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1 Introduction

Mobile Clinics (MCs), also known as mobile health
units or mobile health clinics, are vehicles that
have the purpose of improving access to healthcare
by delivering ambulatory services. They transport
medical equipment, supplies, and healthcare staff,
and have been documented as effective solutions
for overcoming access barriers related to factors
like time and geography, among others [1]. Their
flexibility and versatility make them suitable solu-
tions to provide services in a variety of medical
contexts, such as emergency humanitarian activi-
ties, vaccination campaigns, or primary care, and
this in all planning horizons (short, medium, and
long-term).

In the context of humanitarian activities, MCs
can provide a range of healthcare services, includ-
ing but not limited to first aid during disaster relief
efforts. In this case, they help diagnose and refer
patients to specialized health facilities, ensure
follow-up and attend non-emergency patients, and
they distribute medicines in remote or difficult
access zones [2]. MCs can also support preven-
tive care through outreach supply efforts by, for
instance, supplementing the existing vaccine dis-
tribution network and increasing immunization
rates in the population.

MCs reach remote areas lacking direct or hav-
ing limited access to healthcare services, ensur-
ing a better coverage. This service differentiates
from one-time campaigns because outreach is peri-
odic and repeated at predetermined time periods.
These intervals can range from one to six months
and are closely related to dosage intervals [3].

MCs also play a crucial role in the health
system of developing regions by serving vulner-
able communities that are hard-to-reach and/or
lack complete or partial access to healthcare ser-
vices, which is the context of this work. Under
this modality, MCs depart from depots in larger
cities (which they typically do not serve) and visit
nearby communities to provide recurrent or one-
time primary care and/or specialized services. At
the end of MCs’ routes, they return to the depots
so the personnel can rest. There are variations
of this service. MCs can serve communities dur-
ing the morning and afternoon, returning to their
depot by night [4]. Alternatively, MCs can stay
overnight in the communities and return to the
depot for consecutive days, such as every weekend

[5]. In addition to covering the resting needs of the
medical staff, the MC must return to the depot
to collect supplies, clinical records, leave samples,
among other tasks.

[6] investigated the challenges encountered by
healthcare systems that rely on MCs. These chal-
lenges include authority-related issues such as con-
stant changes in macro-level medical policies, lack
of interest from governments in funding these pro-
grams, and insufficient cooperation from health-
care institutions. Additionally, they mention chal-
lenges related to inadequate resources or their
improper distribution, which can be MCs them-
selves, medical staff, and medical supplies. They
also reported a lack of periodic performance eval-
uation of these programs. Finally, they pointed
out challenges beyond the control of policymakers
and medical personal, such as the unwillingness of
the population to use the services provided by the
MCs. Nevertheless, [6] states that with adequate
policies, regulations and planning, time, energy,
and resources can be saved or better used.

This paper is inspired by the Mexican pro-
gram Fomento a la Atención Médica (FAM), a
major public health initiative in Mexico founded
in 2010, focused on delivering primary and spe-
cialized healthcare services via MCs. It proposes
and compares two distinct formulations to solve
the planning of MCs, providing insights into their
computational performance and effectiveness. The
contributions of these formulations are threefold.
First, and contrary to most of the previous papers
on MC in which capacity is not considered or
it is assumed to be greater than the demand,
this paper addresses the more realistic situation
where demand is lower than capacity. Moreover,
it reckons that populations to serve show differ-
ent levels of vulnerability in terms of accessibility
to basic services, so population in more difficulties
should be prioritized. In this setting, the alloca-
tion of services to populations using a traditional
covered demand maximization objective presents
drawbacks, so we propose alternative objective
functions to achieve a more equitable access to ser-
vices. Secondly, the use of such alternative objec-
tive functions raises a tradeoff between effectivity
and efficiency, because more vulnerable popula-
tions are usually further and serving them may
introduce, as it will be explained, inefficiencies
(i.e., unused capacity). The formulation handles
this issue by utilizing “surplus” variables, and
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demonstrate how bounding these variables leads
to different types of solutions. By analyzing the
impact of surplus variable constraints, the paper
offers valuable managerial insights that can aid in
optimizing the deployment and operation of MCs
in underserved regions.

The rest of the paper is organized as follows.
The next section positions this paper with respect
to the existing literature. In Section 3, the problem
is formalized and we propose two Mixed-Integer
Linear Programming (MILP) formulations that
seek to allocate resources fairly by prioritizing
the most vulnerable communities. These formula-
tions integrate a refined capacity allocation system
quantifying both the unfulfilled demand and the
unused capacity. Next, in Section 4, we compare
the computational performance of the two for-
mulations using synthetic instances based on real
data from the Mexican program FAM, and pro-
pose managerial insights on the tradeoff between
maximizing the efficiency of the solutions and
their effectiveness. Section 5 presents our conclu-
sions and proposes future lines of research.

2 Literature review

When examining the literature on MC logistics,
we identify two distinct service modalities that
are not formally classified. These modalities differ
based on whether trips are planned daily, allowing
for visits to multiple localities within a single day,
or whether trips span multiple days, requiring an
MC to remain in a single locality for at least one
day.

Papers in the first modality, which allow mul-
tiple stops in different localities on a single day,
are commonly modeled as variants of the Vehicle
Routing Problem (VRP). This type of problems
work under the assumption that travel times
between localities, along with the time required
for dismantling and setting up the MCs, are not
important, so the MC’s capacity to serve patients
is not significantly affected by these activities
[3, 4, 7–10]. We will refer to this type of problems
as multiple-stops per day problems.

Conversely, when travel times between local-
ities are substantial, relocating during working
hours diminishes the time that MCs can allo-
cate to patient care. This modality, predomi-
nantly observed when MCs operate in extensive

and remote regions with particularly challeng-
ing routes, involves MCs staying in a locality for
one or several full days, with inter-locality travel
occurring after working hours. This paper specifi-
cally addresses these types of issues, which will be
referred to as full-day stop problems.

The remainder of this section exclusively
examines papers pertaining to full-day stop prob-
lems, which are the most pertinent to our case.
Various facets of these problems, including oper-
ational aspects (routing) and tactical decisions
(capacity allocation), are reviewed. Additionally,
this section explores how fairness in service access
has been addressed within the logistics literature
of MCs.

Routing problems involve planning vehicle
routes by selecting customers to visit, determining
the sequence of visits, and scheduling the timing
of each visit. The most basic version of a routing
problem in MCs entails deciding which demand
points to visit and determining the sequence of
these visits.

To the best of our knowledge, [11] was the
first to address an MC problem as an optimization
problem, specifically as a Covering Tour Problem
(CTP), a variant of location-routing problems.
This problem involves covering a subset of nodes
in a graph. The objective is to find the shortest
route that covers the entirety of demand in the
graph, with each visited node capable of covering
the demand of other nodes within a predetermined
distance [12]. In [11] CTP, population centers to be
visited are selected within a network representing
a developing region with accessibility issues.

In routing problems, the predominant objec-
tive is the minimization of travel costs or distance
[11, 13, 14]. [13] dealt with a dynamic demand
problem arising in the context of humanitarian
logistics, where refugee groups cross borders on
their journey, and by doing so, they enter and exit
the network at different periods. In particular, a
route across 21 city centers is used to model the
pathway followed by refugees during the Honduras
migration crisis in 2022. In the health services con-
text, [14] modeled and solved a problem where
MCs are used to deliver dental and ophthalmology
services to remote populations, establishing routes
that were repeated every two weeks to serve the
customers of a for-profit company in Istanbul. [15]
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addressed the planning of a MC trips offering den-
tal services over a planning horizon of 26 weeks in
rural Southwest, Montana.

In the context of MCs, demand satisfaction or
coverage decisions, are linked to the number of
patients attended during each stop of a MC in a
locality. [11, 13] assumed that once a locality has
been visited in the planning horizon, it has been
covered (i.e., all its demand has been satisfied).
[15] assumes that the MC can visit one locality per
trip, but it can stay multiple days (and overnights)
in order to fully satisfy the locality’s demand.
On the other hand, [2] determines the number of
days the MC must stay in a locality, assuming
a maximum number of patients can be attended
per day. [14] considered full or partial coverage
(i.e., demand satisfaction) of the localities based
on their distance from the MC stop.

Indeed, we observed that most studies assume
an uncapacitated setting or, if capacitated, require
the capacity to be greater than the demand to
ensure feasible solutions. When the service capac-
ity is lower than the total demand, the maximiza-
tion of the actual served demand, or the portion
of the served demand relative to the total demand
at each locality becomes relevant. In such cases,
the primary objective shifts to the minimization
of unmet demand, as in [2].

Within the context of MCs, capacity is asso-
ciated to the available time to attend to patients,
which can be allocated to visited localities. Capac-
ity allocation has been considered as a problem
on its own in [15], where the frequency of MC
stops at each location over the planning horizon
needs to be determined assuming that a fixed
number of patients can be attended to during a
day. Other studies have approached capacity as
a strategic decision by deciding whether or not
a MC is used within the planning horizon. This
becomes especially relevant designing MC sys-
tems, so that costs associated with the deployment
of a MC (e.g., acquisition or assignment of medi-
cal staff), are considered in addition to traveling
costs [2, 13]. [14] explored various capacity sizes,
defining capacity as the product of the number of
days in the planning horizon and by the size of the
fleet. Subsequently, they selected the solution that
provided the largest coverage while minimizing
weighted costs.

[15] estimates capacity as the total number of
patients that can be treated per workday in a

locality, and then the number of workdays allo-
cated to each locality is determined. However,
there is a working time limit within the planning
horizon, which must be large enough for a feasible
solution to exist, considering how the model was
formulated.

[2] is to our knowledge the only work that con-
siders a fixed-capacity setting with the possibility
of unfulfilled demand in a full-day stop problem.
However, it does not handle unused capacity, or
in other words, what happens when an MC serves
a locality whose demand is smaller than the MC’s
capacity. Recall that, since this is a full-day stop
problem, the MC can visit only one locality per
day.

In conclusion, none of the previous works mod-
eled a link between the time spent in a locality
and the number of patients served. While this
is a convenient simplification of the problem, it
does not guarantee an efficient and adequate use
of medical staff time. Additionally, they did not
suggest any mechanism to track or identify blind
spots for unused capacity. In our case, the demand
significantly exceeds the capacity, raising a new
question on how to choose the localities that will
be served and those that will not. Our objective
is not to minimize costs, but to ensure fair access
to services.

In this regard, all the works we reviewed,
except for [14], considered all patients as having
the same priority. Therefore, patients contribute
equally to the objective function when maximiz-
ing the covered demand. However, in our case,
different levels of patient marginalization impact
patients’ priority, which needs to be taken into
account when deciding access to services. To
our knowledge, [14] is the only work consider-
ing fairness when planning MC services. In their
approach, localities can be fully or partially cov-
ered, depending on their proximity to a MC. Based
on the locality’s coverage, a ”fairness score” is con-
sidered fully or partially in the objective function,
which seeks to maximize this fairness score. Fair-
ness is thus related to the locality’s distance to the
service, rather than to the characteristics of the
locality (e.g., available infrastructure).

Table 1 summarizes the main features of the
reviewed papers dealing with full-day stop prob-
lems. It can be observed that our work differs
from previous ones in several aspects. In addi-
tion to routing and capacity allocation decisions,
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we explicitly consider unmet demand and unused
capacity decisions to provide more control over the
allocation of MCs’ service time. Moreover, unlike
most previous works, demand exceeds capacity,
making the traditional objective of maximizing
covered demand unsuitable for our case. For this
reason, our study seeks to plan the use of MCs’
capacity in such a way that population access to
services is granted in a fair manner that takes into
account the priority or needs of the localities.

3 Problem modeling and
mathematical formulations

In this section, we introduce the planning of
healthcare service delivery using MCs in a regional
setting and propose two formulations to address
this issue. The objective is to plan a fixed num-
ber of trips for each MC, prioritizing the most
vulnerable localities while minimizing the traveled
distance. In the following, we describe the charac-
teristics of the studied context and then present
the two formulations.

Without loss of generality, we assume a region
containing several sparsely populated localities
that are difficult to reach due to their lack of access
to main roads. These localities endure compro-
mised living conditions and lack access to essential
services such as transportation, healthcare, sani-
tation, and education, among others. However, the
levels of vulnerability among these localities are
not homogeneous, as some are more marginalized
(i.e., have lower access to services) than others.
Given the absence of health infrastructure in these
localities, MCs emerge as a viable, if not the only,
alternative to provide healthcare to these popu-
lations. It should be noted that only a portion
of the total population in these localities requires
scheduling a medical appointment, and we assume
that the demand for services is deterministic and
known. Furthermore, we assume that all patients
require a uniform average consultation time, thus
the number of patients that can be served by a
MC per day remains constant.

MCs deliver primary and some specialized care
through service trips during which they visit mul-
tiple localities. Each trip begins with a MC depart-
ing from an origin depot, following a sequence of
localities to visit, and concluding at said depot.
Depots are community-owned facilities that serve

as operational centers and storage sites for essen-
tial medical supplies, drugs, and clinical records.
Each MC is staffed by medical professionals and
a designated driver, who can work for a limited
number of consecutive days before requiring a
resting period, thus limiting the duration of each
trip. Considering the resting needs of the medical
staff between trips, depots also function as resting
points for MCs and their staff during rest days.
Depots are situated in nearby urbanized locali-
ties, referred to as primary localities, which are
not required to be served.

Within a service trip, a MC can serve the same
locality for consecutive days or travel to a different
locality between each service day. The localities to
be visited are referred to as secondary localities.
Due to long set-up and travel times, a MC can
serve at most one locality per day. Secondary local-
ities also act as service hubs for the population of
nearby localities that are not visited, referred to as
satellites. A satellite locality can be assigned to a
secondary locality if their distance is within a rea-
sonable limit. In this case, the population of the
satellite locality requiring medical attention trav-
els to and receives service from the MC visiting
the secondary locality.

It should be noted that the demand exceeds
the capacity. Therefore, while efficient resource
utilization is aimed for, adjustments must be
made to prioritize localities with high levels of
marginalization.

As explained before, our problem falls into the
category of full-day stop problems, where MCs
can only visit one locality per day. We found that
there have been two ways of formulating this type
of problem. The first formulation, which we will
refer to as the day-based formulation, follows the
approach in [2], [13] and [14], and considers the
problem as a multi-period one where it needs to
be decided which locality to visit each period in
the planning horizon.

Alternatively, the second formulation, which
will be referred to as the trip-based formulation,
inspired by [11] and [15], does not decide specif-
ically which localities to visit each day, but how
many days are assigned to each locality on every
trip and the sequencing of visits, which usually
coincides with a working week.

In the following, we adapt these approaches
to develop two formulations for our case study.
Our objective with both approaches is to compare
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Study Services
Objective
Function

Decisions
Capacity
Assumptions

Data

[2] DR Min C and UD
R, Act,
Cov, UD

Cap Jakarta flood

[11] PR
Min C and #S,
Max Cov

R UCap

Hard-to reach
populations in
Suhum District,
Ghana

[13] PR Min C R, Act UCap
Honduras
migration crisis

[15] DS Max Cov All, Cov Cap
Rural populations
in Southwest
Montana

[14] DS and Oph
Max FS,
Min Dist

R, Cov, FS Cap
Crowded district in
Istanbul, Turkey

This paper PR
Max FS,
Min Dist

R, All,
UD, S

Cap
Marginalized
communities
in Mexico

Table 1 Related works

(DR=Disaster Relief, PR=Primary Care, DS=Dental Services, Oph=Ophthalmology Services, C=Costs,
UD=Unfulfilled Demand, #S=Number of Stops, Cov=Coverage, FS=Fairness Score, Dist=Distance Travelled,

R=Routing, Act=Activation, All=Allocation, S=Surplus, UCap=Uncapacitated, Cap=Capacitated)

their computational performance and determine
which one is better suited to the context of our
problem for further analysis. In addition, alterna-
tive objective functions are proposed to achieve
fairer access to services based on the marginal-
ization levels of localities. Lastly, a lexicographic
optimization method is presented to include, as
a secondary objective, the minimization of the
distance traveled by the MC.

3.1 Day-based formulation

In a region composed by |L| localities, each local-
ity i ∈ L has a demand di to be fulfilled, which is
an estimate of the fractional number of days that
would take a MC to attend all the patients in a
locality. There are |T | days in the planning hori-
zon and the MC can only visit one locality per
day t ∈ T . However, the staff of the MC works in
periods of five consecutive days and rest the fol-
lowing two. Therefore, in days Tw ⊆ T the MC
must start its working period departing from the
primary locality. Analogously, the MCmust return
to the primary locality in days t ∈ Tw + N , at
the end of every period of N consecutive work-
ing days. The primary locality will be referred to
in the model as i = 1 or i = 2. Declaring the
days when the MC needs to return to and depart
from the primary locality in the form of subsets

is practical, as these days are predetermined. The
medical staff adheres to a strict working calendar
year by law, which designates weekends as their
days off and also includes holidays.

The MC can only perform |T | − |Tw + N |
one-day visits. However, as mentioned previously,
there is a way to serve the demand of a locality
without directly visiting it. If locality j can be
reached from locality i by walking a distance τ
(i.e., bij ≤ τ , with bij being the distance between
i and j), then locality i can absorb the demand
of locality j. In other words, the population from
locality j can walk to locality i to benefit from the
services of the MC if it visits locality i. Locality
j, whose demand has been absorbed by another
locality, will be referred to as a satellite locality,
and locality i, that will be visited by the MC,
will be referred to as a secondary locality. This is
mathematically modeled by assignment variables
aij , which take the value 1 to indicate that local-
ity i is a satellite and its demand is absorbed by
secondary locality j. Furthermore, if aii = 1, then
locality i is a secondary locality. When a locality is
neither assigned to another nor assigned to itself,
it means that it will remain unvisited.

Next, the integer allocation of one-day visits
to secondary localities is modeled by integer vari-
ables xi, which represent the number of one-day
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visits to locality i. It is important to note that mul-
tiple visits may not occur consecutively, although
they do when the formulation prioritizes the min-
imization of distance. In the context of this study,
traveling between localities does not compromise
capacity, as it is conducted during non-working
hours. These trips are scheduled after the MC
closes (usually at 4 pm), allowing sufficient time
to arrive at and be ready to serve the next locality
by early morning the following day.

As previously pointed out, the demand di is a
fractional value representing the amount of medi-
cal attention requested by the population of local-
ity i over the planning horizon, measured in days.
Considering that the decision variable xi allo-
cates one-day visits, allocating visits to a demand
point often results in either a portion of unmet
demand if the allocated capacity is less than the
demand, or surplus (unused capacity) if the allo-
cated capacity exceeds the demand. Hence, addi-
tional decisions in the problem include addressing
the unmet demand in a locality, denoted as pi, or
the surplus allocated to a locality denoted as p′i.

Additionally, it is possible that not all the
one-day visits xi allocated to locality i are solely
intended to meet the demand of said locality
but also the demand of other satellite localities
j assigned to it. Therefore, variable eij tracks
the capacity allocated to a satellite locality i but
supplied in secondary locality j. However, when
i = j, eij also tracks the capacity allocated to and
supplied in secondary locality i.

Finally, decision variable yijt helps set the
sequence of visited localities and the correspond-
ing days (i.e., the MC’s route) as follows: when
locality j is visited on day t after visiting locality
i the day before, then yijt is set to 1. Note that
yiit = 1 indicates that the same locality i is vis-
ited on consecutive days t − 1 and t, or in other
words, that the MC stays at i for both days.

Tables 2 and 3 present the parameters, sets,
and decision variables for the Day-based model,
followed by its formulation.

Objective Function:

max
∑
j∈L

 ∑
i∈L:(i,j)∈A

eji − p′j

 (1)

Subject to:

∑
i∈L:(i,j)∈A

eji = dj − pj + p′j ∀j ∈ L (2)

pi ≤ di ∀i ∈ L (3)

aji ≤ Meji ∀(i, j) ∈ A (4)

eji ≤ Maji ∀(i, j) ∈ A (5)∑
j∈L:(i,j)∈A

eji = xi ∀i ∈ L (6)

∑
i∈L:(i,j)∈A

aji ≤ 1 ∀j ∈ L (7)

∑
i∈L′

∑
t∈T

yijt ≤ M
∑

i∈L:(i,j)∈A
i=j

aji ∀j ∈ L (8)

∑
i∈L

(i,j)∈A
i=j

aji ≤
∑
i∈L′

∑
t∈T

yijt ∀j ∈ L (9)

∑
i∈L′

∑
t∈T

yijt = xj ∀j ∈ L (10)

∑
i∈L′

yijt =
∑
i∈L′

yji(t+1) ∀j ∈ L′, t ∈ {1, . . . , |T |−1}

(11)∑
j∈L

y1jt = 1 ∀t ∈ Tw (12)

∑
i∈L

yi1(t+N) = 1 ∀t ∈ Tw (13)

∑
i∈L′

∑
j∈L′

yijt = 1 ∀t ∈ T (14)

yijt, aji ∈ {0, 1} ∀i, j ∈ L, t ∈ T (15)

xi ∈ Z+ ∀i ∈ L (16)

eji, pi, p
′
i ≥ 0 ∀i, j ∈ L (17)

Objective function (1) maximizes the total
covered demand which is calculated by subtract-
ing the surplus from the allocated capacity of
every locality j.
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Parameters

di Demand of locality i (in days)
bij Distance between localities i and j
N Number of consecutive working days before resting

Sets

L′ Set of localities (including the primary locality)
L ⊆ L′ Set of localities excluding the primary locality
A Pairs of localities that can be assigned to each other (A = (i, j) : i, j ∈ V : bij ≤ τ)
T Days in the planning horizon (T = {1, ...t, ...|T |})
Tw ⊆ T Set of days when MC departs from the primary locality

Table 2 Parameters and Sets of the Day-based model

aji Takes value 1 if locality j is assigned to locality i ; 0 otherwise
xi Number of days locality i will be visited by the MC during the planning horizon
eji Capacity allocated to locality j served in locality i
yijt Takes value 1 if MC visits locality j in day t after visiting locality i in day (t− 1); 0 otherwise
pi Unmet demand at locality i
p′i Surplus (unused capacity) at locality i

Table 3 Decision Variables of the Day-based model

Constraints (2) state that the capacity allo-
cated to a locality j to be covered in other locality
i must be equal to the demand of said locality j
minus its unmet demand plus its surplus. Addi-
tionally, constraints (3) ensure that the calculated
unmet demand does not exceed the demand.

Constraints (4) and (5) enforce that if capacity
is allocated to a locality j and served in a locality
i, then locality j must be assigned to locality i.
Constraints (6) ensure that the capacity allocated
to any locality i visited by the MC, is an integer
number of days. Constraints (7) guarantee that a
locality j falls into one of three following scenarios:
it can be included in the route by setting aji to
1 when i = j, assigned to another locality i when
aji is set to 1 but i ̸= j, or it can remain unvisited
by setting aji to 0 for all i. Constraints (8) and (9)
enforce that if a locality j is in the MC’s route,
then aji must be equal to 1 when i = j. Similarly,
they ensure that when a locality j is assigned to
itself, indicating that it is a secondary locality, it
must be part of the route.

Constraints (10) to (14) address the routing
aspect of the problem. Constraints (10) link the
capacity allocation and routing decision variables
by ensuring that every locality on the route must
be visited the exact number of days specified by xi.
Constraints (12) and (13) guarantee that the MC

begins and ends every trip at the primary locality
(i = 1) on the days specified in the subsets Tw and
Tw + N . Constraints (11) maintain the continu-
ity of the route and constraints (14) ensures that
the MC visits only one locality per day. Finally,
constraints (15) to (17) describe the nature of the
decision variables.

3.2 Trip-based Model

As mentioned before, it is also possible to
approach the MC planning problem as a sequenc-
ing problem. In this approach, a solution is sought
for each set of consecutive working days that begin
and end in the primary locality, referred to as trips
c ∈ C.

Therefore, the decision-making process
revolves around determining how many consec-
utive days each locality will be visited during
each trip. To this end, we introduce three new
sets of decision variables. Variables xic set the
number of days the MC visits a locality i in trip
c. Variables ejic give the capacity allocated to a
locality j served in locality i in trip c. Variables
yijc take the value 1 if the MC visits locality j
after visiting locality i in trip c, and 0 otherwise.

Decision variables aji, pi and, p′i remain
unchanged, as well as the parameters already
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defined di and bij . The Trip-based formulation can
be stated as follows:

Objective Function:

max
∑
j∈L

∑
c∈C

∑
i∈L:(i,j)∈A

ejic − p′j

 (18)

Subject to:

∑
c∈C

∑
i∈L:(i,j)∈A

ejic = dj − pj + p′j ∀j ∈ L (19)

pi ≤ di ∀i ∈ L (20)

aji ≤ M
∑
c∈C

ejic ∀(i, j) ∈ A (21)

∑
c∈C

ejic ≤ Maji ∀(i, j) ∈ A (22)

∑
j∈L:(i,j)∈A

ejic = xic ∀i ∈ L, c ∈ C (23)

∑
i∈L:(i,j)∈A

aji ≤ 1 ∀j ∈ L (24)

∑
i∈L′

∑
c∈C

yijc ≤ M
∑

i∈L:(i,j)∈A
i=j

aji ∀j ∈ L (25)

∑
i∈L:(i,j)∈A

i=j

aji ≤
∑
i∈L′

∑
c∈C

yijc ∀j ∈ L (26)

∑
i∈L

xic = fc ∀c ∈ C (27)

∑
i∈L′

yijc =
∑
i∈L′

yjic ∀j ∈ L, c ∈ C (28)

∑
j∈L

y1jc = 1 ∀c ∈ C (29)

∑
i∈L

yi2c = 1 ∀c ∈ C (30)

∑
i∈L′

yijc ≤ xjc ∀j ∈ L, c ∈ C (31)

xjc ≤ M
∑
i∈L′

yijc ∀j ∈ L, c ∈ C (32)

∑
i∈L′

yijc ≤ 1 ∀j ∈ L′, c ∈ C (33)

∑
j∈L′

yijc ≤ 1 ∀i ∈ L′, c ∈ C (34)

∑
(i,j)∈S

yijc ≤ |S| − 1 ∀c ∈ C (35)

yijc, aji ∈ {0, 1} ∀i, j ∈ L, c ∈ C (36)

xic ∈ Z+ ∀i ∈ L, c ∈ C (37)

ejic, pi, p
′
i ≥ 0 ∀i, j ∈ L, c ∈ C (38)

Equations (18) to (26) are equivalent to (1)
to (9) in the day-based formulation, but include
slight modifications to operate within a frame-
work based on trips. Indeed, the main difference
between the two formulations lies on how the rout-
ing of the MC is structured. In the case of the
trip-based model, constraints (27) to (35) address
the routing aspect of the problem. This formula-
tion introduces a new parameter fc which sets in
constraints (27) the number of days for each trip
to exactly fc. Constraints (28) take care of the
continuity of the route, and constraints (29) and
(30) guarantee that every trip of the MC begins
and concludes in the primary locality. Specifically,
when i = 1, it designates the primary locality as
the departure point, and when i = 2, it designates
the primary locality as the arrival point. Con-
straints (31) and (32) enforce that when capacity
has been allocated to a locality j, it must be vis-
ited by the MC and vice versa. Constraints (33)
and (34) ensure that throughout every part of the
MC route, the MC arrives from only one locality
and arrives at only one locality. This formulation
deals with subtours (i, j) ∈ S, hence subtour elim-
ination constraints are introduced in equations
(35). Finally, constraints (36) to (38) describe the
nature of the decision variables.

3.3 Alternative objective functions

As explained above, the main objective when plan-
ning the MC activity is to provide care to the
population that needs it most. We introduce a
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new parameter mj which quantifies how marginal-
ized a locality j is, thus indicating the urgency of
fulfilling its demand compared to other localities.

Accordingly, we propose alternative objec-
tive functions to maximize the satisfied demand
weighted by its marginalization factor mj . In the
proposed objective functions, the parameter mj

acts as a reward, which is obtained according to
the demand covered in the locality j. Objective
functions (39) and (40) correspond to the day-
based and trip-based formulations, respectively.

max
∑
j∈L

mj

(∑
i∈L:(i,j)∈A eji − p′j

dj

)
(39)

max
∑
j∈L

mj

(∑
c∈C

∑
i∈L:(i,j)∈A ejic − p′j

dj

)
(40)

However, focusing solely on the maximiza-
tion of the covered weighted demand might lead
to an inefficient usage of the MC’s capacity. To
overcome this issue, we propose to consider, as sec-
ondary objective, to minimize the total distance
traveled by the MC. Considering the clear hierar-
chy between the two objectives, we developed a
lexicographic optimization approach.

3.4 A lexicographic optimization
method for planning MC’s
activities

Multi-objective optimization addresses problems
involving two or more objective functions to
be optimized simultaneously. In some cases, the
decision-maker’s preferences regarding each objec-
tive are clearly hierarchical, allowing the possible
solutions to be ranked in a lexicographic order
based on their objective function values. The
strong hierarchy between the two objectives con-
sidered when planning the MC’s activities (i.e.,
maximizing the covered weighted demand and
minimizing the traveled distance) led us to choose
a lexicographic optimization approach rather than
a more traditional method, in which the two objec-
tives would be influenced by user-defined weights
and combined into a single, yet heterogeneous
objective function.

To this end, a sequential, two-step algorithm is
proposed. In the first step, the problem is solved
for the primary objective (i.e., maximization of the
covered weighted demand) yielding z1, the maxi-
mum feasible value of the primary objective. In the
second step, the problem is solved again, but this
time using the secondary objective (i.e., minimiza-
tion of the distance traveled by the MC) subject
to the additional constraint that the value for the
primary objective must be at least equal to z1− ϵ,
where ϵ ≥ 0 is a parameter quantifying the deteri-
oration that the decision maker is willing to accept
on the primary objective in order to optimize the
secondary one. In our context, the second step is
always feasible and results in z2, the shortest route
value for the MC that ensures a covered weighted
demand of at least z1 − ϵ.

The total distance traveled by the MC can
be computed by equations (41) and (42) for the
day-based and the trip-based formulations, respec-
tively.

min
∑
i∈L′

∑
j∈L′

∑
t∈T

bijyijt (41)

min
∑
i∈L′

∑
j∈L′

∑
c∈C

bijyijc (42)

Also, equations (42) and (44) state the addi-
tional constraints on the value for the primary
objective to be introduced in the second step for
the day-based and the trip-based formulations.

∑
j∈L

 ∑
i∈L:(i,j)∈A

eji − p′j

 ≥ z1 − ϵ (43)

∑
j∈L

∑
c∈C

∑
i∈L:(i,j)∈A

ejic − p′j

 ≥ z1 − ϵ (44)

Finally, lexicographic algorithms for the day-
based and the trip-based formulations are :

Lexicographic algorithm for the day-based formu-
lation:

• z1 = Solve (39), (2)-(17)
• z2 = Solve (41), (2)-(17), (43)
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Lexicographic algorithm for the trip-based formu-
lation:

• z1 = Solve (40), (19)-(38)
• z2 = Solve (42), (19)-(38), (44)

4 Computational Results

This section aims to evaluate the computational
performance of the proposed formulations and
to elucidate the behavior of the objective func-
tions designed to ensure equitable access to the
services provided by the MC. To this end, numer-
ical experiments were conducted on a set of
synthetic instances inspired by the Mexican pro-
gram Fomento a la Atención Médica (FAM), a
major public health initiative in Mexico founded
in 2010, focused on delivering primary and special-
ized healthcare services via MCs. Initially, FAM
targeted 20,000 localities with around 3.9 million
people nationwide. These localities have popu-
lations of less than 2,500 individuals and face
healthcare access challenges due to their location,
insufficient infrastructure, and/or limited techno-
logical and human resources for providing ongoing
care to their residents.

The section is organized into three parts. First,
a comprehensive description of the instance gen-
eration process is provided. Next, the results
produced by the two formulations are presented,
and their computational performance is com-
pared. Finally, managerial insights are derived
from an in-depth analysis of how limiting the
surplus through variables p′j in the proposed for-
mulations impacts the structure of the produced
solutions.

4.1 Instances generation

We utilized public data from FAM to generate a
set of instances that allow us to test the perfor-
mance of the proposed methods and their ability
to support FAM’s managers in their decision-
making processes. As previously mentioned, FAM
is a major public health initiative in Mexico,
focused on delivering primary and specialized
healthcare services to vulnerable populations via
MCs. Although most of the regions where the
FAM program has been deployed cover large areas
with total populations that would require two,
three, and up to ten MCs to satisfy their demand,
the formulations we presented only envisage the

planning of activities for a single MC. However,
one of the first decisions made by FAM managers
involves partitioning the area to serve into sub-
regions, each centered around a primary locality
to which a single MC is assigned. Therefore, the
proposed formulations are intended to assist man-
agers in organizing the activities of each individual
MC they oversee.

The capacity of a MC was estimated based on
the length of the considered planning horizon (four
weeks). Thus, for the day-based model, |T | = 24,
Tw = {1, 7, 13, 19} and N = 5, whereas for the
trip-based model, |C| = 4 and fc = 5 ∀c ∈ C.
Since a MC can visit only one locality per day,
up to 20 localities can be visited during the plan-
ning horizon. We assume that during each of the
20 working days, the MC’s medical staff (com-
prising two teams) works a 8-hour shift, totaling
320 hours of available service time. Assuming an
average service time of 15 minutes per patient, we
estimate that an MC is able to serve an average
of 64 patients daily.

In addition to a designated primary local-
ity, each sub-region includes several localities of
varying sizes and vulnerabilities. After analyzing
the available data [16], we observed that smaller
localities are more common and exhibit higher
marginalization than larger localities. To cap-
ture this pattern in our instances, we considered
instances with |L| = 25 and |L| = 50 locali-
ties, and categorized the localities into three types:
small,medium, and large, so that L = Lx∪Lm∪Ll.
We set the number of small, medium, and large
localities to 70%, 25%, and 5% of |L|, respectively.

To construct the set of numerical instances,
we used data from FAM’s operations in Aguas-
calientes and Chihuahua, Mexico [16]. In the
context of the FAM program, Aguascalientes is
among the states with the highest average demand
per locality, while Chihuahua is among those with
the lowest.

One sub-region covered by a single MC in
each of Aguascalientes and Chihuahua states
was arbitrarily selected, and the following proce-
dure was applied: the population of each locality
within the selected sub-regions was obtained, mul-
tiplied by 0.246 [17], then by 15 minutes, and
finally converted from minutes to days to estimate
the demand for healthcare services. The average
demand and standard deviation were calculated
for each sub-region. The values obtained from
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Aguascalientes were used to represent the demand
of small localities (µd

x, σ
d
x), while those from Chi-

huahua represented the demand of large localities
(µd

l , σ
d
l ). For the medium sized localities, the aver-

age and standard deviation were calculated based
on the combined data from both sub-regions and
used to represent their demand (µd

m, σd
m).

The marginalization scores used were inspired
by the marginalization index (MI) calculated by
the Mexican government to categorize areas based
on their degree of socioeconomic disadvantage.
The Mexican MI incorporates factors such as
access to education, health services, living condi-
tions, and sanitation, with higher values indicating
greater marginalization.

The MIs of the localities in the previously
referenced sub-regions of Aguascalientes and Chi-
huahua were retrieved, and the average and
standard deviation were calculated for each sub-
region. The values obtained from Aguascalientes
MIs were used to represent the marginalization
score of small localities (µMI

x , σMI
x ), while those

from Chihuahua represented the marginalization
score of large localities (µMI

l , σMI
l ). For the

medium sized localities, the average and standard
deviation were calculated based on the combined
data from both sub-regions, and used to represent
their marginalization score (µMI

m , σMI
m ).

This process led to the numerical values
reported in Table 4.

We assumed that the demand and MI for
each group of localities follows a normal distribu-
tion and for each locality j in each instance, we
sampled the corresponding µd and σd, and µMI

and σMI to produce the locality demand dj and
marginalization score mj . However, we ensured
that the demand in each instance exceeded the
capacity of an MC. Specifically, we considered two
scenarios where the total demand reached at least
120% and 150% of a MC’s capacity, respectively.
To achieve this, we repeated the sampling process
until the specified demand-to-capacity ratio was
satisfied.

Finally, we also considered the geographical
distribution of the localities. After analyzing the
available data, we identified two main patterns:
one where localities appear dispersed randomly,
and another referred to as centralized, where large
and medium localities occupy the center of the
territory and are surrounded by smaller, more
marginalized localities. Thus, we considered two

alternative scenarios for the distribution of locali-
ties: one with a random geographical distribution
and one with a centralized distribution.

To generate the numerical instances, we once
again used data from the state of Aguascalientes,
Mexico. Initially, we considered a rectangle of
size (Rx, Ry) enclosing the previous referenced
sub-region as the basic area to locate random
generated localities. For a random geographical
distribution, localities’ coordinates were generated
within the basic area by sampling from a uniform
distribution. For instances with a centralized geo-
graphical pattern, the coordinates αx, αy of large
localities were generated by sampling a uniform
distribution such that αx = RxU(0.0001; 0.05)
and αy = RyU(0.0001; 0.05) from the center of
the basic area. Coordinates of medium and small
localities were produced similarly, but sampled
within uniform intervals [0.05-0.2] and [0.2-0.5]
from the basic area’s center. Finally, distances bij
between each pair of localities i and j were cal-
culated from their coordinates using the haversine
formula and multiplied by a coefficient of 1.5 to
account for road distance, and a value of 5 km for
τ was considered.

By combining the number of localities (|L| =
20, 50) and the two possible geographical distri-
bution patterns (random and centralized), four
types of instances were created. For each type,
ten replicas were generated as described previ-
ously, resulting in a total of 40 instances. Table 5
presents the main characteristics of the proposed
instances.

Figures 1(a) to 1(d) illustrate the position of
the localities in the first instance of Types A to D,
respectively. The primary locality is denoted by a
purple star, whilst the large, medium, and small
localities are represented by yellow, green, and red
dots, respectively.

4.2 Numerical Results

To compare the computational performance of the
day-based and trip-based models, the 40 instances
presented in Section 4.1 were solved using the lexi-
cographic method described in Section 3.4. Firstly,
the covered demand was maximized and then
the distance travelled by the MC was minimized.
The instances were solved using commercial solver
Gurobi on one of the Digital Alliance of Canada’s
servers. Each task was allocated one CPU and 32
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Small Medium Large

µ−
x σ−

x µ−
m σ−

m µ−
l σ−

l

Demand 0.13 0.12 0.56 0.67 1.79 0.94
Marginalization Index (MI) 23.17 0.59 20.24 3.05 18.22 2.33

Table 4 Parameters used for the generation of di and mj for the different instances, assuming they follow normal

distribution N(µ−
−, σ−

−)

Type
No. of

Localities
Geographical
Distribution

Demand/Capacity
Ratio

No. of Small-Medium-Large
Localities

A 25 Random ≥ 1.2 17, 5, 3
B 25 Centralized ≥ 1.2 17, 5, 3
C 50 Random ≥ 1.5 34, 10, 6
D 50 Centralized ≥ 1.5 34, 10, 6

Table 5 Types of instances considered for the computational experiments

GB of memory. The optimality GAP was set to
0.001, and the solving time was limited to five and
ten hours (i.e., 18000 and 36000 seconds) for the
first and second stages of the lexicographic algo-
rithm. The results are shown in Table 6 which
reports for the Day-based and Trip-based formu-
lations: the optimality gap reached at the end of
the first and second stages of the lexicographic
algorithm (columns Gap1 and Gap2, respectively),
as well as the associated computational times in
seconds (T1 and T2, respectively).

If we consider the first stage of the lexico-
graphic algorithm (i.e., the maximization of the
weighted demand covered), Table 6 shows that
both formulations solved to optimality all the
instances (recall that the optimality gap was set
to 0.1%), although the trip-based formulation was
unable to reduce the gap under 0.5% for instance
24. That said, both formulations seems quite effi-
cient, solving most of the instances in only a few
seconds, although for seven specific instances the
trip-based formulation required more than 100 sec-
onds. However, when looking at the second stage
of the lexicographic algorithm, the formulations
showed very different performance. Indeed, the
day-based formulation was able to solve to opti-
mallity all the instances, requiring computational
times ranging from only 11 seconds up to 22419
seconds, although 27 out of the 40 instances were
solved in less than five minutes. The trip-based for-
mulation only produced optimal solutions in eight
instances out of 40, and for the 32 instances for

which the proof of optimality was not reached,
optimality gap was always over 10%.

Unsuprisingly, instances A and B seem easier
to solve, requiring computational times slightly
lower than instances C and D. In fact, even the
trip-based formulation was able to produce opti-
mal solutions for eight out of 20 instances in these
groups. Group C seems to be the most difficult for
both formulations, although the variability in the
computational times make difficult to draw clear
conclusions.

To summarize, the day-based formulation
exhibited better performance, solving for all the
cases the two stages of the lexicographic algo-
rithm to optimality, and doing so in reasonable
computational times. The trip-based formulation
clearly struggled with the second stage of the lex-
icographic algorithm, and after exhausting the 10
hours of computational time, produced an average
gap of 22.84%. Given its better performance, the
rest of our experiments will be conducted using
only of the day-based formulation.

4.3 Managerial insights

As it has been previously pointed out, the MC’s
literature has focused on the maximization of
the covered demand and/or the minimization of
resources usage, such as traveling time. However,
the specific needs of the populations and, in a
broad sense, the consideration of fairness in the
access to health services, have not been thoroughly
explored. Indeed, visiting large localities ensures
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(a) Instance 1 of Type A (b) Instance 1 of Type B

(c) Instance 1 of Type C (d) Instance 1 of Type D

Fig. 1 Distribution of the primary locality (purple star), as well as large (yellow dots), medium (green dots), and small
(red dots) localities in the first instance of each type

enough potential patients as to exhaust the MC
daily capacity without moving to several smaller
localities. Moreover, larger localities are, in gen-
eral, easier to serve or to access. Consequently,
traditional approaches that maximize the covered
demand tend to allocate services to localities with
higher demand.

Inspired by the objectives of the FAM, the
proposed formulations integrate the marginaliza-
tion of the localities as a metric to manage their
access to services, the rational being that more
marginalized localities should be prioritized. How-
ever, this approach raises some difficulties in a
full-day stop context, where MCs can only visit
one locality per day. Indeed, visiting a locality hav-
ing a demand smaller than the MC daily capacity
leads to inefficiencies (i.e., idle time of the MC
staff). Surplus variables p′i representing the unused

capacity allocated to a locality i can be used
to ensure that small, highly marginalized locali-
ties are sufficiently served while guarantying the
efficiency of the solutions.

To shed some light on the trade-off between
fulfilling the demand in the smallest and most vul-
nerable localities, and wasting MC’s capacity that
could be used in other localities, we propose a
set of experiments where the surplus variables are
bounded to specific values, representing the toler-
ance of managers to accept less efficient solutions.
To this end, we solved again the 40 instances pre-
sented before but limiting the surplus variables to
5%, 10%, 15%, 20%, 25% and 30% of the total
capacity. The instances were solved in parallel
using commercial solver Gurobi on one of the Dig-
ital Alliance of Canada’s servers. Each task was
allocated one CPU and 6 GB of memory. A GAP
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Day-based formulation Trip-based formulation

Type Ins T1 Gap1 T2 Gap2 T1 Gap1 T2 Gap2

A

1 2 0.10% 43 0.07% 97 0.07% 22569 0.10%
2 2 0.00% 16 0.08% 170 0.10% 36000 18.49%
3 9 0.00% 334 0.10% 1922 0.10% 36000 29.13%
4 1 0.00% 103 0.10% 1 0.00% 36000 15.80%
5 1 0.00% 87 0.00% 1 0.00% 21092 0.10%
6 3 0.09% 118 0.08% 1757 0.10% 36000 10.37%
7 21 0.00% 35 0.07% 539 0.10% 36000 19.89%
8 1 0.00% 11 0.05% 1 0.00% 808 0.10%
9 3 0.00% 14 0.10% 4 0.00% 3953 0.10%
10 2 0.08% 11 0.09% 2 0.00% 708 0.10%

B

11 1.8 0.00% 152.5 0.09% 10.6 0.02% 36000 16.18%
12 5 0.07% 816 0.10% 14646 0.10% 36000 24.42%
13 1 0.00% 16 0.10% 1 0.00% 28010 0.10%
14 1 0.03% 1906 0.10% 1 0.00% 36000 52.26%
15 2 0.00% 17 0.10% 1 0.00% 5758 0.10%
16 1 0.00% 392 0.10% 2 0.00% 36000 25.44%
17 2 0.09% 38 0.08% 82 0.10% 36000 15.15%
18 1 0.00% 28 0.00% 2 0.00% 36000 13.02%
19 3 0.00% 19 0.04% 1 0.00% 36000 19.52%
20 1 0.00% 74 0.09% 4 0.00% 4787 0.10%

C

21 7 0.00% 1365 0.10% 10 0.00% 36000 29.66%
22 22 0.02% 534 0.09% 6 0.02% 36000 41.92%
23 9 0.00% 2593 0.10% 7 0.00% 36000 57.60%
24 24 0.05% 3198 0.10% 18000 0.53% 36000 40.59%
25 6 0.08% 22419 0.10% 2 0.00% 36000 49.40%
26 22 0.00% 481 0.07% 4 0.00% 36000 46.97%
27 12 0.04% 11858 0.10% 3 0.04% 36000 34.76%
28 15 0.00% 12332 0.10% 1884 0.10% 36000 59.67%
29 8 0.00% 18 0.04% 8 0.00% 36000 41.15%
30 17 0.00% 19297 0.10% 29 0.00% 36000 58.06%

D

31 2 0.00% 63 0.10% 2 0.00% 35160 15.66%
32 1 0.00% 18 0.10% 1 0.00% 25607 10.42%
33 3 0.00% 11 0.06% 1 0.00% 26692 16.68%
34 1 0.00% 13 0.04% 1 0.00% 27637 10.74%
35 9 0.00% 136 0.10% 5 0.00% 36000 19.87%
36 4 0.00% 267 0.07% 4 0.00% 36000 21.54%
37 5 0.09% 208 0.09% 5 0.00% 36000 27.22%
38 3 0.00% 67 0.10% 1 0.00% 24635 12.63%
39 2 0.00% 220 0.10% 1 0.00% 20746 16.17%
40 4 0.00% 180 0.08% 1 0.00% 24370 12.15%

Table 6 Solving times and optimality gaps produced by the day-based and trip-based formulations for the first and
second stages of the lexicographic method

of 0.001 was set, and the solving time was limited
to one hour per stage in the lexicographic method
previously described and considering an ϵ of 0.02.

To analyze the results, other than the total
covered demand and the total distance traveled

by the MC, we looked at the sum of the cov-
ered weighted demand (i.e., the covered demand
multiplied by the marginalization index of the
localities), and the number of localities of each
type that received service from the MC. Using this
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information, Figure 2 shows, for each of the con-
sidered values limiting the surplus, the percentage
of total covered demand (line in red), the percent-
age of the sum of the covered weighted demand
(line in purple), and finally, the percentage of each
type of locality being served (blue, yellow and
green bars).

Figures 2(a) to 2(d) show that, as hypothe-
sized, there is an inverse relation between the total
covered demand and the weighted oned which
includes the population marginalization score. In
other words, maximizing the covered demand does
not seem to serve the most marginalized popu-
lations. Figures 2(a) to 2(d) also illustrate how
relaxing the limitation on the surplus impacts the
structure of the produced solutions. It can be
observed that, independently of the geographical
distribution and the total number of localities,
accepting higher surplus (i.e., unused capacity)
lead to serving more small localities, therefore
increasing the covered weighted demand, but
decreasing the total covered demand. However,
managers must handle surplus wisely, because it
quickly translates into inefficiencies and wasting of
the MC’s capacity. For instance, Figure 2(a) shows
that the average total covered demand decreases
from 74% to 55%, for the instances of type A
when the limit on the surplus increases from 5%
to 30%. This drop of almost 20% in the MC effi-
ciency means that MC is not used during four days
of each 20-days planning horizon. Managers must
decide to which extent they are willing to allow
MC’s idle time, which is also an opportunity for
the medical staff to perform administrative tasks
unrelated to medical consultations.

In this vein, when looking at Figures 2(a) to
2(d), there seems to be an ”equilibrium point” for
each type of instance where the most vulnerable
communities can be attended without compro-
mising significantly the efficient use of resources.
In fact, it can be observed that accepting up to
15% of surplus allows to cover (at least partially)
demand from all the small localities which might
be a reasonable managerial objective.

Finally, we also observed some differences in
results depending on the geographical distribution
of localities. Unsurprisingly, when localities are
distributed following a centralized pattern, as in
Figures 2(b) and 2(d), it seems easier to achieve
better results from the perspective of the total
covered weighted demand, most likely because a

larger number of small localities (satellites) can be
served from secondary localities. Thus, in a single
visit, the MC can attend more localities incurring
less idle time. Therefore, managers must carefully
take into consideration the geographical distribu-
tion of the localities and their characteristics when
elaborating the routes for MCs.

5 Conclusion

The potential of MCs for improving access to
healthcare by delivering ambulatory services to
marginalized and out-of-reach populations have
been extensively discussed in the literature. How-
ever, there exists a limited number of decision-
support tools to aid managers in effectively orga-
nizing and handling MCs. Inspired by the man-
agerial challenges faced by the Mexican program
Fomento a la Atención Médica (FAM), this paper
proposes and compares two distinct formulations
for planning MC operations. These formulations
ot only determine the MC route but also propose,
by the introduction of the marginalization index
(MI) related to population vulnerability, a priori-
tization scheme for the equitable allocation of the
MC’s capacity among the populations to serve.

Through numerical experiments on syn-
thetic instances inspired by FAM data from
Aguascalientes, Mexico, this research investigates
the trade-off between effectiveness (maximizing
capacity for vulnerable populations) and effi-
ciency (minimizing unused capacity). The findings
reveal an inverse relationship between total cov-
ered demand and prioritizing highly vulnerable
populations, underscoring the challenge of achiev-
ing both objectives simultaneously. Additionally,
the results demonstrate that smaller and more
vulnerable localities benefit more when the MI is
incorporated into the objective function.

However, this research has limitations that
should be considered. It assumes a single region
served by a single MC, whereas in practice, larger
areas with multiple MCs are required. Future
research should focus on developing formulations
for planning multiple MCs across larger territo-
ries. Moreover, the study assumes a fixed MC
capacity based on average service time per patient,
which may not reflect the heterogeneous care pro-
vided in practical contexts. Formulations that
account for various types of patients and services
are needed to better address patient heterogeneity.
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(a) Instances type A (b) Instance type B

(c) Instance type C (d) Instance type D

Fig. 2 Average total covered demand and average total weighted demand (i.e., affected by the populations’ MI) for small,
medium and large localities for each type of instances for various limits on the surplus

Lastly, the necessity for an appointment system
is highlighted to ensure that only the population
that can be treated attends the MC, given that not
all demand will be met at each locality and people
from satellite localities must travel to secondary
localities for service.
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C.: A data-driven optimization framework for
routing mobile medical facilities. Annals of
Operations Research 291, 1077–1102 (2020)
https://doi.org/10.1007/s10479-018-3058-x

[15] Thorsen, A., McGarvey, R.G.: Efficient fron-
tiers in a frontier state: Viability of mobile
dentistry services in rural areas. European
Journal of Operational Research 268, 1062–
1076 (2018) https://doi.org/10.1016/j.ejor.
2017.07.062
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