00 0.90

SD21 2 419.55 133.77 213.65 7,200 373.80 373.80 0.00 2,723.54 373.80 373.80 0.00 3.08

SD21 3 350.28 102.39 242.11 7,200 350.28 350.28 0.00 3,850.20 350.28 350.28 0.00 3.48

MD17 1 340.54 243.18 40.04 7,200 322.21 322.21 0.00 44.80 322.21 322.21 0.00 0.46

MD17 2 375.15 272.96 37.44 7,200 350.08 350.08 0.00 91.71 350.08 350.08 0.00 0.85

MD17 3 405.54 200.93 101.83 7,200 356.27 356.27 0.00 33.61 356.27 356.27 0.00 0.42

MD18 1 379.83 211.10 79.93 7,200 346.43 346.43 0.00 122.22 346.43 346.43 0.00 0.71

MD18 2 341.80 217.00 57.52 7,200 335.27 335.27 0.00 60.85 335.27 335.27 0.00 1.09

MD18 3 439.54 213.39 105.98 7,200 376.27 376.27 0.00 107.19 376.28 376.28 0.00 0.59

MD19 1 426.68 146.58 191.09 7,200 364.45 364.45 0.00 157.89 364.45 364.45 0.00 0.71

MD19 2 424.95 197.06 115.64 7,200 370.01 370.01 0.00 119.73 370.01 370.01 0.00 0.54

MD19 3 424.84 158.78 167.56 7,200 345.01 345.01 0.00 82.63 345.01 345.01 0.00 0.93

MD20 1 421.84 174.40 141.89 7,200 341.91 341.91 0.00 249.25 341.91 341.91 0.00 0.99

MD20 2 359.41 153.24 134.54 7,200 332.47 332.47 0.00 676.15 332.47 332.47 0.00 1.96

MD20 3 399.58 176.75 126.07 7,200 342.91 342.91 0.00 128.94 342.91 342.91 0.00 0.69

MD21 1 451.89 109.98 310.88 7,200 363.66 363.66 0.00 792.71 363.66 363.66 0.00 2.76

MD21 2 418.01 114.14 266.23 7,200 344.70 344.70 0.00 463.34 344.70 344.70 0.00 1.22

MD21 3 455.66 86.31 427.95 7,200 363.71 363.71 0.00 442.70 363.71 363.71 0.00 2.90

LD17 1 391.63 217.67 79.92 7,200 380.11 380.11 0.00 125.73 380.11 380.11 0.00 1.61

LD17 2 358.52 234.40 52.95 7,200 323.68 323.68 0.00 46.76 323.68 323.68 0.00 0.55

LD17 3 391.46 155.23 152.18 7,200 349.20 349.20 0.00 56.40 349.20 349.20 0.00 0.50

LD18 1 394.76 164.37 140.16 7,200 329.43 329.43 0.00 27.52 329.43 329.43 0.00 0.57

LD18 2 342.50 142.67 140.06 7,200 287.78 287.78 0.00 92.67 287.78 287.78 0.00 0.55

LD18 3 389.83 188.46 106.85 7,200 368.89 368.89 0.00 160.26 368.89 368.89 0.00 0.88

LD19 1 348.81 166.71 109.23 7,200 313.50 313.50 0.00 520.81 313.50 313.50 0.00 1.11

LD19 2 384.38 157.53 144.01 7,200 359.53 359.53 0.00 141.38 359.53 359.53 0.00 0.60

LD19 3 338.75 133.64 153.48 7,200 323.57 323.57 0.00 647.55 323.57 323.57 0.00 1.20

LD20 1 407.15 152.59 166.82 7,200 376.88 376.88 0.00 521.94 376.88 376.88 0.00 0.99

LD20 2 389.09 191.69 102.98 7,200 334.67 334.67 0.00 1,630.62 334.67 334.67 0.00 1.76

LD20 3 382.88 149.82 155.56 7,200 334.97 334.96 0.00 1,299.39 334.96 334.96 0.00 1.39

LD21 1 495.10 177.07 179.61 7,200 400.73 400.73 0.00 321.13 400.73 400.73 0.00 1.54

LD21 2 408.63 134.42 203.99 7,200 348.67 337.64 3.27 7,200.00 348.67 348.67 0.00 16.22

LD21 3 463.03 118.78 289.81 7,200 365.98 365.98 0.00 1,434.91 365.98 365.98 0.00 1.76

VLD17 1 363.22 261.95 38.66 7,200 337.94 337.94 0.00 94.53 337.94 337.94 0.00 0.64

VLD17 2 342.21 204.69 67.18 7,200 303.03 303.03 0.00 30.62 303.03 303.03 0.00 0.46

VLD17 3 398.66 253.57 57.22 7,200 371.44 371.44 0.00 32.65 371.44 371.44 0.00 0.42

VLD18 1 359.39 228.17 57.51 7,200 326.79 326.79 0.00 25.95 326.79 326.79 0.00 0.54

VLD18 2 369.31 204.31 80.76 7,200 344.19 344.19 0.00 389.31 344.19 344.19 0.00 1.29

VLD18 3 358.17 185.15 93.45 7,200 320.31 320.31 0.00 40.90 320.31 320.31 0.00 0.51

VLD19 1 399.65 190.05 110.29 7,200 337.27 337.27 0.00 68.31 337.27 337.27 0.00 0.58

VLD19 2 399.02 138.14 188.85 7,200 314.04 314.04 0.00 64.92 314.04 314.04 0.00 0.51
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Table 6 – Continued

MISOCP [5] CVTSP1’ [4] Our algorithm

Instance UB LB Gap (%) Time (s) UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

VLD19 3 425.96 187.38 127.33 7,200 392.18 392.18 0.00 559.74 392.18 392.18 0.00 1.21

VLD20 1 387.35 115.88 234.28 7,200 362.99 362.99 0.00 576.73 362.99 362.99 0.00 1.08

VLD20 2 435.12 154.86 180.97 7,200 355.56 355.56 0.00 133.79 355.56 355.56 0.00 0.90

VLD20 3 381.21 92.50 312.13 7,200 310.86 310.86 0.00 168.59 310.86 310.86 0.00 1.22

VLD21 1 466.43 115.97 302.19 7,200 388.97 388.97 0.00 3,804.03 388.97 388.97 0.00 1.97

VLD21 2 505.43 144.73 249.22 7,200 387.86 387.86 0.00 1,224.05 387.86 387.86 0.00 4.02

VLD21 3 419.35 113.95 268.03 7,200 337.64 337.64 0.00 1,944.37 337.64 337.64 0.00 1.70

Average 392.08 175.33 142.13 7,200.00 345.63 345.44 0.05 695.97 345.63 345.63 0.00 1.45

In addition to the comparison with exact methods, we also evaluated the performance of our algo-

rithm against the ILS of Erdoğan and Yıldırım [4] for the same set of instances. Table 7 presents this

comparison. Although ILS is relatively fast and produces good-quality solutions, our exact method

consistently achieved either better or equivalent upper bounds for all instances, and did so in signif-

icantly less time on average (1.45 seconds versus 52.35 seconds). This result reinforces the efficiency

and robustness of our approach, even when compared with state-of-the-art heuristics.

Table 7: Comparison of the performances of heuristics and our algorithm on the [4] instances with 16 to 20

customers.

Instance
ILS [4] Our algorithm

UB Time (s) UB Time (s)

SD17 1 285.66 36.03 285.59 0.53

SD17 2 341.49 40.97 341.49 0.70

SD17 3 270.31 37.01 270.31 0.77

SD18 1 329.47 46.34 329.47 0.76

SD18 2 314.49 44.48 314.49 0.82

SD18 3 342.03 44.04 341.80 1.21

SD19 1 360.02 48.37 359.70 2.56

SD19 2 312.15 54.76 312.15 0.46

SD19 3 379.31 52.82 379.31 1.11

SD20 1 365.93 56.73 365.93 2.46

SD20 2 355.92 53.10 355.71 1.65

SD20 3 341.76 62.59 341.76 1.15

SD21 1 371.82 71.05 371.82 0.90

SD21 2 375.85 66.34 373.80 3.08

SD21 3 350.93 65.70 350.28 3.48

MD17 1 322.21 38.20 322.21 0.46

MD17 2 350.08 36.55 350.08 0.85

MD17 3 356.27 40.59 356.27 0.42
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Table 7 – Continued

Instance
ILS Our Method

UB Time (s) UB Time (s)

MD18 1 346.47 46.71 346.43 0.71

MD18 2 335.27 42.63 335.27 1.09

MD18 3 376.41 45.62 376.28 0.59

MD19 1 364.45 48.23 364.45 0.71

MD19 2 370.01 51.52 370.01 0.54

MD19 3 345.01 48.04 345.01 0.93

MD20 1 341.91 59.70 341.91 0.99

MD20 2 332.49 54.35 332.47 1.96

MD20 3 342.91 60.96 342.91 0.69

MD21 1 363.77 69.91 363.66 2.76

MD21 2 344.71 69.76 344.70 1.22

MD21 3 363.71 74.47 363.71 2.90

LD17 1 380.11 38.45 380.11 1.61

LD17 2 323.68 37.38 323.68 0.55

LD17 3 349.20 36.23 349.20 0.50

LD18 1 329.43 45.54 329.43 0.57

LD18 2 287.78 41.00 287.78 0.55

LD18 3 369.28 40.96 368.89 0.88

LD19 1 313.64 52.77 313.50 1.11

LD19 2 359.53 51.09 359.53 0.60

LD19 3 323.57 47.94 323.57 1.20

LD20 1 376.88 57.20 376.88 0.99

LD20 2 334.67 58.10 334.67 1.76

LD20 3 334.96 60.60 334.96 1.39

LD21 1 400.73 78.02 400.73 1.54

LD21 2 349.17 72.73 348.67 16.22

LD21 3 366.11 66.89 365.98 1.76

VLD17 1 337.94 39.93 337.94 0.64

VLD17 2 303.03 39.06 303.03 0.46

VLD17 3 371.44 41.58 371.44 0.42

VLD18 1 326.80 45.35 326.79 0.54

VLD18 2 344.79 44.39 344.19 1.29

VLD18 3 320.31 50.47 320.31 0.51

VLD19 1 337.27 51.07 337.27 0.58

VLD19 2 314.04 51.60 314.04 0.51

VLD19 3 392.18 50.39 392.18 1.21

VLD20 1 362.99 57.22 362.99 1.08

VLD20 2 355.60 59.94 355.56 0.90

VLD20 3 310.86 57.39 310.86 1.22

VLD21 1 389.40 63.77 388.97 1.97

VLD21 2 387.86 72.35 387.86 4.02

VLD21 3 337.64 63.90 337.64 1.70
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Average 345.73 52.35 345.63 1.45

4.3.2 Instances with 25–50 customers

For the 72 instances containing between 25 and 50 customers, our algorithm proves optimality for 23,

one of which of 35 customers. This is the first time an instance of this size has had a proven optimal

solution. The average gaps for instances with 25, 30, 35, 40, 45, and 50 customers are respectively

0.0%, 0.53%, 4.06%, 7.37%, 8.39%, and 11.33%, which is significantly better than the competing ILS,

as shown in Table 8.

The ILS of Erdoğan and Yıldırım [4] was executed 10 times for each instance. The average and best

results of the 10 runs are shown alongside the average runtime for all 10 executions. We then show

the time if took our algorithm to reach the average UB of Erdoğan and Yıldırım [4]; then, we show

the final results for our algorithm including the UB, LB, gap, and time. Our algorithm has matched

or improved the BKS in 69 out of 72 instances. The final results of ILS report an average time of

322 seconds to reach the average value 441.86, while our algorithm reaches this average UB in 77.95

seconds.

Table 8: Comparison of the performances of heuristics and our algorithm on the Erdoğan and Yıldırım [4]

instances with 25 to 50 customers.

ILS [4] Our algorithm

Instance Average UB BKS Time (s)
Time to reach

average UB (s)
UB LB Gap (%)

Total

time (s)

SD26 1 393.56 393.56 114.25 0.38 393.55 393.55 0.00 27.30

SD26 2 413.12 413.12 109.32 7.03 413.12 413.12 0.00 7.03

SD26 3 378.69 378.69 112.36 0.25 377.82 377.82 0.00 103.09

SD31 1 408.99 408.99 186.34 0.41 406.69 399.67 1.73 3,600.53

SD31 2 352.59 352.59 157.93 0.91 348.83 332.69 4.63 3,600.70

SD31 3 390.10 388.68 161.96 3.22 388.68 388.68 0.00 79.64

SD36 1 479.52 479.52 240.47 19.70 477.51 452.73 5.19 3,600.38

SD36 2 413.77 413.77 234.43 1.88 412.96 392.63 4.92 3,600.17

SD36 3 384.90 384.90 246.15 81.32 384.89 360.77 6.27 3,600.98

SD41 1 485.61 485.61 328.54 2.41 478.33 445.41 6.88 3,602.17

SD41 2 452.43 452.43 329.00 113.14 452.43 410.11 9.35 3,601.00

SD41 3 455.08 455.08 365.14 3.33 452.86 429.46 5.17 3,600.60

SD46 1 504.77 504.77 460.09 177.94 504.61 472.10 6.44 3,601.45

SD46 2 417.48 417.48 456.20 187.08 416.15 367.92 11.59 3,600.66

SD46 3 509.55 509.55 466.12 75.37 506.30 470.34 7.10 3,602.90
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Table 8 – Continuation

ILS [4] Our algorithm

Instance Average UB BKS Time (s)
Time to reach

average UB (s)
UB LB Gap (%)

Total

time (s)

SD51 1 449.58 449.58 611.47 17.85 448.45 394.07 12.13 3,601.13

SD51 2 448.58 448.58 620.98 – 448.73 376.23 16.16 3,600.53

SD51 3 512.18 512.18 631.85 1.07 508.49 461.89 9.16 3,600.14

MD26 1 345.22 345.22 122.42 5.04 345.22 345.22 0.00 5.04

MD26 2 417.27 416.73 104.45 5.12 416.73 416.73 0.00 42.88

MD26 3 413.35 412.09 109.62 10.26 412.09 412.09 0.00 37.93

MD31 1 424.24 424.24 173.22 40.36 424.24 424.24 0.00 289.39

MD31 2 413.55 413.47 171.95 3.65 413.47 413.47 0.00 1,151.87

MD31 3 473.10 473.10 172.87 6.00 473.10 473.10 0.00 335.48

MD36 1 431.14 431.14 244.57 0.67 426.02 426.02 0.00 3,086.68

MD36 2 419.99 419.99 246.84 26.55 419.85 409.54 2.45 3,600.26

MD36 3 375.21 375.21 225.14 0.68 368.41 346.91 5.83 3,601.39

MD41 1 448.76 448.76 313.00 158.04 448.15 419.22 6.46 3,600.87

MD41 2 427.43 427.43 326.27 318.00 427.43 398.06 6.87 3,600.20

MD41 3 474.80 474.80 338.76 49.02 472.19 441.66 6.46 3,601.36

MD46 1 475.46 475.46 447.51 4.83 470.28 432.49 8.04 3,601.26

MD46 2 485.85 485.85 442.42 15.34 481.06 437.60 9.03 3,602.33

MD46 3 527.79 527.79 449.39 – 527.92 480.48 8.98 3,602.25

MD51 1 471.55 471.55 648.69 112.66 467.44 415.31 11.15 3,600.07

MD51 2 498.48 498.48 602.42 89.12 493.47 444.71 9.88 3,602.33

MD51 3 509.48 504.62 631.86 89.56 504.62 457.46 9.35 3,601.08

LD26 1 363.06 362.36 116.08 0.90 362.36 362.36 0.00 22.41

LD26 2 387.36 387.36 111.56 0.23 387.36 387.35 0.00 6.78

LD26 3 371.37 369.81 109.64 0.77 369.81 369.81 0.00 16.34

LD31 1 412.46 412.32 158.96 24.65 412.32 412.32 0.00 315.12

LD31 2 382.81 382.81 162.85 0.40 382.71 382.71 0.00 202.81

LD31 3 426.00 426.00 165.45 0.31 426.00 426.00 0.00 571.70

LD36 1 447.29 447.29 233.80 26.15 447.29 428.28 4.25 3,600.77

LD36 2 436.95 436.95 240.79 472.75 436.95 416.68 4.64 3,600.64

LD36 3 473.32 473.32 231.24 6.00 473.32 466.30 1.48 3,600.61

LD41 1 460.80 460.80 329.50 38.01 460.10 438.24 4.75 3,600.57

LD41 2 482.70 482.70 327.44 1.00 482.70 459.56 4.79 3,600.29

LD41 3 491.53 491.53 343.40 8.44 481.59 458.33 4.83 3,600.74

LD46 1 483.54 483.54 442.82 35.00 483.54 445.44 7.88 3,602.98

LD46 2 488.92 488.92 451.89 26.79 486.61 449.95 7.53 3,601.42

LD46 3 541.70 541.70 455.37 313.69 537.06 508.82 5.26 3,600.53

LD51 1 504.69 504.69 606.34 1,883.00 504.69 453.04 10.23 3,603.78

LD51 2 498.95 498.95 672.29 113.14 497.88 438.83 11.86 3,602.71

LD51 3 493.20 493.20 650.29 – 493.69 444.93 9.88 3,602.32

VLD26 1 344.97 344.97 106.89 2.75 344.70 344.70 0.00 55.71

VLD26 2 417.36 415.45 110.17 2.51 414.97 414.97 0.00 191.67
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Table 8 – Continuation

ILS [4] Our algorithm

Instance Average UB BKS Time (s)
Time to reach

average UB (s)
UB LB Gap (%)

Total

time (s)

VLD26 3 386.05 386.05 109.15 0.24 386.03 386.03 0.00 17.44

VLD31 1 407.16 407.16 166.33 1.02 406.19 406.19 0.00 252.69

VLD31 2 407.27 407.27 170.40 6.44 407.27 407.27 0.00 69.17

VLD31 3 401.43 401.43 181.80 0.40 401.43 401.43 0.00 42.84

VLD36 1 421.04 421.04 226.01 14.33 421.04 406.17 3.53 3,601.10

VLD36 2 415.35 415.35 232.88 0.54 414.01 395.19 4.55 3,600.78

VLD36 3 407.88 406.44 234.82 1.80 406.21 383.55 5.58 3,601.30

VLD41 1 460.33 459.25 331.93 33.88 459.25 433.20 5.67 3,601.58

VLD41 2 420.32 420.32 338.05 55.31 419.15 381.09 9.08 3,601.23

VLD41 3 450.69 450.69 323.29 242.89 450.69 418.24 7.20 3,600.82

VLD46 1 425.48 425.48 446.74 42.85 423.65 373.84 11.76 3,601.89

VLD46 2 490.50 490.50 440.85 0.50 490.50 453.52 7.54 3,602.02

VLD46 3 473.92 473.92 477.84 41.42 472.23 427.30 9.51 3,600.56

VLD51 1 494.95 494.95 626.69 38.07 493.89 447.64 9.37 3,602.51

VLD51 2 464.93 464.93 662.18 188.45 460.22 398.90 13.33 3,602.32

VLD51 3 494.45 494.45 640.56 125.86 488.39 422.57 13.48 3,600.93

Average 441.86 441.65 322.78 77.95 440.25 416.45 5.00 2,547.11

4.4 Instances of Poikonen and Golden [15]

We have also conducted experiments on the diverse instance set of Poikonen and Golden [15]. There

are two groups of instances: one in which customer locations are uniformly distributed, and the

other in which customers are clustered. These 325 instances vary in size according to the number of

customers, ranging from 10 up to 200 target points. For all of them V d
max = 2, V m

max = 1, and T = 20,

which are considerably different from the previous instances.

Table 9 reports the objective values and computation times for the uniformly distributed instances,

obtained by the exact and heuristic methods proposed by Poikonen and Golden [15] (a second-order

conic programming approach combined with a branch-and-bound technique as an exact algorithm, a

greedy sequence heuristic (GS), a greedy sequence with local search heuristic (GSLS), and a partial

solve with greedy insert heuristic (PSGI)). Only the GS algorithm provided solutions for all instances.

We also report detailed results for our algorithm.

As shown in Table 9, our algorithm consistently achieves superior or equivalent performance across

almost all uniformly distributed instances. For small instances (e.g., 10 or 15 locations), our method
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Table 9: Comparison between the methods of Poikonen and Golden [15] and our algorithm for the uniformly

distributed instances

Size
Poikonen and Golden [15] Our algorithm

Exact GS GSLS PSGI
UB Gap (%) Time (s)

UB Time (s) UB Time (s) UB Time (s) UB Time (s)

10 213.74 1.54 214.54 0.009 214.40 2.15 215.14 0.30 213.74 0.00 1.14

15 240.74 18.8 245.20 0.014 243.60 6.81 248.74 1.02 240.74 0.00 22.15

20 252.23 700.22 260.78 0.024 258.52 17.28 263.65 3.33 260.37 0.00 183.78

30 - - 302.82 0.048 301.28 55.34 299.91 36.00 290.59 6.45 3303

50 - - 371.10 0.157 369.22 293.98 - - 354.77 14.80 3602

100 - - 511.60 1.331 - - - - 498.59 20.41 3609

200 - - 698.99 16.80 - - - - 696.05 22.52 7220

matches the optimal objective values reported by Poikonen and Golden [15], with comparable or

slightly higher computational times. For larger instances (more than 30 locations), where Poikonen and

Golden [15] did not report results for the exact method due to time limitations, our method continues

to demonstrate competitive performance, achieving better solutions than all heuristic approaches.

The only case in which our objective value is slightly higher than that reported by the exact method

of Poikonen and Golden [15] occurs for instances with 20 locations (260.37 vs. 252.23). We discussed

with these authors, but the details of the executions are no longer available. One explanation could be

that the results reported come from a subset of instances, possibly excluding those for which optimal

solutions could not be found within the 1000-second time limit, rather than the full benchmark set of

20 instances. Despite this gap, comparing the runtimes of our algorithm on these instances against

theirs, we observe that our runtimes are almost four times shorter.

Table 10 presents the results for the clustered instances. As can be observed, our method outperforms

the approaches proposed by the authors in nearly all instance sizes. The only exception is the 15-

customer instances where our method required more time than the exact method of Poikonen and

Golden [15]. We achieved an identical UB but did not prove optimality for all instances of this group,

resulting in a very small gap of 0.42%. For all other larger instance sizes, our method achieved

significantly better upper bounds. Notably, for the instance with 100 customers, our method again

performed significantly better than theirs. However, we suspect that they do not report the correct

values, as they are identical to those reported for the uniform instances of the same size. This suggests
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a possible transcription error during data compilation.

Table 10: Comparison between the methods of Poikonen and Golden [15] and our algorithm for the clustered

instances

Size
Poikonen and Golden [15] Our algorithm

Exact GS GSLS PSGI
UB Gap (%) Time (s)

UB Time (s) UB Time (s) UB Time (s) UB Time (s)

10 242.106 12.585 245.518 0.026 244.982 2.335 243.187 0.365 242.106 0 2.77

15 252.732 559.557 258.422 0.037 257.782 7.115 254.932 1.53 252.732 0.42 1036

20 - - 265.013 0.065 264.707 16.69 264.356 14.495 260.066 7.90 3463.96

30 - - 277.63 0.163 277.003 55.342 - - 272.167 13.32 3600

50 - - 298.854 0.341 298.142 229.996 - - 292.921 15.95 3600

100 - - 511.596 1.331 - - - - 339.949 21.47 3600

Erdoğan and Yıldırım [4] also tested their exact models as well as that of Gambella et al. [5] on

the instances proposed by Poikonen and Golden [15]. Table 11 presents a comparison of the results

obtained by these methods and our algorithms. These results highlight the robustness and scalability

of our method, which not only provides optimality guarantees for the smaller instances but also

outperforms the state-of-the-art heuristics for the largest ones.

Table 11: Comparison of exact methods on the instances of Poikonen and Golden [15]

Type Size
Poikonen and Golden [15]

MISOCP CVTSP1’
Our algorithm

[5] [4]

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Uniform 10 0.00 1.54 0.00 54.56 0.71 1724.13 0.00 1.14

15 0.00 18.80 7.78 5897.45 19.46 7200.00 0.00 22.15

20 0.00 700.22 48.13 7200.00 - - 0.00 183.78

Clustered 10 0.00 12.59 0.00 31.04 0.00 2713.42 0.00 2.77

15 0.00 559.56 1.35 3939.31 22.45 7200.00 0.37 1036.08

20 - - 16.10 7200.00 - - 7.90 3463.96

5 Conclusions

In this paper we have proposed a new exact algorithm for the Carrier-Vehicle Traveling Salesman

Problem (CVTSP). Our method is based on linearizing and approximating a nonlinear model, which,

when combined with an iterative correction procedure, guarantees optimality for the original nonlinear
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problem. The algorithm operates based on a branch-and-cut scheme, which is accelerated by existing

and new valid inequalities.

Extensive computational experiments have demonstrated the effectiveness of our approach. Compared

to state-of-the-art exact and heuristic methods, our algorithm showed significantly superior perfor-

mance across a wide range of benchmark instances. For small instances, including those proposed

by Gambella et al. [5] and Erdoğan and Yıldırım [4], our method consistently achieved optimal solu-

tions in a fraction of the time required by competing exact and heuristic algorithms. For mid-sized

instances (16–25 customers), our algorithm outperformed all other exact and heuristics methods in

terms of runtime while maintaining solution quality. Moreover, for large-scale instances (up to 50

customers), our method matched or improved the best-known solutions in most cases, providing tight

lower bounds – a key advantage over heuristics. We proved optimality for 23 out of 72 instances of

these sizes for the first time, while Erdoğan and Yıldırım [4] did not prove an optimal solution for any

of these instances. Moreover, we proved optimality for an instance with 35 locations for the first time.

Our algorithm also produced strong results for the large instances of Poikonen and Golden [15]. For

instances with up to 15 customers, our algorithm matched the optimal solutions obtained by their

exact approach. For larger instances (30 to 200 customers), our method consistently outperformed all

heuristic procedures presented by Poikonen and Golden [15], highlighting its robustness and scalability.

These results confirm the potential of our algorithm to serve not only as an exact method for solving

CVTSP instances but also as a tool for evaluating the quality of the many heuristic solutions available

in the literature.
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