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Abstract. There is an increasing demand for cost- and time-efficient last-mile delivery due
to the expansion of home-delivery systems. To respond to this need, many companies and
academics have focused on inventive delivery schemes to reduce costs and improve the
service level offered to customers. These efforts include integrating vehicles with walking
carriers, which additionally dodges traffic and avoids an increase in the emission of
greenhouse gases and other pollutants. The vehicle routing problem with time windows
and multiple deliverymen models an example of such delivery systems. In this problem,
each vehicle may travel with more than one deliveryman to serve more customers with each
stop of the vehicle and reduce the overall time that the vehicle stays parked. As originally
defined, this problem considers that the customers served from each parking location and
the routes traveled by the deliverymen are predefined. We propose a variant of this problem
in which both of these decisions can be optimized. The novel problem is formally defined
and formulated. Theoretical properties and useful lower bounds are introduced and used to
propose several valid inequalities. The problem is also decomposed in a Benders scheme
and solved exactly by a branch-and-Benders-cut algorithm. Extensive computational
experiments show the suitability of the proposed methodology to solve the problem.
Furthermore, managerial insights indicate that the inclusion of the customer clustering and
deliveryman routes in the optimization leads to an average cost reduction of over 10%, with
this value being much higher for some instances.
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1. Introduction

Last-mile delivery is a growing concern in logistics operations due to the increasing demand for
efficient deliveries in cities caused by the urban population growth and the expansion of e-commerce
(Bayliss et al., 2023). Compared to traditional routing problems, last-mile delivery encompasses
additional challenges such as finding places to park and poor traffic conditions (Martinez-Sykora et al.,
2020). Also, some cities have restrictions on vehicle sizes and circulation. Poorly designed delivery
systems negatively affect the traffic and can lead to higher emission of greenhouse gases (GHGs) and
other pollutants (Bektag and Laporte, 2011). These questions show the importance of evaluating and
designing more effective last-mile delivery systems.

A common approach in these systems is to use two-echelon schemes (Cuda et al., 2015; Sluijk et al.,
2023), in which larger vehicles take the goods from the depot to transshipment facilities (satellites)
and smaller vehicles take them from these facilities to the final customers. The main examples are
the two-echelon vehicle routing problem (2E-VRP) and the two-echelon location routing problem
(2E-LRP).

Another possibility is to use two-echelon schemes without having these transshipment satellites
by using the first-echelon vehicles as mobile facilities and having smaller vehicles taking goods from
the vehicles to the customers. Some common applications include having the customers served by
drones (Amine Masmoudi et al., 2022), robots (Alfandari et al., 2022), or carriers on bicycles or
walking (Cabrera et al., 2022; Bayliss et al., 2023; Senna et al., 2024a). These smaller vehicles take
the goods directly from the vehicles to the customers, with no need for transshipment facilities while
increasing the efficiency of the deliveries. This is highly beneficial since it does not incur in additional
costs of facility location (2E-LRP) and transshipment (2E-VRP), and does not require infrastructure
investments in satellites. Additionally, the use of greener options in the second echelon (drones, robots,
and people walking or cycling) leads to reducing the emission of GHGs and pollutants and does not
impact the traffic.

The vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) models
an interesting application that emerges in this context. Specifically, this problem addresses the case in
which vehicles take goods from the depot to the customers and, once parked, the deliverymen traveling
with this vehicle serve the customers. Each vehicle may carry more than one deliveryman and, in such
case, they serve the customers in parallel, reducing the time that the vehicle stays parked throughout
the route. Since vehicle costs are often higher than deliveryman costs, this creates an opportunity for
cost reduction (Pureza et al., 2012).

The common approach in the VRPTWMD is to assume that the deliveryman routes and the defi-
nition of which customers are to be served from each parking location (clustering) can be preprocessed
(Pureza et al., 2012; Alvarez and Munari, 2017; Munari and Morabito, 2018; De La Vega et al., 2020).
The customer clustering has been addressed by Senarclens de Grancy and Reimann (2015) and Senar-
clens de Grancy (2015), and the deliveryman routes by Senna et al. (2024a), all of them showing the
benefits of including these decisions on the problem. However, to the best of our knowledge, no other
work has evaluated the impact of including both the deliveryman routes and the customer clustering
in the optimization problem. In this paper, we extend the VRPTWMD by considering both of these

decisions. The contributions of this paper are sixfold:

e The introduction of a variant of the VRPTWMD that involves the decision of which customers

are to be served by a vehicle parked at each parking location and the deliveryman routes;
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e The proposition of a compact mixed-integer programming formulation to represent this problem;

The discussion of theoretical properties of the problem and the proposition of valid inequalities;

A branch-and-Benders-cut algorithm to optimally solve the problem based on Benders decom-

position;

Extensive computational experiments evaluating the performance of the proposed solution ap-

proaches (compact formulation, valid inequalities, and branch-and-Benders-cut);

Managerial insights that highlight the importance of including these decisions in the problem.

The remainder of this paper is structured as follows. In Section 2, a brief literature review of
the VRPTWMD is presented. Section 3 defines the problem. In Section 4, the problem is formu-
lated, some properties are discussed, and valid inequalities are proposed. In Section 5, a Benders
decomposition is proposed along with a branch-and-Benders-cut algorithm. Section 6 presents the
computational experiments and provides some interesting managerial insights. Section 7 discusses

concluding remarks.

2. Literature review

The VRPTWMD was proposed by Pureza et al. (2012) to reflect the deliveries of a beverage
company to a densely populated area. In large cities, it is common that vehicles spend long times
in their deliveries traveling slowly (due to traffic) in search of a place to park. It is also common
that there are many customers close to each other, creating an opportunity of serving such customers
with a single stop of the vehicle. Although reducing the issues of traffic and lack of parking location
availability, this approach has the downside of having the vehicles parked during long periods while a
single deliveryman (the driver) serves many customers. To speed up the delivery process, this company
came up with the idea of including more than one deliveryman in each vehicle, reducing the time that
the vehicles stay parked and increasing the delivery efficiency. Since the costs associated with vehicles
are usually higher than those of deliverymen, this creates an opportunity for cost reduction. Moreover,
since deliverymen emit less GHGs and other pollutants, this business model has the beneficial side
effect of reducing emissions.

Based on the operations of the beverage company studied, Pureza et al. (2012) defined the problem
with two simplifying hypotheses: (i) the definition of the customers to be served by each vehicle
stop (clusters) is predefined, and (4i) the deliverymen routes inside ecach cluster can be defined in a
preprocessing phase.

Since then, most works that studied the VRPTWMD followed these ideas. Alvarez and Munari
(2016) compared the performance of different metaheuristics to solve the problem. Souza Neto and
Pureza (2016) extended the problem to include the possibility of multiple trips for the vehicles. Munari
and Morabito (2018) proposed the first exact algorithm for the VRPTWMD, which is a branch-and-
price method, and thus, it relies on the column generation technique. Alvarez and Munari (2017)
combined this method with two metaheuristics to create a hybrid exact algorithm. De La Vega,
Munari and Morabito looked at the problem with uncertainties by means of robust optimization
heuristically (De La Vega et al., 2019) and exactly (De La Vega et al., 2020).

These hypotheses make sense in beverage delivery schemes, since the goods to be transported

are usually large and heavy. Thus, a walking deliveryman cannot travel far from the vehicle while
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transporting these commodities, and the clusters can be easily defined based on customers that have
compatible time windows and are very close to each other. Furthermore, the walking deliveryman
would not be capable of serving many customers without coming back to the vehicle to collect more
goods before heading to the next customer. This way, the deliveryman routes become trivial as back
and forth trips from the vehicle to the customers.

Nonetheless, in different applications that include smaller demands or larger deliveryman capaci-
ties, the definition of customer clusters and deliveryman routes are not so straightforward and their
inclusion in the optimization problem becomes beneficial. Senarclens de Grancy and Reimann (2015)
were the first to realize this and propose the inclusion of the clustering in the problem. In fact, they
proposed two novel heuristics to define the clusters. Senarclens de Grancy (2015) went further to
combine the clustering with the routing. Both of these works looked at the VRPTWMD by removing
the hypothesis (i) of predefined clustering while maintaining the hypothesis (4i) that the deliveryman
routes are predefined. Senna et al. (2024a) looked at the problem from a different perspective, by
evaluating the deliveryman routes and, hence, removing hypothesis (ii) that they should be prepro-
cessed. However, they still considered that the clusters would be defined in a preprocessing phase as
stated by hypothesis (7). These three studies proved the relevance of extending the VRPTWNMD in
these ways and the benefits it creates. Nevertheless, there is no work that addressed removing both
of these simplifying hypotheses to include the customer clustering and the deliveryman routes in the
optimization problem.

In this paper, we aim at bridging this gap by defining the vehicle routing problem with time
windows, multiple deliverymen, customer clustering, and two-level routing (VRPTWMD-C2R). The
VRPTWMD-C2R extends the VRPTWMD by including both the customer clustering and the de-
liveryman routes in the optimization process. As discussed above, this is especially interesting when
having deliverymen with large capacities compared to customer demands. Moreover, when consid-
ering time windows, this becomes even more important. In previous approaches, clusters and/or
deliveryman routes were preprocessed, requiring the order of visits within a cluster to be predefined.
Consequently, the time windows of the parking locations were also preprocessed to ensure that these
deliveryman routes aligned with the time windows of the customers and the predefined deliveryman
routes. This preprocessing imposed additional constraints on the problem, potentially leading to sub-
optimal solutions. Notably, the VRPTWMD-C2R addresses this limitation by eliminating the need

for such preprocessing.

3. Problem definition

The VRPTWMD-C2R is defined over a directed graph G = (N, A), with N representing the
set of nodes and A the set of arcs. Let N' be the set of the n potential parking locations and N2
the set of customers. We represent the depot by 0 (source) and n + 1 (sink) and extend the set
N' by defining N} = N' U {0,n + 1}. The set of nodes is defined as N = N} U N2 The set
AY = {(i,j) 1 i,j € N3,i # j,i # n+1,j # 0} encompasses every arc that connects two parking
locations or the depot and a parking location. The set A? = {(i,4) : i,7 € N?,i # j} contains the
arcs that connect every pair of customers. Let (N! : N?) represent the arcs that go from a node in
N'! to a node in N2. We shall denote by A% = A2y (N1: N?)U(N?: N1 the set of arcs connecting
two customers or a customer and a parking location. The set of arcs in the graph is denoted by
A= AU A%
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Figure 1: An illustrative example of the VRPTWMD-C2R.

A homogeneous fleet of vehicles with limits of capacity Q' and route duration T travels in the arcs
of Al. Each vehicle may carry from 1 to M, deliverymen that serve the customers. Once the vehicle
is parked, the deliverymen leave the vehicle to serve the customers. Both the vehicle fleet and the
deliveryman crew are homogeneous and unlimited. We assume that the deliverymen travel with the
same vehicle throughout the entire route. A vehicle remains parked while the deliverymen complete
their tasks and waits for all of them to return before proceeding to the next cluster. Each deliveryman
may perform at most one route per vehicle stop and has a capacity limit of Q2. The deliverymen travel
in the arcs of set A2. We assume that each parking location has a limited transshipment capacity to
reflect the fact that it is not viable to serve an indefinite amount of demand from a single parking
location.

Figure 1 presents an example of the VRPTWMD-C2R. Figure la illustrates an instance of the
problem, showing a depot, a set of customers, and a set of potential parking locations. In Figure 1b
a feasible solution is portrayed. Only four out of the seven potential parking locations are effectively
used, and the customers are clustered around these locations. The black arrows represent the vehicle
routes, while the colored arrows within the clusters indicate the deliveryman routes. The vehicle on
the right-hand side of the figure travels with two deliverymen. Upon arriving at the upper-right green
cluster, the deliverymen leave the vehicle to serve the customers in parallel. Afterwards, they return to
the vehicle and travel to the lower-right red cluster, where the process is repeated. Finally, the vehicle
returns to the depot. The vehicle on the left-hand side of the figure travels with a single deliveryman,
who serves all customers in the clusters visited by this vehicle.

Customers have time windows within which the service must start. Likewise, parking locations
have time windows within which the deliverymen may leave the vehicle to start serving the customers.
The vehicles and deliverymen can arrive earlier at the parking locations and customers and wait until
the time window opening to start the service.

Every cluster is visited by exactly one vehicle and every customer by exactly one deliveryman. Ev-
ery customer has a positive demand that must be completely fulfilled in a single visit of a deliveryman.
The decisions of the problem are (i) which customers are to be assigned to each parking location, (i7)
the number of vehicles to be used, (ii7) the vehicle routes, (iv) the number of deliverymen traveling

with each vehicle, and (v) the deliveryman routes.
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4. Mathematical formulation

We introduce a novel mixed-integer programming compact formulation to formally define and
solve the VRPTWMD-C2R. For clarity, variables and parameters associated with customers and
deliveryman routes are identified with a superscript “2” (second echelon), while those related to
vehicles and parking locations are denoted with a superscript “1” (first echelon). Also, nodes in N
are represented by i and j, and nodes in N? by h and k. We define L = {1,2,..., My} as the set
of possible configurations (number) of deliverymen on a vehicle. The parameters included in the

formulation are:

M7, Maximum number of deliverymen in each vehicle;

f1, f? Fixed cost incurred from the use of a vehicle or deliveryman, respectively;

c',c? Unitary distance cost of vehicle and deliveryman routes, respectively;

Q', Q? Vehicle and deliveryman load capacity, respectively;

d}j, d2, Distance between nodes i and j, (i, j) € A', and h and k, (h, k) € A% (asymmetrical);

1
th,

t7, Travel time between nodes i and j, (i,5) € A, and h and k, (h, k) € A% (asymmetrical);
si Service time of customer h € N?;

st Lower bound for the time spent in parking location i € N if this parking location is used. Defined
as s; = minyen2{t3, +s7 +13,}, Vie N

la},bl], [a2,b?] Time window of parking location i € N, and customer h € N2. We set the route

177

duration limit of each vehicle, T', as b} e
H; Capacity of parking location i € N';
¢? Demand of customer h € N

The variables of the problem are:

1

T Binary variable that indicates whether a vehicle travels from node ¢ to node j with [ deliverymen,

(i,7) € ALl € L;
w} Arrival time at node i € N';
w’ 21 Departure time from node i € N';
ull Vehicle load after leaving node i € N*!;
x%k Binary variable that indicates whether a deliveryman travels through arc (h, k) € A2,
w,% Instant at which service at customer h € N? begins;
u% Deliveryman load after leaving customer h € N?;

zjn, Binary variable that indicates whether customer h € N 2 is served by a deliveryman traveling with

a vehicle parked at parking location j € N!.
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We present the following compact formulation (CF) to formally define the VRPTWMD-C2R:

(CE)min > M (f'+1f g+ Y Y diaiy+E Y diyai, (1)
JEN1IEL (i,j)€A l€EL (h,k)eA?
s.t. Z leﬂ<1 VjeN? (2)
i:(i,j)€ AL l€L
Z évzljl: Z jzl’vjeNlleL (3)
i:(i,7) €Al i:(j,i)€ AL
Z ':B%)il = Z ':B’}(n-i-l)l’ V l € L (4)
ieEN? ieN?
> dhzn < Hi, Vie N' ()
heN?
> zp=1,VheN? (6)
JEN1T
> apy=1,VkeN (7)
h:(h,k)€ A2
. the= Y. ain VEEN? (8)
h:(h,k)eA? h:(k,h)€A2?
D wh= ) #h, VieN (9)
heN? heN?2
k< Y D lajy, VieN! (10)
keN? i:(i,j)€ Al l€L
a3+ xry + zin — 2z <1, Vhk € N2 h#k,ic N (11)
x2, < zin, ¥ (i,h) € (N': N?) (12)
x3 < zin, ¥V (h,i) € (N?: N (13)
w'i>w!, Vie N (14)
wh > w'y +th - ( wal>,Vi,jeN1,z‘7éj (15)
leL
Wi > wh + 57+ th, — Myp(1—a3,), V (h, k) € A? (16)
w? > wy 4t — My(1—2%), V (i,k) € (N': N?) (17)
Wi > w4 sE 4t — My(1—a2), ¥ (h,i) € (N?: NV (18)
1> Z arzin, Vi€ N (19)
heN?2
Pl + Y qian — QF (1—Zx}ﬂ>,w,jeNl,z¢j (20)
heN?2 leL
up > uh 4 qp — Q*(1— ), V (b k) € A® (21)
zi € {0,1}, V (i,j) e Al e L (22)
0<u <Q' ViecN! (23)
al <w; <bj, VieN? (24)
al + st <w'; <T- titns1y, Vi€ N (25)
z3, €{0,1}, V (h, k) € A? (26)
a; <wj <by, ¥heN? (27)
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¢ <ui <Q* Vhe N? (28)
zjn € {0,1}, Vj € N* h € N2 (29)

The objective function (1) seeks to minimize fixed and variable costs of both vehicles and delivery-
men. Constraints (2) limit the usage of each parking location to at most once. Constraints (3) and (4)
ensure vehicle flow conservation. Constraints (5) limit the demand served by each parking location to
its load capacity. Constraints (6) ensure that each customer is assigned to exactly one parking location
and constraints (7) that every customer is visited exactly once. Constraints (8) and (9) are the de-
liveryman routes equivalent to (3) and (4). Constraints (10) limit the number of deliverymen leaving
a parking location to serve the customers to the number of deliverymen that arrive at that parking
location. Constraints (11) ensure that the deliverymen can only travel between nodes assigned to the
same parking location. Constraints (12) and (13) define that a deliveryman can only travel between
a parking location and a customer if this customer has been assigned to that parking location. Con-
straints (14) state that a vehicle can only leave a parking location after arriving at it. Constraints (15)
and (16) define the time flow in vehicle and deliveryman routes, respectively. Constraints (17) and (18)
synchronize vehicle and deliveryman routes. In these constraints, M;; = max{0,7 — t}(n T tilj — ajl-},
My, = max{0,b? +s2 +t2, —a2}, My, = max{0,b} +t3 —ai}, and Mp; = max{0,b? +s2 +t2. —al —sl}.
Constraints (19) define that the load of a vehicle after visiting a cluster is at least the sum of the de-
mands assigned to the corresponding parking location. Constraints (20) and (21) control the load flow

of vehicle and deliveryman routes, respectively. Constraints (22)—(29) define the variable domains.

4.1. Theoretical properties
In this section we present some theoretical properties of the problem and establish useful lower
bounds to define our valid inequalities and solution methods. These results are formally defined and

proved in Propositions 1 to 5 and Corollary 1.

Proposition 1. If the triangular inequality holds, there is an optimal solution in which only parking

locations with customers assigned to it are visited.

Proof. Suppose that a vehicle visits nodes 4, j, k € N' in this sequence and that there is no customer
assigned to parking location j. In this case, if the vehicle goes straight from node 7 to node k, the
route is still feasible and the total distance is reduced by dz-lj + d}k — d},. Given that the triangular
inequality holds, dilj + djl-k > dilk and, hence, d}j + djl-k — d}k > 0. This “shortcut” leads to a vehicle
route that is at most as costly as the previous one. Therefore, given a solution that visits a parking
location without customers assigned to it, there is always a solution that is at least as good as this

one and does not visit this parking location. O

Corollary 1. If the triangular inequality holds, there is an optimal solution in which a deliveryman

leaves every parking location visited by a vehicle.

Proposition 2. If the triangular inequality holds, a lower bound on the time spent in a parking location

i € N visited by | deliverymen is given by

2
4y \ Zih
> (sh+ v o) %

heN?2

Proof. Consider an instance of the asymmetric capacitated vehicle routing problem (ACVRP) with

the depot represented by 0, the set of customers by NN, the demands of a node j € N by ¢;, and
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the travel time to and from the depot as t;o and tg;, respectively. Given this notation, one can show
that the total travel time of the vehicles (summing up for all vehicles) in this instance is at least
> je ~(to; + tjo)% by extending to the ACVRP the lower bound presented by Haimovich and Kan
(1985) for the capacitated vehicle routing problem (CVRP) — following the logic presented in their
paper.

In the VRPTWMD-C2R, once defined the customers assigned to a parking location, the dynamics
of the deliverymen inside this cluster are similar to a vehicle routing problem with time windows
(VRPTW) in which the parking location acts as the depot. Since the VRPTW is a more constrained
version of the ACVRP, >, -y (63, + tm) Q zip, 18 a lower bound on the total travel time inside cluster
i € N'. The time spent in the cluster considers both the total travel time and the total service time.
Also, if the cluster is visited by [ deliverymen, in a best case scenario the total time is evenly divided

between these deliverymen, yielding the lower bound presented above. O

Proposition 3. If the triangular inequality holds, a lower bound on the total travel time of the vehicles

Ql Z Z t02+t20 thlh

i€EN1 he N2

18

Proof. Analogous to the proof of Proposition 2. O

Proposition 4. If the triangular inequality holds, a lower bound on the total time the vehicles stay

out of the depot is

Ql Z Z toi + tio)dizin + ]\; Z 3h+ Z th + thi)ahzin

i€EN1 he N2 heN?2 ieN1

Proof. By summing up the lower bound from Proposition 2 for all parking locations considering that
they are visited by My deliverymen (resulting in the smallest possible lower bound) with the lower

bound from Proposition 3 for the total travel time of the vehicles, one gets this lower bound. O

Proposition 5. If the triangular inequality holds, a lower bound on the cost of the deliveryman routes

inside a cluster i € N1 is

c Z (d2, + d7;) a5 zin.-
heN?

Proof. Analogous to the proof of Proposition 2. (|

4.2. Valid inequalities
With these results, the presented CF can be strengthened by the following valid inequalities (VIs):

S ) al <I8-1, VS NS € 42,3} (30)
(i,j)€ALi,jeS IEL
> @ <IS|-1, ¥V SC NS €{2,3} (31)

(h,k)EA2:h kES

Z Z$01l < Ql Z ai (32)

jeNL IleL heN?2
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Z leiljl > Q2 Z ar (33)

(4,j)€ AL l€L heN?
i#0
;=0 Vi,je N i#jleL: al +s +t;; > b} 34
ijl = Y% Z,]E ,Z#], c al+32+t23> ' ( )
wh; = 0,23, = 0,2, =0, Vie N, he N2 (a) +t5, > bp) V (ah + si + 15, > T —ti,,0))  (35)
23, =0, Vh k€ N> h#k: (aj +s; + 17, > bp) V(gi + qi > Q%) (36)
2. 2 i 2 Puin (37)
(ij)eAt el
i;éO
Z > aly, VieN ke N? (38)
i:(i,j)€AL IEL
Sk Y Yalvien 3
keN? i:(i,j)€ AL l€L
Z Zjp > Z Zx”l, VjeNt (40)
heN? i:(i,j) €Al lEL
<Y inﬂ, VjeN' heN? (41)
i:(4,5)€ AL leL
= Y al, VieN! (42)
heN? heN?2
g < Z 2. VjeN'heN? 4
Zih > xjka S yh e ( 3)
keN?
Z arzin < Q° Z le}jl, Vje N (44)
heN? i:(4,5)€ AL leL
W'} > aj +s;+ (a3 + 83 +t3, —a; — sz, Vi€ N he N2 aj + st + 7, > a; +s; (45)
w) <bf + (b3 =t — b} )z, Vie N he N2 b —t2, < b} (46)
wi > ap + (af +t3, —a})zin, Vi€ NLhe N? i a) +t3, > af (47)
wh <+ (T = ti 1y — thi — s — bi)zin, Vi€ N he N2 0T —ty,, 0y — 15 — s7 < b (48)
W'} —w! > (t2, + s2 +t2.)zim, Vi€ N h e N? (49)
w'z-l—w >si, Vie N (50)
QU(w'; —w}) > Z (Q%sj, + (t3, + th)di) zin (51)
heN?
> > wy |, VieNLieL
J:(1.5) €A Te Li<l
TMLQ' Y D wbu =My Y, D (t+to)aizn (52)
jeEN! leL iENL he N2
Q'S (g X vt
heN? ieN?

Constraints (30)—(37) are common in the literature (Dantzig et al., 1954; Ascheuer et al., 2001;
Lysgaard et al., 2004; Yildiz et al., 2023), constraints (38)—(43) are adapted for the VRPTWMD-C2R
from the valid inequalities proposed for the 2E-LRP by Senna et al. (2024b), and constraints (44)—

(52) are novel valid inequalities proposed for this problem. Constraints (30) and (31) eliminate small
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subtours of two and three nodes in both vehicle and deliveryman routes. Constraints (32) define a
lower bound on the number of vehicles used considering customer demands and vehicle capacity, and
constraints (33) do the same for the deliverymen that leave the parking locations. Constraints (34)—
(36) eliminate infeasible arcs and assignments due to time window incompatibility and deliveryman
capacity. Constraint (37) defines that the number of parking locations visited is greater than a lower
bound (Pin) on the number of parking locations needed to serve all customers considering their
demands and the parking locations capacity. To define P,;,, the parking locations should be ordered
in a decreasing lexicographic order from the one with the largest to the one with the smallest capacity.
The value of P,,;, is defined as the number of parking locations obtained by following this ordered list
until the accumulated capacity is at least the sum of all customer demands. Constraints (38) state that
deliverymen do not leave a parking location if it is not visited by a vehicle. Constraints (39) ensure that
Corollary 1 holds. Constraints (40) guarantee that Proposition 1 holds. Constraints (41) state that no
customer is assigned to a parking location if it is not visited by a vehicle. Constraints (42) define that
deliverymen only leave a parking location if there are customers assigned to it. Constraints (43) ensure
that no customer is assigned to a parking location if no deliveryman leaves it. Constraints (44) limit the
total demand of the customers assigned to a parking location to the capacity of the deliverymen visiting
this parking location. Constraints (45)—(48) define lower and upper bounds on the time variables based
on the assignment of customers to parking locations. Constraints (49) state that the time spent in
a parking location is at least the time to serve the customer that takes more time to be visited and
served. Constraints (50) ensure that the time spent in a parking location i € N! is greater than or
equal to the lower bound s}. Constraints (51) define the lower bound presented in Proposition 2 for
the time spent in a parking location. In these constraints, My = >, -2 (Q%*s: + (2, +3.)q7) — Q%Ls}
is a sufficiently large number to ensure the validity of the constraints. Constraints (52) define a lower
bound on the number of vehicles needed to serve the customers, based on the lower bound on the total
time that the vehicles stay out of the depot from Proposition 4. On top of these VIs, time windows
were tightened based on Ascheuer et al. (2001).

5. Benders decomposition

The VRPTWMD-C2R can be decomposed in a Benders fashion (Benders, 1962; Hooker and Ot-
tosson, 2003) by reformulating the CF (1)—(29). Due to the high dependence of the deliveryman routes
on clustering and vehicle routes, the master problem (MP) assigns customers to parking locations and
defines the vehicle routes while the subproblem (SP) defines the deliveryman routes. To solve this re-
formulation of the VRPTWMD-C2R, we design a branch-and-Benders-cut (BBC) algorithm (Moreno
et al., 2019, 2020; Senna et al., 2024a) that presents better performance than the CF, as indicated by
the results of computational experiments discussed in Section 6.

To outline this reformulation, Section 5.1 presents the MP, Section 5.2 introduces the SP, Section
5.3 discusses the BBC, Section 5.4 proposes some improvements to the BBC, and Section 5.5 introduces
a mixed-integer programming (MIP) heuristic for the problem that can be used to provide a good

initial solution.

5.1. Master Problem

Let r represent a vehicle route that starts and ends at the depot, visiting a set of parking locations to
which there are customers assigned to (r simultaneously represents the vehicle route and the customer
assignment). Let V! C N! be the set of parking locations visited by this route, and N2 C N2 be the
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set of customers assigned to the parking locations in N,!. We shall represent the arcs of route r that
are not connected to the depot as AL. An assignment of customers to parking locations defines sets
Niﬂ,z’ € N1, that are the sets of customers assigned to the corresponding parking location i € N'. We
shall refer to a set N,m as a cluster.

Define R as the set of feasible pairs (r,1), where r represents a vehicle route and [ denotes the
number of deliverymen in this route. These pairs of parameters are all feasible with regard to con-
straints (2)—(29), since they represent vehicle routes and customer clustering that allow for feasible
deliveryman routes. Given a pair (r,[), the cost of the deliveryman routes inside the clusters defined
by N,w,i € N', is ¢,y. Let R be the set of infeasible pairs (r,!) when considering the deliveryman
routes, i.e., the pairs that respect constraints (2)—(6), (14), (15), (19), (20), (22)—(25), and (29), but do
not respect at least one of constraints (7)-(13), (16)—(18), (21), and (26)—(28). Finally, let 7;,i € N*!,
be a variable that represents the cost of the deliveryman routes inside cluster i.

With these definitions, the CF (1)—(29) can be reformulated as the following MP:

(MP) min Y Y (f' + 1y + ¢t Y D dhri+ Y i (53)

jeN! leL i,j)€AL lEL ieN?
J 2J

s.t. (2)-(6), (14), (15), (19), (20), (22)-(25), (29)

Z Mi 2 Crl Z xilﬂ‘F Z Z zin = |A;] = INZ[+ 1], (54)
j)EA

i€N; leLi<l JENY penb]
v(rl)eRr
Do mat > D A SANHIN-L V(R eR. (55)
(1,5)€AL TeL:I<I JEN} penl]

The objective function (53) is equivalent to (1) with the cost of the deliveryman routes calculated
based on variables n;. Constraints (54) and (55) are optimality and feasibility cuts based on path-
cuts (Parada et al., 2024; Senna et al., 2024a). We shall refer to the MP without the optimality and
feasibility cuts as the relaxed MP (RMP).

To define VlIs, let R;; C R be the set of all assignments of customers to parking location ¢ that are
feasible considering the deliveryman routes when visited by [ € L deliverymen in a back-and-forth trip
from the depot (a vehicle route that only visits parking location i € N'). Accordingly, let R;; C R be
the set of all assignments of customers to parking location 4 that creates clusters that are infeasible
when visited by [ € L deliverymen in back-and-forth trips from the depot.

The MP can be strengthened by VIs (30), (32), (34), (35), (37), (40), (41), (44)—(46), (49)—(52).

We also propose the following valid inequalities:

Q*n; > ¢? Z d3, + d2)qizin, Vi€ N (56)
heN?
ni > A (dy, + d3)zin, ¥i€ N h € N? (57)
ni > CrM, Z zh—|N[’]|+1 Vie N ( (r,Mr) € Rim, (58)
henN
Z Zin + Z Z x”l_| , Vie N (rl) € Ry (59)
henl J:(6.5)€A Te LiI<l
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/il - wzl 2ty Z Zin + Z Z xllﬂ - |N7£Z” ) Vieg Nl,(T‘,l) € Ril' (60)

henNl J:(6.5)€A Te i<l

w

Constraints (56) impose the lower bound presented in Proposition 5 for the cost of deliveryman
routes inside a cluster. Constraints (57) state that the cost of the deliveryman routes associated to
a parking location is at least the cost of visiting the farthest customer associated to it. Constraints
(58) provide a lower bound on the cost of the deliveryman routes in a cluster. Constraints (59)
eliminate infeasible assignments. Constraints (60) define a lower bound (¢,;) on the time spent in each
parking location by the vehicle visiting it depending on the customers assigned to it and the number
of deliverymen on the vehicle. In constraints (59) and (60), when [ = M|, the summation in xz;; may
be replaced by 1, since this is the best case scenario for costs and feasibility.

The optimality and feasibility cuts (54) and (55) and the VIs (58)—(60) are of exponential cardi-
nality. Therefore, it is impractical to enumerate all of them a priori. Instead, one declares the RMP
and starts to solve it in a branch-and-cut scheme. When a solution is found, the cuts and VIs needed
for this solution are separated and included in the model. This leads to the BBC algorithm described

in Section 5.3. The separation of cuts and VIs is made by solving the SP described next.

5.2. Subproblem

Given a pair (7, 1), we define an SP that is separable by vehicle route. To simplify notation, we shall
represent N,[i] by N [ in this context. Also, parking location ¢ will be represented by nodes 0; and n;+1
for deliveryman routes source and sink, respectively, with n; = |[NI|. Let N(Eﬂ = NHU{0;,n;+1}. We
define the complete directed graph Gl = (N(gi], Al) in which Al = {(h, k) € A2 : h,k € NI} U({0;} :
NEYU (N {n; +1}).

The SP is given by

(SP) min ¢? Z Z d2 w3, (61)

iEN} (h,k)€ Al

st. Y ap,=1VkeNiecN] (62)

h:(h,k)€ Al
Yooal= > a, VkeNie N (63)

h:(h,k)€ Aldl h:(k,h)€ Alil
D Tn= Y Thpry VIiEN, (64)
he Nl heN'lil
> aj, <l VieN] (65)
heNTlil

66
67
68
69
70
71

wlz 2 wi2l+8i2l+t}27,k _th(l _x}QLk)a v (h’k) € AM,Z € er
up > up + g — Q*(1 —a3y), ¥ (h, k) € Al i e N}

22, €{0,1}, ¥ (h, k) € A i e N}

al <wp <b}, VheNien!

G <up < Q% VheNieN.

(66)
(67)
(68)
(69)
(70)
(71)

The objective function (61) minimizes the cost of the deliveryman routes inside the clusters visited

by route r. Constraints (62)—(64) are equivalent to (7)—(9) but restricted to the customers visited
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in the route. Constraints (65) limit the number of deliveryman routes in each cluster to the number
of deliverymen traveling in the corresponding vehicle. Constraints (66) control the time flow of the
deliveryman routes. Constraints (67) control the time flow along the vehicle route. Constraints (68)
control the load flow inside the clusters. Constraints (69)—(71) define variable domains.

The SP can be strengthened by the following VlIs:

> 22, <|S|—1, Vie N',S c Nl |S| {23} (72)
(h,k)eAld:h kS
22, =0, Vie N hke NV h£k:(a} +5s2 +t2, >0V (¢ + ¢ > Q?) (73)
1 q2
Wy, 41 — WH, > max 7 Z [3%, + (g, + ti(m-}-l))Q_hQ] > max, {t(z)ih + 87, + ti(mﬂ)} ; (74)
heNli €
Vie N}

Constraints (72) and (73) are equivalent to constraints (31) and (36) but restricted to the customers
visited by the vehicle route. Constraints (74) define a lower bound on the time spent in each cluster
as the maximum of the lower bound discussed in Proposition 2 and the time needed to serve the most
time-consuming customer. Time windows are also tightened based on Ascheuer et al. (2001). Since
in the SP the vehicle route is already defined, this tightening becomes very efficient.

The SP is used to define the optimality and feasibility cuts (54) and (55). When the SP is feasible,
the value of the objective function for an optimal solution is used to define the parameter c¢,; of
constraints (54) for the pair (r,1) € R. If the SP is not feasible, the pair (r,[) belongs to R and, hence,
a feasibility cut (55) must be added to the MP.

The SP is also used to define VIs (58)—(60). To separate VIs (58), one defines the SP based
on a vehicle route that goes from the depot to a parking location and back to the depot with M,
deliverymen. For VIs (59), the procedure is the same, but with the number of deliverymen that
are actually traveling in the vehicle that visits the corresponding cluster (I). Finally, VIs (60) are
separated by replacing the objective function (61) with w!! —w} and solving the SP for a route that
goes back and forth from the depot to customer i € N' and considering the number of deliverymen
[ € L in the vehicle. The objective function value of an optimal solution to this problem is used to

define the value of parameter ¢,; of constraints (60).

5.8. Branch-and-Benders-cut algorithm

Due to the exponential nature of the cuts (54) and (55) and the VIs (58)—(60), it is impractical
to enumerate all of them to solve the VRPTWMD-C2R. Instead, we solve the problem in a branch-
and-Benders-cut scheme (Moreno et al., 2019, 2020; Senna et al., 2024a). To this extent, the RMP
strengthened by the polynomial VIs is solved in a branch-and-cut fashion. Every time an integer
solution is found, the SP is solved to separate the optimality and feasibility cuts (54) and (55) and
VIs (58)—(60). The following steps summarize the BBC algorithm:

1. Declare the RMP with the polynomial VIs (30), (32), (34), (35), (37), (40), (41), (44)—(46),
(49)—(52), (56), and (57) and start the branch-and-cut algorithm;

2. Every time a feasible integer solution is found, separate VIs (58)—(60) by solving the SP restricted

to a single cluster for all clusters in the current solution. Separate also the feasibility and
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optimality cuts (54) and (55) by solving the SP defined for all pairs (r,1) of the current solution.
Add the separated cuts and VIs to the model;

3. If the current solution is feasible given the deliveryman routes, compute the overall solution cost
by including the cost update given by the SP. If this cost is lower than that of the incumbent

solution, update the incumbent;

4. Continue the branch-and-cut solution procedure by proceeding to the next node in the branch-
and-cut tree. If a new feasible integer solution is found, return to step 2. If the time limit is
reached or the optimality gap reaches the optimality tolerance, interrupt the algorithm proce-

dure.
This algorithm can be implemented in modern general-purpose MIP solvers by means of callbacks.

5.4. Improvements

For some instances, the separation procedures of the BBC may take a few seconds for each route,
which leads to a long time spent in separation procedures, i.e., solving the MIPs that correspond to the
SP. This leads to a reduction in the rate at which the branch-and-cut nodes are processed. Although
essential to the BBC algorithm, it would be better to separate these cuts only when they are needed
and the corresponding SP is useful, i.e., it corresponds to an important route or assignment. Moreover,
at the beginning of the solution procedure, the lower bound is too low and the first solutions found
by the solver are usually of poor quality. Therefore, it would be interesting to separate cuts when
solutions are better and the lower bound is not so low.

To overcome these issues, we propose a two-phase BBC (2P-BBC). In the first phase, only one cut
is separated, enough to cut off the solution presented by the solver while reducing the computational
burden of separating every possible cut. In the second phase, every VI (58)—(60) and cut (54)—(55)
is separated. The second phase starts upon reaching a gap plateau, i.e., when the solution procedure
remains a long time without significantly improving the optimality gap, which indicates that both the
lower bound and the upper bound found by the BBC have not significantly improved. The following

steps are executed in the procedure of the 2P-BBC:

1. Declare the RMP with the polynomial VIs (30), (32), (34), (35), (37), (40), (41), (44)—(46),
(49)—(52), (56), and (57) and start the branch-and-cut algorithm;

2. Every time a feasible integer solution is found, verify whether a gap plateau has been reached.

If so, go to step 5;

3. Start to separate VIs (58)—(60) by solving the SP restricted to a single cluster. Upon finding
a VI that cuts off the current solution, include this VI in the model and go to step 7 without
separating other VlIs;

4. Start to separate cuts (54) and (55), one route at a time. Upon finding a cut that cuts off the
current solution, include this cut in the model and go to step 7. If no cut has been found, go to

step 6;

5. Separate all VIs (58)—(60) by solving the SP restricted to a single cluster and all feasibility and
optimality cuts (54) and (55) by solving the SP defined by the vehicle routes and customer

assignments of the solution;
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6. If the current solution is feasible given the deliveryman routes and its cost is lower than that of the

incumbent solution after computing the cost of the deliveryman routes, update the incumbent;

7. Continue the branch-and-cut algorithm by proceeding to the next node in the branch-and-cut
tree. If a new feasible integer solution is found, return to step 2. If the time limit is reached or

the optimality gap reaches the optimality tolerance, interrupt the algorithm procedure.

Like the algorithm in Section 5.3, this can be implemented in general-purpose MIP solvers by
means of callbacks. When implementing this algorithm, it is important to be careful in step 3 to
ensure that, in successive callback calls, different parking locations are selected for VI separation.
Otherwise, several VIs would be separated for a single node (e.g., the one with smallest index), having
many cuts related to this parking location and none related to the others. This deteriorates the
algorithm’s performance and significantly increases the number of included constraints, most of them
non-binding in an optimal solution. In our implementation, we have ordered the parking locations
and defined that the first parking location to be processed in a callback call is the subsequent of the
one that had a cut separated in the previous call. If no VI was separated for this parking location, the
next node would be analyzed until one VI was found or it was proved that there was no VI (58)—(60)
that cuts off the current solution. This way, if a VI was included for a parking location in a callback

call, it would be the last one to be analyzed in the next call.

5.5. MIP heuristic

For some instances, the CF and the BBC showed to be slow in finding good feasible solutions.
Thus, providing good initial solutions lead to better overall performance of the algorithm. This is
specially important for the two-phase BBC, since the delayed separation of VIs and cuts makes it
more difficult for the algorithm to update the incumbent solution at the beginning of the solution
procedure.

To overcome this issue, we have developed a MIP heuristic that finds a good feasible solution
in a short amount of time. The procedure is based on defining, for each customer, a list of the
parking locations that have a time window opening that varies at most 0.17" from the moment that
the customer’s time window opens. The heuristic consists in solving the CF (with VIs) by limiting
the parking locations to which each customer can be assigned to the « closest ones from this list.
The resulting MIP is then solved by a general-purpose MIP solver for a few minutes or until it finds a
solution with optimality gap within a tolerance. This solution is then used as a MIP start for the BBC
(or the CF). If by constraining the assignment of each customer we obtain an infeasible problem, the

heuristic is solved iteratively by increasing « by one until it finds a feasible solution for the problem.

6. Computational experiments

Computational experiments were performed to evaluate the suitability of the proposed methodol-
ogy and to obtain managerial insights on the problem. All algorithms were implemented in C++ and
use Gurobi 11.0 solver. The optimality gap tolerance was set at 1077, the time limit at 3,600s, and the
memory limit at 32GB. The experiments were performed on computers equipped with 2xAMD Rome
7532 processors running at 2.46GHz and using eight threads. For the MIP heuristic, the optimality
tolerance was set at 10%, and the time limit at 300s; the initial value of o was three.

In Section 6.1, the instances used in the experiments are presented. Section 6.2 evaluates the

performance of the CF and VIs for solving the problem with the general-purpose MIP solver and
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Section 6.3 does the same for the BBC. In Section 6.4, the algorithms are further evaluated by an-
alyzing their convergence. In Section 6.5, managerial insights are presented, shedding light onto
the importance of considering both the customers clustering and the deliveryman routes in the
problem. Finally, Section 6.6 makes a sensitivity analysis by evaluating the impact of some deliv-
eryman characteristics on the solution. All instances and detailed results are available at https:

//www.dep.ufscar.br/munari/vrptwmd/.

6.1. Instances

Our experiments were based on the instance set proposed by Senna et al. (2024a) for the VRPTWMD
with two-level routing with 50 nodes (10 parking locations and 40 customers). These instances were
generated by the authors based on the Solomon instances for the VRPTW (Solomon, 1987), having
the first ten nodes of the original instance representing a parking location and randomly generat-
ing customers around them. These instances have predefined clusters, but they are ignored for the
VRPTWMD-C2R.

Following Senna et al. (2024a), we have considered the cost parameters to be (f!,c!, f2,¢?) =
(1000, 10,100, 1) and that the deliverymen travel at one third of the vehicle speed. A limit of My = 3
deliverymen in each vehicle was considered. Distances were calculated based on the euclidean distance
truncated to integers. We ran the Floyd-Warshall algorithm (Cormen et al., 2009) on these distances
to ensure the triangular inequality was valid. Travel times were processed accordingly. In all instances,
we considered that the deliveryman capacity is 50, since it is the largest individual demand in the

Solomon instances (Solomon, 1987).

6.2. Compact formulation

We first assess the performance of the MIP solver with CF (1)-(29) and different sets of VIs.
Five different configurations were compared. The first one (CF1) corresponds to CF without VIs.
The second (CF2) represents CF with VIs from the literature (30)—(37). The third configuration
(CF3) has CF with VIs from the literature (30)—(37) and the new ones that are related to the binary
variables and load constraints (38)—(44). Configuration CF4 includes CF and all VIs (30)-(52): the
ones included in the other configurations and the ones related to time variables. We also evaluate the
impact of using the MIP heuristic to provide a MIP start to CF4, referred to as CF4H.

The performance of the MIP solver with different CF configurations varies significantly depending
on the instance class (C, R, or RC) to which the original Solomon instance belongs. When generating
instances for the VRPTW, Solomon proposed three different classes of instances. Class “C” has its
nodes separated in clusters, class “R” has the nodes uniformly randomly generated, and, for class
“RC”, some of the nodes were generated as in class “C” and some as in class “R” (Solomon, 1987).
Therefore, with the generation of new customers around these nodes for the VRPTWMD (Senna
et al., 2024a), the geographical distribution of customers and parking locations varies significantly for
different instance classes. In class “C”, there are many parking locations close to each other, having
many possibly interesting parking locations to which the customers can be assigned. On the contrary,
in class “R”, parking locations are usually far apart, having few candidate parking locations that are
interesting for each customer. Class “RC” has an intermediate behavior.

These results are summarized in Table 1. The results are presented divided by instance class and
aggregated by all instances as well. In these tables, for each CF configuration, “LR” represents the
optimal value of the linear programming relaxation of the VRPTWMD-C2R. “LB” and “UB” stand,
respectively, for the lower and upper bounds reported by the MIP solver at the end of the solving
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procedure. “Gap (%)” corresponds to the optimality gap and “Time (s)” to the runtime in seconds.
All these values represent the average for all instances in the corresponding classes. Moreover, “#
optimals” and “# no feasible solution” indicate, respectively, the number of instances for which the
MIP solver could prove optimality for the best solution found and could not find any feasible solution.
For some instance classes, the solver could not find a feasible solution for all instances. In these cases,
the corresponding values of UB and gap were reported as “N/A”. Detailed results are available as

supplementary material and also at https://www.dep.ufscar.br/munari/vrptwmd/.

Class Metric CF1 CF2 CF3 CF4 CF4H
LR 69 1,710 1,716 1,737 1,737

LB 754 1,773 1,910 3,307 3,329

C UB N/A 5,085 5,102 4,612 3,612

(9 instances) Gap (%) N/A 6493 61.66 26.85 7.85
Time (s) 3,600 3,600 3,600 3,600 3,601

# optimals 0 0 0 0 0

# no feasible solution 2 0 0 0 0

LR 176 3,801 3,804 3,877 3,877

LB 3,239 5,730 5,791 8,253 8,236

R UB N/A 8,714 8,707 8,551 8,551

(12 instances) Gap (%) N/A 3533 34.75 3.65 3.80
Time (s) 3,300 3,009 3,015 2,217 1,878

# optimals 1 2 2 5 6

# no feasible solution 3 0 0 0 0

LR 101 3,955 3,962 3,964 3,964

LB 1,128 4,232 4,250 5,363 5,509

RC UB N/A 9,646 9,883 8,928 8,490

(8 instances) Gap (%) N/A 5566 56.69 39.05 34.94
Time (s) 3,601 3,600 3,601 3,600 3,601

# optimals 0 0 0 0 0

# no feasible solution 2 0 0 0 0

LR 122 3,195 3,200 3,236 3,236

LB 1,885 4,089 4,162 5,921 5,961

All UB N/A 7845 7913 7,433 7,001

(29 instances) Gap (%) N/A 50.13 49.16 20.62 13.65
Time (s) 3,476 3,356 3,358 3,028 2,888

# optimals 1 2 2 5 6

# no feasible solution 7 0 0 0 0

Table 1: Results of the CF configurations.

Regarding the LR, all results indicate that the linear programming relaxation of CF1 is very weak.
The inclusion of VIs from the literature (CF2) leads to average values of LR that are over 25 times
higher than the ones presented by CF1. The other VIs, however, do not impact much the value of LR,
representing around 1% increase in the average value from CF2 to CF4. The greater differences are
observed for instances of class R, suggesting that the new VIs affect more instances with more spread
customers than those with customers closer to parking locations.

Comparing CF1 and CF2 with respect to the performance of the solver while optimizing the
corresponding MIP problem, the difference in the strength of the LR has a significant impact on the
algorithm’s performance, since with CF2 all instances have a feasible solution found, whereas with
CF1 the solver cannot find any feasible solution for seven instances. Moving on to CF3, the solver
performance is overall improved, despite the differences between CF2 and CF3 being discrete. The
greatest impact is for instances of class C, for which there is a gap improvement of 3.27%.

CF4 presents a great improvement in the results. On average, the LB increases 42.26% compared to

the CF3 value, which, combined with a 6.07% UB improvement, leads to a 28.54% gap improvement.
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Three new optimal solutions were also found for instances of class R. Moreover, the inclusion of
the heuristic solution as a MIP start for the MIP solver provides major improvements in the solver
performance, mainly for the instances of class C. In fact, for these instances, the UB is decreased
by 21.68%, leading to a 19.00% gap reduction. For instances of class R, one extra optimal solution
is found, but the average LB is worse for CF4H than for CF4. For instances of class RC, there are
improvements in the LB and UB that lead to a 4.11% gap improvement. The overall average gap is
reduced by 6.97%.

These results show the positive impact encompassed by the proposed valid inequalities and the
use of the MIP heuristic to provide a MIP start. The solver under configuration CF1 (without VIs)
has a poor performance due to its very weak LR. In fact, it cannot even find a feasible solution for
24.14% of the instances. When including all VIs and the heuristic (CF4H), the LB is increased by
216.23%. Moreover, five new optimal solutions are found and all instances have a feasible solution

found, in contrast with the seven ones for which the solver could not find any solution under CF1.

6.3. Branch-and-Benders-cut

In this section, we compare the performance of different configurations of the BBC algorithm. Since
our experiments with VIs show that all of them are beneficial for the solver performance, we have
included all presented VIs in the BBC. More specifically, VIs (30), (32), (34), (35), (37), (40), (41),
(44)—(46), (49)—(52), (56), and (57) were included in the MP, and VIs (72)—(74) in the SP. The first
configuration is BBC1, which represents the BBC with all polynomial VIs but without exponential
VIs (58)—(60). BBC2 corresponds to BBC1 with the inclusion of VIs (58)—(60). BBC2H includes the
MIP heuristic solution as a MIP start for BBC2 . Finally, 2P-BBC2H has also the two-phase scheme
discussed in Section 5.4. The results are presented in Table 2. This table also includes the results for
CF4 and CF4H for comparison, since they were the ones with the best performance among the CF
configurations.

Comparing BBC1 with BBC2, BBC2 presents better results on average, although their performance
differ based on the instance class. For instances of class R, they have equivalent behaviors, finding
the optimal solution for all instances and greatly outperforming the CFs. For those of class C, BBC2
outperforms BBC1, having a 3.20% smaller gap average. For class RC, the difference is the greatest
one, since BBC1 is unable to find a feasible solution for one instance while BBC2 finds a feasible
solution for all of them.

Upon the inclusion of the MIP heuristic (BBC2H), there is a great improvement in the average
performance. For instances of class C, the UB is reduced by 25.40% compared to that of BBC2, leading
to a 19.26% improvement in the average gap. For instances of class RC, the behavior is similar, with
a 15.68% gap reduction. On average, the UB of BBC2H is 10.89% lower than that of BBC2, and the
gap is improved by 10.31%. There is also one extra optimal solution found. These results suggest
that the BBCs without the heuristic have trouble finding good initial solutions for some instances, as
discussed in Section 5.5.

With the two-phase scheme, 2P-BBC2H leads to an additional 0.33% gap improvement compared
to BBC2H. For instances of class C, there is an LB improvement that leads to a 0.11% gap reduction
compared to BBC2H. For class RC, the LB is improved by 0.64%, the UB by 1.85%, and the gap by
1.10%.

The comparison of 2P-BBC2H with CF4H shows that 2P-BBC2H outperforms the solver with
the CFs. In fact, the average LB of 2P-BBC2H is 2.37% higher than that of CF4H and the UB is
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Class Metric CF4 CF4H BBC1 BBC2 BBC2H 2P-BBC2H
LB 3,307 3,329 3,240 3,260 3,269 3,275

UB 4,612 3,612 4902 4,854 3,621 3,624

C Gap (%) 26.85 7.85 3223  29.03 9.77 9.66

(9 instances)  Time (s) 3,600 3,601 3,605 3,604 3,605 3,604
# optimals 0 0 0 0 0 0

# no feasible solution 0 0 0 0 0 0

LB 8,253 8,236 8,539 8539 8,539 8,539

UB 8,551 8,551 8539 8539 8,539 8,539

R Gap (%) 3.65 3.80  0.00 0.00 0.00 0.00

(12 instances)  Time (s) 2,217 1,878 68 204 251 276
# optimals 5 6 12 12 12 12

# no feasible solution 0 0 0 0 0 0

LB 5,363 5,509 5280 5,060 5,592 5,628

UB 8,928 8490 N/A 10,060 8,360 8,205

RC Gap (%) 39.05 3494 N/A 4853 32.85 31.75

(8 instances)  Time (s) 3,600 3,601 3,604 3,605 3,597 3,573
# optimals 0 0 0 0 1 1

# no feasible solution 0 0 1 0 0 0

LB 5921 5961 5,995 5941 6,091 6,102

UB 7,433 7,000 N/A 7815 6,964 6,921

All Gap (%) 20.62 13.65 N/A 2240 12.09 11.76

(29 instances)  Time (s) 3,028 2,888 2,141 2,198 2,215 2,218
# optimals 5 6 12 12 13 13

# no feasible solution 0 0 1 0 0 0

Table 2: Results of the BBCs.

1.14% lower, leading to a 1.89% gap reduction. Moreover, the average runtime is 23.20% shorter for
2P-BBC2H, which finds an optimal solution for seven extra instances (a 116.67% increase compared
to CF4H).

All these results show that both the proposed VIs and the BBCs significantly improve the perfor-
mance of the MIP solver, since CF1 (without VIs) presents a very poor performance. The proposed
VlIs, lower bounds, and heuristic lead to a much better performance while maintaining the formulation
compact (i.e., with a polynomial number of variables and constraints). The Benders decomposition
(BBCs) leads to a very good performance, despite generating a formulation with an exponential num-
ber of constraints. 2P-BBC2H clearly has the best performance among all developed methods.

To further understand the behavior of the BBC algorithms, Table 3 presents details of the cut
separation procedures of the different BBC approaches. In these tables, “# optimality cuts (54)” and
“4# feasibility cuts (55)” respectively indicate the average number of optimality and feasibility cuts
included in these instances. Likewise, “# VIs (58)”, “# VIs (59)”, and # VIs (60)” correspond to
the average number of exponential VIs that were included by the BBCs. Finally, “Separation time
(s)” indicates the average time spent in separation procedures and cut inclusion (the time spent in
the solver callback).

This table shows a massive reduction in the number of optimality (54) and feasibility (55) cuts
needed when including the exponential VIs (58), (59), and (60). On average, the total number of
cuts (optimality and feasibility together), from BBC1 to BBC2, is reduced by 93.77%. The greater
difference is for instances of class RC, with the number of cuts going from 11,707 in BBC1 to 696
in BBC2. Most of these cuts are optimality cuts. The drawback of the inclusion of these VIs is an
increase in the separation time, which is of 38.22%. However, as documented in Table 2, this difference

clearly pays off since BBC2 outperforms BBCI.
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Class Metric BBC1 BBC2 BBC2H 2P-BBC2H

# optimality cuts (54) 4,276 589 775 780

# feasibility cuts (55) 17,551 770 689 545

C # Vs (58) - 2,831 1,941 1,629

(0 instances) 7 VIs (39) ~ 205 41 39
# VIs (60) - 2,001 1,507 1,312

Separation time (s) 2,430 2,609 2,907 2,812

# optimality cuts (54) 69 18 6 4

# feasibility cuts (55) 141 4 3 0

R # VIs (58) - 34 17 17

(12 instances) # Vs (59) B 10 3 3
# VIs (60) - 31 20 18

Separation time (s) 12 183 95 126

# optimality cuts (54) 2,706 564 371 196

# feasibility cuts (55) 12,905 397 251 113

RO # Vs (58) ~ 2,336 1,310 1,229

(8 instances) 7 Vs (59) ~ 798 302 267
# VIs (60) - 2,031 1,087 1,156

Separation time (s) 1,896 3,213 3,117 2,921

# optimality cuts (54) 2,102 346 345 298

# feasibility cuts (55) 9,065 350 284 200

Al # VIs (58) ~ 1,537 971 851

(20 instances)  # VIS (59) ~ 9288 97 87
# VIs (60) - 1,194 776 734

Separation time (s) 1,282 1,772 1,801 1,731

Table 3: Algorithmic details of the BBCs.

The inclusion of the MIP heuristic solution as a MIP start reduces even further the average number
of cuts and VIs that are included, since the algorithm starts from a better incumbent solution than the
BBC without the initial solution. This way, there are fewer solutions of low quality that are evaluated
in the separation procedures, leading to the separation of only more interesting cuts. Indeed, there
is a reduction of 9.63% in the number of cuts and of 38.92% in the number of VIs. The greatest
reduction is for instances of class RC, in which the average number of included Vs goes from 5,165 in
BBC2 to 2,699 in BBC2H (52.26% reduction). Although these VIs are useful to improve the algorithm
performance, as clearly shown by the fact that BBC2 outperforms BBC1, their exponential nature
makes them excessively numerous. Therefore, ideally, only a small set of useful VIs should be included
in the model. Hence, this reduction in their number is overall beneficial. Combined with the quality
of the initial solution, this leads to a much better performance of BBC2H compared to BBC2, as
discussed above. Finally, the number of included cuts and VIs is further reduced by the two-phase
approach. The reduction in the number of cuts is of 20.83%, while in the number of VIs is of 9.33%.

Another interesting result from Table 3 is the inverse relation between the number of included cuts
and VIs and the performance of the algorithm. This has been discussed above for the performance
comparison of different algorithms when applied to the same instances. Nevertheless, this can also
be seen by comparing the performance of the algorithms across different instance classes. The BBCs
present the best performance for instances of class R, finding an optimal solution for all instances.
For this class, the average number of cuts is lower than five for all BBCs, with a low number of VIs
included. The separation times are also of less than 200s. This suggests that, for these instances, the
RMP finds good solutions and the proposed lower bounds (discussed in Section 4.1) work properly.
The good quality of the lower bounds is mainly due to the fact that this instance class has the parking

locations far apart and, hence, assigning customers to parking locations that are not the closest ones
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leads to high values of the proposed lower bounds, helping the RMP to find good solutions for the
VRPTWMD-C2R.

For instances of classes C and RC, the average gap is not negligible. Therefore, the number of
included cuts and VIs represents the amount of cuts that could be separated given the time limit, not
the number of cuts effectively needed to find an optimal solution. Considering that the algorithms’
performances are better for instances of class C, the separated cuts and VIs were more useful for
this instance class than for class RC. Together with the instances characteristics, this suggests that
instances of class C have many interesting and similar solutions due to the high number of potentially
interesting clusters. Moreover, these solutions are similar because the parking locations are clustered
together. However, they find it difficult to prove optimality due to the many different solutions that
cannot be differentiated by the RMP with the proposed lower bounds, since these bounds are weak
when distances are small.

Instances of class RC have characteristics that are intermediary between classes C and R, leading
to the combination of the high impact of the distance between different parking locations that is char-
acteristic of class R with the high number of potentially good clusters that degrades the performance
for instances of class C. This leads to instances that are very hard to solve since there are many poten-
tial clusters but they have very different costs since some of the parking locations are close together
and others are far apart. The time needed to serve each cluster also varies significantly for the same
reasons. If in class C the BBC does not close the gap because there are many potential solutions, but
the LB quality is overall good because these solutions are very similar, in class RC, the BBC also has
trouble closing the gap due to the number of solutions, but LB quality is overall poor because these

solutions can be very different.

6.4. Convergence

To better understand how the different algorithms compare regarding the solving procedure, we
now look into their convergence curves. Figures 2 to 4 illustrate how the LB and UB evolve throughout
the runtime for three different approaches: the solver upon solving CF1 (CF without VIs), the solver
with CF4H (the best performing CF), and the 2P-BBC2H (the best performing BBC). These graphs
are presented for instances C102, R104, and RC105, which represent common behaviors among the
instances of their classes.

Figure 2a illustrates what is shown in Table 1: the LR provided by CF1 is very weak, and the solver
is not able to increase it with the branch-and-cut procedure, being under 100 during over 3,600s for an
instance whose best known LB is 3,149. Likewise, the UB starts from a very high value and, although
it significantly decreases, it remains much higher than the one found by the other two approaches,
leaving a gap of 98.40% after 3,600s of runtime. For this instance (and most of those of class C),
CF4H and 2P-BBC2H have similar behaviors. As portrayed in Figures 2b and 2c, both start a little
later, since the heuristic takes a few seconds, but they start from an incumbent solution that is much
better than the one found by CF1 after one hour. Likewise, the LB increases fast, being over 3,000
for both approaches before 500s of runtime. Nevertheless, there is little improvement either in the LB
or in the UB afterwards, and we observe the tailing off effect on the results of both approaches.

For instance R104, however, the behaviors are different. As indicated in Figure 3a, CF1 starts
from a high UB and low LB that see no improvement past 500s of runtime. The presence of VIs and
the heuristic solution greatly improve the solver performance, as shown in Figure 3b. CF4H already
starts from much better LB and UB compared to CF1, and these values are improved until 1,000s.

Nonetheless, after this point the solver presents a tailing off effect and remains with a gap of over 19%

CIRRELT-2025-03 29



Last-mile Delivery with Multiple Deliverymen: Formulation and Exact Solution Methods for a Two-echelon Vehicle Routing Problem

_ 15,000 B
S —UB
£ 12,000

c

3 9,000

o

2 6,000

2

& 3,000

o

0 1000 2000 3000
Time (s)

(a) CF1.

15,000
12,000
9,000
6,000
3,000

n

o

Objective functi

0

1B 15,000 B
—uB £ 12,000 —uB
=
2 9,000
[
2 6,000
3
& 3,000 F
8 |
0
1000 2000 3000 0 1,000 2,000 3,000
Time (s) Time (s)
(b) CF4H. (c) 2P-BBC2H.

Figure 2: Convergence curves for instance C102.

until the end of the solving procedure. 2P-BBC2H greatly differs from CF4H. Figure 3c indicates that

this algorithm is able to converge to an optimal solution in under 1,000s. The ability to overcome the

tailing off effect presented by CF4H and actually converge to the optimal solution value is the reason

why the BBCs greatly outperform the solver with the CFs in instance class R.
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Figure 3: Convergence curves for instance R104.

Instance RC105 contrasts with the other two for the solver with CF1 is unable to find a feasible

solution. This is represented in Figure 4a by the absence of the UB curve. Moreover, the LB remains

at a very low value. The inclusion of the heuristic provides an initial solution for the CF4H and the
2P-BBC2H. Figure 4b shows that the inclusion of VIs significantly increase the LR in CF4H, with
the LB starting from over 5,000, in contrast with CF1 that, after 3,600s remains with an LB of under
1,000. This LB is improved throughout the solving procedure, reaching 7,719. The UB, nevertheless,

is not improved by the solver branch-and-cut, leading to a remaining gap of 20.32% by the end of the
runtime. 2P-BBC2H, however, is able to keep improving the LB and, after around 3,000s, the UB

starts to decrease, as shown in Figure 4c. This leads to the algorithm finding the optimal solution

value.

_ 10,000 B
k<] —UB
8 8,000 U
2 6,000

[

2 4,000

o

2 2,000

o

0 ——————————
0 1000 2000 3000
Time (s)

(a) CF1.

10,000
8,000
6,000
4,000
2,000

Objective function

0

_ 10000
o
- £ 8,000 e
ap— Q
=R s 600
[
2 4,000
3
— 1B £ 2,000 —1B
—UB S, —UB
1000 2000 3000 0 1000 2000 3000
Time (s) Time (s)
(b) CF4H. (c) 2P-BBC2H.

Figure 4: Convergence curves for instance RC105.

These experiments confirm the fact that CF1 has a very poor LR and leads to poor solver per-

formance. The MIP heuristic provides good initial solutions that significantly improve the solution

quality. Moreover, the proposed VIs allow the solver to drastically increase the LB compared to the

formulation without VIs. Despite these improvements, the solver with CF4H has a tendency to a
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tailing off effect, being unable to reduce the optimality gap. 2P-BBC2H represents an improvement
in this behavior, overcoming the tailing off effect in many instances. This leads to over the double of

instances with proved optimality, and better average LB, UB, and gap compared to CF4H.

6.5. The impact of optimizing clustering and deliveryman routes

As discussed in Section 2, the VRPTWMD was proposed by Pureza et al. (2012) with two simpli-
fying hypotheses: (i) the customer clusters can be predefined, and (i) the deliveryman routes can be
preprocessed. Senarclens de Grancy and Reimann (2015) and Senarclens de Grancy (2015) extended
the problem by relaxing hypothesis (i), while keeping hypothesis (i), resulting in the VRPTWMD
with customer clustering (VRPTWMD-C). Senna et al. (2024a) also extended the VRPTWMD by
relaxing hypothesis (i), while keeping hypothesis (i), creating the VRPTWMD with two-level routing
(VRPTWMD-2R). Note that the VRPTWMD-C2R is the first to relax both of these hypotheses.

In the previous sections, we have discussed the performance of the proposed methodologies to solve
the VRPTWMD-C2R. It is important, however, to assess the relevance of including the decisions of
clustering and deliveryman routes in the problem, i.e., the impact on the solution quality of the
VRPTWMD-C2R compared to the other VRPTWMD variants mentioned above. To this extent, we
have performed some experiments simulating the different variants.

To ensure the optimal solution would be found for every variant, we have generated smaller in-
stances, with five potential parking locations and 20 customers (hereinafter referred to as size 5-20),
following what was proposed by Senna et al. (2024a). In their paper, they randomly generate the cus-
tomers’ coordinates based on a normal distribution with average at the parking locations’ coordinates
and standard deviation o = 3. To further evaluate the impact of clustering, we have extended our
analysis by generating instances with varying customer dispersion. To this extent, we have followed
the procedure proposed by Senna et al. (2024a) and discussed in Section 6.1, but generated instances
with different values of standard deviation for the customers coordinates (o € {1,3,5}). This way,
there are instances with the customers closer to (o = 1) and farther from (o = 5) the parking locations.

As discussed in Section 6.1, the instances used in these experiments have predefined clusters that
were ignored in the VRPTWMD-C and the VRPTWMD-C2R. Nevertheless, these clusters were used
to simulate the VRPTWMD and the VRPTWMD-2R, by setting the variables z;;, to match the as-
signment provided by the instance. Furthermore, to simulate the preprocessing of deliveryman routes,
we have assumed that, instead of making direct trips between customers, in both the VRPTWMD
and the VRPTWMD-C, the deliveryman must always come back to the vehicle to take more goods as
discussed in Section 2. This can be done by redefining the distances (travel times) between customers
as the distances (travel times) passing through the parking location instead of the euclidean distances.

The results of these experiments are presented in Table 4 for a subset of instances to which it was
possible to prove optimality for all configurations (with either CF4H or 2P-BBC2H). In this table, on
top of presenting the results by instance class and standard deviation o of customer’s coordinates, the
aggregated total is also provided. “Cost” represents the overall solution cost, “# veh.” corresponds
to the number of vehicles used in the solution, “# del.” indicates the size of the deliveryman crew
used, “veh. dist.” stands for the distance traveled by the vehicles, and “del. dist.” shows the distance
traveled by the deliverymen. All presented values are computed as averages.

The results clearly indicate that, the higher the o, the higher the difference between the solutions
of the variants and, hence, the greater the importance of including the clustering and the deliveryman
routes in the optimization. As expected, the costs of the VRPTWMD are the highest, since it is
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Class o Metric VRPTWMD VRPTWMD-C VRPTWMD-2R VRPTWMD-C2R
Cost 2,057 2,049 2,039 2,027

4 veh. 1.33 1.33 1.33 1.33

1 # del. 1.33 1.33 1.33 1.33
Veh. dist. 54.00 52.67 54.00 52.67
Del. dist. 50.67 55.33 32.33 34.00
Cost 2,225 2,168 2,171 2,089

G # veh. 1.33 1.33 1.33 1.33
3 # del. 2.00 1.67 2.00 1.33
Veh. dist. 53.67 53.00 53.67 53.67
Del. dist. 154.67 138.00 100.67 86.00
Cost 2,351 2,297 2,209 2,173

# veh. 1.33 1.33 1.33 1.33

5  # del. 2.33 2.00 1.67 1.67
Veh. dist. 54.00 54.00 54.00 53.67
Del. dist. 244.00 224.00 169.00 136.67
Cost 3,732 3,732 3,672 3,672

# veh. 2.00 2.00 2.00 2.00

1 # del. 2.33 2.33 2.00 2.00
Veh. dist. 144.33 144.33 144.00 144.00
Del. dist. 55.33 55.33 32.33 32.33
Cost 3,952 3,952 3,803 3,803

R 4 veh. 2.00 2.00 2.00 2.00
3 # del. 4.00 4.00 3.00 3.00
Veh. dist. 141.67 141.67 141.67 141.67
Del. dist. 135.33 135.33 86.33 86.33
Cost 5,569 5,569 4,891 4,891

4 veh. 3.00 3.00 2.67 2.67

5  # del. 7.67 7.67 5.00 5.00
Veh. dist. 156.67 156.67 155.67 155.67
Del. dist. 236.00 236.00 168.00 168.00
Cost 2,114 2,112 2,028 2,027

# veh. 1.00 1.00 1.00 1.00

1 # del. 2.00 2.00 1.33 1.33
Veh. dist. 86.33 86.33 86.33 86.33
Del. dist. 50.67 48.67 31.67 30.67
Cost 4,109 4,102 3,972 3,964
RO # veh. 2.00 2.00 2.00 2.00
3 # del. 4.33 4.00 3.67 3.33
Veh. dist. 153.67 157.00 151.00 154.33
Del. dist. 138.67 132.00 95.00 87.67
Cost 6,151 4,934 5,312 4,176

4 veh. 3.00 2.33 2.67 2.00

5  # del. 6.67 6.00 4.67 4.33
Veh. dist. 225.33 178.00 201.33 159.00
Del. dist. 231.33 220.67 165.67 153.00
Cost 3,584 3,435 3,344 3,203

4 veh. 1.89 1.81 1.81 1.74
Total # del. 3.63 3.44 2.74 2.59
Veh. dist. 118.85 113.74 115.74 111.22
Del. dist. 144.07 138.37 97.89 90.52

Table 4: The impact of different VRPTWMD variants on the solution quality.
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the most constrained variant, and those of the VRPTWMD-C2R are the lowest, since it generalizes
all others. In general, the costs of VRPTWMD-2R are lower than those of the VRPTWMD-C.
Furthermore, the distance traveled by the deliverymen is always smaller for the variants that optimize
the deliveryman routes than for those that consider them to be computed a priori.

For instances of class C, an interesting result is that the vehicle distances are the same for the
VRPTWMD and the VRPTWMD-2R, suggesting that the vehicle routes do not change. Looking in
more detail, for instances with ¢ = 1, the difference in the solutions is mostly concentrated in the
distance traveled by the deliverymen, with little impact in the overall cost. For those with 0 = 3 and
o = 5, however, differences in the number of deliverymen also appear, although the size of the vehicle
fleet is always the same. As a consequence, the deliveryman routes distance is significantly impacted,
having a 43.99% reduction from the VRPTWMD to the VRPTWMD-C2R in the instances with o = 5,
leading to a 7.57% cost reduction. The cost improvement of the VRPTWMD-C2R compared to the
VRPTWMD-C is 5.40% and to the VRPTWMD-2R is 1.63% for those instances.

For instances of class R, the solutions of the VRPTWMD and the VRPTWMD-C are always the
same. Accordingly, the solutions of the VRPTWMD-2R and the VRPTWMD-C2R are also equivalent.
This suggests that, for these instances, the clustering can be easily preprocessed with little impact on
the solution. This happens because these instances have their parking locations very far apart and,
hence, clustering becomes trivial. The impact of considering the deliveryman routes, however, is not
negligible. In fact, this leads to a reduction on the size of the deliveryman crew that ranges from
14.16% for instances with o = 1 to 34.81% for those with ¢ = 5. Accordingly, the reduction on the
distance traveled by the deliverymen ranges from 28.81% for instances with o = 5 to 41.57% for those
with ¢ = 1. Combined with some reductions in the vehicle fleet size and the distance traveled by the
vehicles, this leads to a cost reduction that goes from 1.61% for instances with o = 1 to 12.17% for
those with o = 5.

For instances of class RC, the number of vehicles used is the same for all variants and instances
with ¢ = 1 and ¢ = 3. For instances with o = 5, however, the reduction from the VRPTWMD to the
VRPTWMD-C2R is of 33.33%. For instances with o = 1, the main difference among the solutions
of the different variants is on the distance traveled by the deliverymen, which is significantly reduced
by the variants that optimize these routes. This leads to a reduction on the average solution cost of
4.12% from the VRPTWMD to the VRPTWMD-C2R. The clustering, however, has little impact. The
behavior for ¢ = 3 is similar. Nonetheless, for instances with o = 5, the clustering has a huge impact.
In fact, the cost reduction from the VRPTWMD to the VRPTWMD-C is of 19.79% while from the
VRPTWMD-2R to the VRPTWMD-C2R it is of 21.39%. Combined with the cost reduction obtained
by the inclusion of the deliveryman routes in the optimization, this leads to an average solution cost
of the VRPTWMD-C2R that is 32.11% smaller than that of the VRPTWMD.

Considering the overall average of instances, it is clear that the optimization of the deliveryman
routes is of major relevance in the optimal size of the deliveryman crew and the distance traveled
by them. Moreover, clustering is important depending on the instances characteristics, as expected.
On the one hand, for instances that have parking locations far apart from each other and customers
close to them, the clustering becomes trivial and, hence, its optimization is not impactful. On the
other hand, for instances that have many interesting candidate parking locations for each customer,
clustering becomes relevant and its optimization may lead to major cost reductions. On the overall
average, the VRPTWMD-C2R has a solution cost that is 10.63% lower than that of the VRPTWMD.
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6.6. Sensitivity analysis

To conclude the managerial insights, we evaluate the impact of two essential deliveryman charac-
teristics in the solution: speed and capacity. Figure 5 illustrates the impact of changing the speed
ratio of the vehicles and deliverymen for instance RC104 of size 5-20 (all presented solutions were
proved optimal by either the solver with CF4H or the 2P-BBC2H). This is the ratio between the
vehicles speed and the deliverymen speed (the higher the ratio, the slower the deliverymen). Figure
5a shows the impact of the speed on the total solution cost. It shows that there is little cost variation
if the deliverymen are faster than the vehicles or twice as slow. However, when the speed ratio starts
to increase, the total cost is greatly affected, being two times higher for deliverymen that travel at
one third of the vehicles speed than for those that travel at half the vehicle speed. When the speed
ratio is five, the total cost is three times higher than when it is two.

This cost difference is caused by the impact on the number and distance traveled by vehicles and
deliverymen. Figure 5b shows how the number of vehicles and deliverymen change in the optimal
solution for this instance depending on the speed ratio. If the deliverymen travel at the same speed
of the vehicles, or higher, the optimal solution has only one vehicle and one deliveryman. As the
speed ratio increases, these numbers also rise, with the number of deliverymen reaching four and the
number of vehicles reaching three. The behavior for the distance traveled by vehicles and deliverymen
is different, as portrayed in Figure 5c. It clearly shows that, as the speed ratio increases, there is a
tendency to increase the distance traveled by the vehicles. Nevertheless, the distance traveled by the
deliverymen increases when the speed ratio increases but the number of vehicles remains the same.
As the number of vehicles increase, the distance traveled by the deliverymen is actually reduced. This
behavior is coherent with real applications, since deliverymen usually cannot travel much by foot,
being impossible to increase much the distance traveled by them. As their speed reduces, it is needed
either to increase their number or to have more vehicles to serve the same customers.

These results shed light onto the efficiency of alternative delivery schemes. As the speed of the
deliveryman increases, the costs are reduced. This could be implemented in practice by changing

walking carriers by bicycles, motorcycles, or drones, for example.
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Figure 5: The impact of the deliveryman speed on the solution of instance RC104 of size 5-20.

Another analysis is made regarding the deliverymen capacity. Figure 6 illustrates this for instance
C106 of size 5-20 (all presented solutions were proved optimal by either the solver with CF4H or the
2P-BBC2H). As expected, the higher the deliveryman capacity, the lower the total costs, as shown in
Figure 6a. In Figure 6b, the impact of this capacity on the number of vehicles and deliverymen in the
optimal solution is portrayed. Unlike the speed, the deliveryman capacity does not affect the number
of vehicles needed. Regarding the deliverymen, on the one hand, their number can be reduced by half
by increasing their capacity, since they can perform longer and more efficient routes. On the other

hand, as shown in Figure 6¢, the total distance traveled by them is not significantly affected. Even
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though increasing their capacity allows for reducing the number of deliverymen needed, they end up
traveling farther, creating little impact on the total distance. In practice, the deliveryman capacity
can be increased by having them using small carts that would allow them to carry more packages. It

is clear from Figure 6 that this scheme creates an opportunity for cost reduction.
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Figure 6: The impact of the deliveryman capacity on the solution of instance C106 of size 5-20.

7. Conclusion

In this paper, we have introduced a variant of the vehicle routing problem with time windows
and multiple deliverymen (VRPTWMD). This problem emulates a last-mile delivery scheme that has
vehicles traveling with more than one deliveryman to increase the number of customers that can be
served with a single stop of the vehicle while reducing the overall time that the vehicles stay parked
throughout the route. Since deliveryman costs and greenhouse gas emissions are usually smaller than
those of the vehicles, this allows for a cheaper and greener delivery system.

As originally proposed, the VRPTWMD preprocesses the customers to be served by each stop
of the vehicles (clustering) and the deliveryman routes inside the clusters. In previous studies, the
problem had been extended to encompass either the clustering or the deliveryman routes in the
optimization, but never both. With this paper, we have bridged this gap by introducing the vehicle
routing problem with time windows, multiple deliverymen, customer clustering, and two-level routing
(VRPTWMD-C2R), which is a two-echelon vehicle routing problem with applications in last-mile
delivery.

We have formally defined the VRPTWMD-C2R by means of a mathematical formulation. Theo-
retical properties and lower bounds have been discussed and used to propose valid inequalities. The
problem has also been decomposed in a Benders fashion to develop a branch-and-Benders-cut algo-
rithm to solve it. Computational experiments show the suitability of the proposed methodology to
solve the problem.

Furthermore, managerial insights were provided to shed light onto the importance of optimizing
the customer clustering and the deliveryman routes simultaneously. Our results show that the opti-
mization of deliveryman routes is always beneficial. The clustering, however, depends on the instance
characteristics. In fact, if customers are closely distributed around parking locations that are far
apart from each other, clustering becomes trivial and its optimization is not relevant. Nevertheless,
in situations that have many parking locations close to each other with customers distributed around
them without an obvious clustering pattern, optimizing clustering is of major relevance.

Finally, potential directions for future work include exploring variants that allow the deliverymen
to return to the vehicles at different parking locations or switch vehicles during the route. Other

interesting extensions would be the study of the problem under uncertainties (e.g., in the demand or
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travel time) by means of robust or stochastic optimization. New methods based on metaheuristics

could also provide better solutions for large-scale instances.
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