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Abstract. Satellites are widely used for different purposes, such as monitoring 
deforestation, rising sea levels, and ecological changes. As a scarce resource, 
scheduling the activities performed by these spacecrafts is of paramount 
importance. This paper addresses the integrated agile Earth observation satellite 
scheduling problem (IAEOSSP) that employs a constellation of agile satellites to 
observe the Earth. The objective of the IAEOSSP is to maximize the profits 
associated with observed targets and the amount of data downloaded to ground 
stations. Critical aspects of the problem are considered, such as the onboard 
storage capacity, time windows, setup times, and energy dynamics. We propose 
a mixed-integer programming (MIP) formulation for the problem, as well as an 
improved MIP model that is computationally more tractable at the expense of 
possibly reducing the feasible search space. Moreover, we implement a MIP-
based heuristic (MBH) to solve the proposed model with an efficient heuristic 
strategy for decreasing the size of the graph. Computational experiments 
evaluate the performance of the MBH not only on the IAEOSSP but also on a 
particular case involving conventional satellites denoted as constellation mission 
scheduling problem (CMSP). The results show that the MBH compares favorably 
against the improved MIP model for the IAEOSSP and against two existing 
algorithms for the CMSP.  
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1. Introduction

Earth observation satellites (EOSs) are used to monitor and better understand land

environments, water, and the atmosphere. They are equipped with different sensors, de-

pending on the purpose of the observation. The data acquired by the satellites are processed

to produce information that can serve various applications, including surveillance, weather

forecasting, and agriculture. EOSs are strategic for both the public and private sectors. The

Government of Canada, for example, has recently allocated over CA$1 billion to support

Earth observation (EO) using the RADARSAT+ initiative (CSA, 2023), and the European

Union estimates a global revenue rise of about e2.6 billion from 2023 to 2033 on the EO

market (EUASP, 2024).

The satellite observation scheduling and the communication scheduling problems are

two NP-hard problems (Bensanna et al., 1996, Barbulescu et al., 2004) involving low

Earth orbit (LEO) satellites, largely investigated in the literature. The integrated version

of the satellite scheduling problem consists of both observation and communication (more

specifically, download) activities simultaneously. The type of satellites further defines the

problem: agile and non-agile (or conventional). Agile EOSs (AEOSs) have extra pitch and

yaw mobility, as opposed to conventional EOSs (CEOSs), which can only maneuver on the

roll axis (Lemâıtre et al., 2002). While the integrated AEOS scheduling problem (IAEOSSP)

requires the selection and timetabling of observation and download tasks, the version with

conventional satellites is a particular case where only the selection of tasks is considered.

The IAEOSSP we address considers a fleet (or constellation) of homogeneous agile

satellites with maneuverability on the pitch and roll axes, a set of targets, and a set of

homogeneous ground stations. Figure 1 illustrates the observation ranges of both angles.
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Figure 1: Maximum pitch and roll angles of a satellite.

Civil or military customers send target requests daily to the mission center, which as-

signs them priorities or rewards according to their importance. A request comprises the

target coordinates and their length (or observation time), which can be completely imaged

at a given time. Observation time windows (OTWs) and download time windows (DTWs)

are then computed in a preprocessing step to determine when targets can be collected
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and downloads to ground stations can be scheduled. This preprocessing also computes the

rolling angle for the satellite according to its orbit and the target/ground station coordi-

nates. The satellite must change its pitch and roll angles from one activity to the next,

requiring setup times. A ground station also needs setup time to adjust its antenna between

consecutive download operations.

After the image of a target is obtained, it is saved to the satellite onboard storage to be

eventually downloaded to a ground station and sent to the mission center. Such observation

and download operations consume energy, harvested by the satellites via solar panels in

the sun zones. The objective of the problem is to select and schedule the observation tasks

that maximize the rewards while downloading as much data as possible while satisfying

time windows, storage, and energy constraints.

Figure 2 depicts a partial solution to the IAEOSSP. Let the energy harvested by the

solar panels be sufficient to perform all selected tasks and let the maximum storage capacity

of the satellite be 15 units of data. The satellite starts observing target 1 at time t1.

After 7.5 units of time, the target is acquired, and the satellite starts changing its pose

to capture target 2 at time t2. By the end of such operation, the storage has 15 units of

data, downloaded to ground station g at time t3, after a setup time. Target 3 cannot be

scheduled because the satellite has no storage capacity left. The partial solution finishes

after the satellite captures target 4, which starts at t4, and the satellite finishes the partial

solution with 7.5 units of data stored.
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Figure 2: Example of a partial solution regarding time windows, setup times, changes in pose, and data
storage.

The contributions of this paper are manifold and listed as follows.

• We propose a novel satellite scheduling problem with relevant real-world features:

simultaneous scheduling of observation and download tasks (which are highly in-

terconnected in practice), agile satellites, energy dynamics, and transition times for

satellites and ground stations. The integrated scheduling makes the IAEOSSP a chal-
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lenging problem. Moreover, agile satellites introduce further complexity by increasing

image acquisition and data download opportunities.

• We formulate the IAEOSSP as a mixed-integer linear programming problem (MILP)

on a directed, weighted, and connected graph.

• We provide an improved formulation in which variables and constraints associated

with the setup times of the satellites are removed. Instead, we insert new constraints

that rely on the triangle inequality to model transition times. Although such a

scheme possibly discards feasible solutions for the sake of computational tractability,

our computational experiments revealed that its implementation did not significantly

affect the solution quality while keeping the runtimes considerably lower.

• We devise an efficient strategy that replaces arcs between distant nodes in the graph

for new arcs that involve dummy nodes. The new arcs and dummy nodes can be

inserted in a particular way that preserves the original solution space of the instance.

The efficient strategy can reduce the number of arcs from O(n2) down to O(n), where
n is the number of nodes in the graph.

• We develop a MIP-based heuristic (MBH) to solve the IAEOSSP. The MBH procedure

allows for a controlled exploration of the solution space, achieved using neighborhood

structures that fix and release the bounds of variables associated with the arcs in the

graph. The heuristic obtained competitive solutions compared with the MIP solver

applied to the IAEOSSP and existing algorithms for a related problem.

The remainder of this paper is organized as follows. Section 2 reviews the related liter-

ature. Section 3 contains the mathematical formulation of the problem. Section 4 details

improvements achieved in the model by both the efficient strategy and an improved formu-

lation. Section 5 presents the proposed algorithm and neighborhood structures. Section 6

describes the results of computational experiments on a new set of benchmark instances

and from a similar problem from the literature. Finally, Section 7 concludes and provides

future research directions.

2. Literature review

Many studies involving satellite scheduling have been conducted over the past few

decades. They mostly differ in objective (e.g., to schedule observation tasks, communi-

cation activities, or both simultaneously), number of satellites and ground stations, and
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constraints adopted. Most articles have studied the so-called Earth observation satellite

scheduling problem (EOSSP), a simplified version of the IAEOSSP that considers only ob-

servation activities with conventional satellites. This section reviews the problems closely

related to ours, namely involving agile satellites.

2.1. Earth observation satellite scheduling problem with agile satellites

Agile satellites have mobility on up to three axes: pitch, roll, and yaw. Lemâıtre et al.

(2002) is one of the seminal works to have adopted AEOSs in the scheduling of observations.

They studied a general problem addressing, for example, spot targets (that can be imaged in

a single shot), large polygonal areas (which cannot be photographed in a single shot), setup

times, and meteorological uncertainties. They also investigated methods for a simplified

version of the problem, including constraint programming and local search algorithms.

A related problem is further studied by Bianchessi et al. (2007), namely the multiple

satellite and multiple orbit problem. The authors described a TS heuristic for solving

the problem and a column generation-based procedure to determine upper bounds on the

profit. They evaluated the performance of the heuristic approach on data sets provided by

the Centre National d’Études Spatiales (CNES) in France.

The AEOSSP with time-dependent setup time was addressed by Liu et al. (2017).

The authors mathematically formulated the problem and solved a simplified version of the

model with CPLEX and constraint satisfaction programming, whereas the full version was

solved by employing an adaptive large neighborhood search (ALNS) metaheuristic. Peng

et al. (2019, 2020) considered, in addition to time-dependent setup time, time-dependent

profit. Such class of problems associate the profit with the quality of the photographs,

which mostly depends on the camera’s angle. The authors applied dynamic programming-

based methods to solve the problems in both articles. For a comprehensive review of AEOS

scheduling problems (AEOSSPs), the reader is referred to Wang et al. (2020).

2.2. Integrated satellite scheduling problem

Few works in the literature have addressed the integrated scheduling of observation

and download tasks. Bianchessi and Righini (2008) explored a variant involving conven-

tional satellites, large polygon areas, and different transmission channels, among others.

The authors devised a constructive procedure with look-ahead and back-tracking features,

designed to be executed daily with a planning horizon of a couple of days.

Sarkheyli et al. (2013) considered an integrated multi-satellite EOSSP with constraints

such as power capacity and cloud coverage. They modeled the problem using graph coloring

theory and employed a TS procedure to solve it. To validate their approach, the authors
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conducted experiments with different algorithms, including a GA and a hill-climbing heuris-

tic. Waiming et al. (2019) tackled a problem involving spot targets, relay satellites (for

data transmission to ground stations), and ground stations equipped with multiple antenna

resources. The problem was formulated as an MILP, and solved using a two-phase genetic

annealing algorithm.

Hu et al. (2019) studied the EOS constellation imaging and downloading integrated

scheduling problem (EOSCIDISP). They first presented a period-splitting mechanism to

divide the planning horizon and reduce the number of variables and constraints. Then, they

formulated the EOSCIDISP as an MILP, proposed a branch-and-price algorithm for solving

it, and performed experiments on real-world and synthetic instances. Similarly, Zhang and

Xing (2022) also proposed an MILP to an EOSSP variant, solved using an improved GA.

They used two test cases to demonstrate the algorithm’s performance.

The constellation mission scheduling problem (CMSP), proposed by Cho et al. (2018),

adopts a fleet of conventional satellites. The CMSP considers energy constraints and aims

to maximize the sum of profits associated with observed targets and the total amount

of data downloaded. To solve it, the authors implemented two models: the first tries to

find candidate time intervals for download operations, which are then used as constraints

in the second model. Their solution approach was compared against a first-in-first-out

(FIFO) heuristic on scenarios whose main parameters were derived from Terrasar-X and

KOMPSAT-3A satellites. The data of this paper is one of the few to be made available in

the literature, and we use this problem as a benchmark for our methods.

Regarding IAEOSSP-like variants, Wang et al. (2011) addressed a problem with large

polygon areas in which the rewards associated with observations are computed with a piece-

wise linear function. Transition times between consecutive observation or download activ-

ities consider the differences in pitch and roll angles. Moreover, energy-related constraints

are checked at the end of each orbit and accommodate observation tasks and changes in roll

angles. Although the problem was initially formulated as a nonlinear model, the authors

conducted preliminary experiments using ILOG CPLEX and ILOG CP on a simplified lin-

ear version. Finally, the original problem was solved using a deterministic priority-based

conflict-avoided heuristic.

Chang et al. (2021) adopted satellites with mobility on yaw, roll, and pitch angles.

Among the formulations they introduced, only the coordinated, integrated scheduling

framework considers the scheduling of both observation and download tasks simultane-

ously. Their research incorporated energy consumption into a bi-objective function, but

setup times were ignored for satellite download operations. To solve the problem, they
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employed a bi-objective memetic algorithm, combining ALNS and GA, with additional

destroy and repair operators to enhance performance.

It is evident that the literature lacks studies involving the integrated simultaneous

scheduling of Earth observation tasks and download activities with agile satellites. Indeed,

even when scheduling is investigated, the proposed models seem impractical. As a result,

authors often neglect to properly incorporate important features of the problem, such as

energy dynamics and setup times. Our work fills these gaps by formulating the challenging

IAEOSSP as an MILP model, considering critical aspects of the problem. We also develop

a MIP-based heuristic (MBH) to obtain high-quality solutions in a reasonable time.

3. Mathematical formulation

In this section, we provide a formal definition of the IAEOSSP. We first present the

assumptions made to describe the problem. Section 3.1 introduces the mathematical no-

tation utilized throughout this work. We propose a mixed-integer nonlinear programming

model to address the IAEOSSP in Section 3.2, followed by its linearization in Section 3.3.

We consider the following assumptions: (i) tasks cannot be preempted, that is, stopped

or paused, once initiated; (ii) targets can be collected with a single observation; (iii) ground

stations can serve at most one satellite at a time and, similarly, satellites can perform at

most one operation (observation or download) at a time; (iv) as in Wang et al. (2011),

satellite setup times are a function of the changes in pitch and roll angles, and there are

no overlaps between observation and download time windows; (v) satellites are equipped

with a single optical instrument; (vi) the energy harvested by the solar panels in the sun

zones during opportunity time windows is disregarded.

3.1. Notation

Let S = {i1, . . . , im} be the set of homogeneous satellites, O = {j1, . . . , jo} the set of

observation spots, and G = {g1, . . . , gk} the set of homogeneous ground stations. We use

the term target to refer to an observation spot or a ground station. Therefore, T = G ∪O

denotes the set of targets and |T | = c. Each target τ ∈ T is associated with a non-negative

profit ρτ and a required duration δτ for capturing or downloading the data. The planning

horizon is evenly divided into h days, for which [0, H] represents its start and end times.

As a satellite continuously orbits the Earth, it can interact with a target multiple

times throughout the day. Each potential interaction represents an opportunity time

window where the target becomes visible to the satellite. We refer to an observation

time window (OTW) for an observation spot and a download time window (DTW) for
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a ground station. Hence, for each satellite i ∈ S and each target τ ∈ T , we define

Γτ
i = {(a1iτ , b1iτ ), . . . , (a

riτ
iτ , briτiτ )} as the set of opportunity time windows, where target τ ∈ T

is visible for satellite i to interact with (observe if τ ∈ O or download if τ ∈ G) and

0 ≤ aγiτ < bγiτ ≤ H for γ = 1, . . . , riτ . Moreover, consider Γi =
⋃

τ∈T Γτ
i as the set of all

time windows in which satellite i ∈ S can observe or download, and Γ =
⋃

i∈S Γi as the set

of all time windows, where |Γ| = n. In this work, we refer to each time window in Γ as a

task since they are opportunity time windows to execute an observation or download.

In Section 3.2, we will model the IAEOSSP considering each task in Γ as a node in a

directed, weighted, and connected graph. These nodes are denoted as task nodes, and we

connect two task nodes of this graph by an arc if a satellite can perform one task after

the other. Consider a graph G = (V ,A), where V is the set of nodes and A is the set of

arcs. V also contains source and sink nodes, namely 0 and n + 1, respectively. Therefore,

V = {0, p1, . . . , pn, n + 1}, with |V| = |Γ| + 2. Moreover, let V ′ = V \ {0, n + 1} be the

subset composed by only task nodes. Each node p ∈ V is associated with the duration

(δp) and the profit (ρp) of the corresponding target τ ∈ T , and with an opportunity time

window (aip, bip) for satellite i ∈ S. Let δ0 = δn+1 = 0, ρ0 = ρn+1 = 0, (ai0, bi0) = (0, 0),

(ain+1, bin+1) = (H,H), and φi
0 = φi

n+1 = 0,∀i ∈ S.

Let O′ and D′ be the subsets of nodes of V that are associated with observation and

download tasks of Γ, respectively. Consider O′i ⊆ O′ and D′i ⊆ D′ as sets of nodes whose
associated tasks of Γ can be performed by satellite i ∈ S. In addition, let sets O,Oi,

D,Di be defined analogously to sets O′, O′i, D′, D′i, respectively, but with additional source

and sink nodes {0, n + 1}. We denote V ′i = D′i ∪ O′i as the set of all tasks that can be

performed by satellite i ∈ S, and Vi = V ′i ∪ {0, n+ 1} = Di ∪ Oi. We also define D′gi ⊆ Di

as download task nodes involving satellite i ∈ S and ground station g ∈ G. Dg
i is denoted

as D′gi ∪ {0, n+ 1}.
As depicted in Figure 1, a satellite may change its positioning to capture data from

an observation target or transmit it to a ground station by adjusting both the roll and

the pitch angles. The former, denoted by φi
p, is a parameter and represents the roll angle

required by satellite i ∈ S to execute task p ∈ Vi. The latter, denoted by ϑi
p, is variable

since it depends on when task p is scheduled within an available time window. Each of

these angles is limited by a maximum value for the observation and the download tasks,

defined as ϕobs and ϕdwn for the roll angle, and θobs and θdwn for the pitch angle.

Let E0 and L0 represent each satellite’s initial energy charge and onboard storage,

and Emax and Lmax denote the maximum energy and data storage capacity, respectively.

Satellites can obtain data from observation spots at a L̄obs rate and transfer data to ground
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stations at a L̄dwn rate. Observations tasks consume Ēobs, and download ones consume

Ēdwn units of energy per unit of time. Moreover, ϵipq denotes the energy satellite i ∈ S

can obtain through its solar panels between tasks p, q ∈ Vi. Table A.1 in Appendix A

summarizes the mathematical notation adopted.

3.2. Mixed-integer nonlinear model

We model the IAEOSSP by the mixed-integer nonlinear program (1)–(30). In this

formulation, we use the following binary decision variables:

• xi
pq: binary decision variable indicating whether tasks p, q ∈ Vi are performed consec-

utively by satellite i ∈ S. xi
pq only exists if task q can be performed after p;

• yipq: binary decision variable indicating whether tasks p and q (p, q ∈ Oi or p, q ∈ Di)

are selected for satellite i ∈ S. Likewise, yipq is only created if task q can be executed

after task q. In addition, we only use yipq if setup time constraints are required for

tasks p and q;

• zgii
′

pq : binary decision variable denoting if download tasks p ∈ Dg
i and q ∈ Dg

i′ are

scheduled by different satellites i, i′ ∈ S for the same ground station g ∈ G. Variable

zgii
′

pq only exists if setup time constraints are required between these tasks.

Decision variables and constraints involving tasks p, q ∈ V presume p ̸= q. Similarly, deci-

sion variables and constraints associated with satellites i, i′ ∈ S consider i ̸= i′. Model (1)–

(30) uses the following continuous variables:

• dip: non-negative variable for the duration of task p ∈ Vi by satellite i ∈ S. If p ∈ O′i,
dip = δp; if p ∈ D′i, δp ≤ dip ≤ Lmax/L̄dwn; otherwise, if p ∈ {0, n+ 1}, dip = 0;

• eip: non-negative variable indicating, at the end of task p ∈ Vi, the energy level of

satellite i ∈ S;

• lip: non-negative variable indicating, at the end of task p ∈ Vi, the storage level of

satellite i ∈ S;

• tip: non-negative variable for the start time of observation or download task p ∈ V ′i by
satellite i ∈ S within time window (aip, bip), i.e., aip ≤ tip ≤ bip− δp. If p ∈ {0, n+1},
aip ≤ tip ≤ bip;

• ϑi
p: continuous variable representing the pitch angle of a satellite i ∈ S to perform

task p ∈ Vi;
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• ∆eip: non-negative variable representing the amount of energy satellite i ∈ S has

consumed to execute task p ∈ Vi;

• ∆lip: continuous variable which tracks the change in the onboard storage of satellite

i ∈ S for executing task p ∈ Vi;

• ∆sipq: non-negative variable for the setup time required by satellite i ∈ S between

two tasks p, q ∈ Vi.

The IAEOSSP nonlinear formulation is presented next.

max
∑
i∈S

∑
p∈Oi\{n+1}

∑
q∈Vi\{0}

(ρp + δp)x
i
pq −

1

L̄dwn

∑
i∈S

lin+1 (1)

subject to ∑
p∈Vi\{n+1}

xi
pq −

∑
r∈Vi\{0}

xi
qr = 0, i ∈ S, q ∈ V ′

i (2)

∑
q∈Vi\{0}

xi
0q = 1, i ∈ S (3)

∑
p∈Vi\{n+1}

xi
pn+1 = 1, i ∈ S (4)

∑
i∈S

∑
p∈Oτ

i

∑
q∈Vi\{0}

xi
pq ≤ 1, τ ∈ T (5)

yipq + yiqp = min

 ∑
r∈Vi\{0}

xi
pr,

∑
u∈Vi\{0}

xi
qu

, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′
i (6)

ϑi
p = θobs

{
2
tip − aip

bip − aip
− 1

}
, i ∈ S, p ∈ Oi (7)

ϑi
p = θdwn

{
2
tip − aip

bip − aip
− 1

}
, i ∈ S, p ∈ Di (8)

∆sipq = ω1|φi
p − φi

q|+ ω2|ϑi
p − ϑi

q|+ β1, i ∈ S, p, q ∈ Oi (9)

∆sipq = ω3|φi
p − φi

q|+ ω4|ϑi
p − ϑi

q|+ β2, i ∈ S, p, q ∈ Di (10)

yipq(t
i
p + dip +∆sipq − tiq) ≤ 0, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (11)

zgii
′

pq + zgi
′i

qp = min

 ∑
r∈Vi\{0}

xi
pr,

∑
u∈Vi′\{0}

xi′

qu

, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (12)

zgii
′

pq (tip + dip +∆σ − ti
′

q ) ≤ 0, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (13)

aip ≤ tip ≤ bip − δp, i ∈ S, p ∈ V ′
i (14)

tip + dip ≤ bip, i ∈ S, p ∈ D′
i (15)

δp ≤ dip ≤
Lmax

L̄dwn
, i ∈ S, p ∈ D′

i (16)

li0 = L0, i ∈ S (17)

δp ≤ lip ≤ Lmax, i ∈ S, p ∈ O′
i (18)
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0 ≤ lip ≤ Lmax, i ∈ S, p ∈ Di (19)

∆lip =

 L̄obsd
i
p, if p ∈ Oi,

−L̄dwnd
i
p, otherwise.

i ∈ S, p ∈ Vi \ {0} (20)

xi
pq(l

i
p +∆liq − liq) = 0, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (21)

ei0 = E0, i ∈ S (22)

0 ≤ eip ≤ Emax, i ∈ S, p ∈ Vi (23)

∆eip =

Ēobsd
i
p, if p ∈ Oi,

Ēdwnd
i
p, otherwise.

i ∈ S, p ∈ Vi \ {0} (24)

xi
pq(e

i
q −min{Ei

max, e
i
p + ϵipq −∆eiq}) = 0, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (25)

xi
pq(t

i
p + dip − tiq) ≤ 0, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (26)

∆lip, ϑ
i
p ∈ R, dip, eip, lip, tip,∆eip ∈ R≥0, ∀i ∈ S, ∀p ∈ Vi (27)

xi
pq ∈ {0, 1},∆sipq ∈ R≥0, ∀i ∈ S, ∀p, q ∈ Vi (28)

yipq ∈ {0, 1}, ∀i ∈ S, ∀p, q ∈ Vi (29)

zgii
′

pq ∈ {0, 1}, ∀g ∈ G,∀i, i′ ∈ S,∀p ∈ Dg
i ,∀q ∈ D

g
i′ . (30)

The objective function (1) maximizes the sum of profits associated with the observed

targets and the amount of data downloaded. Note that the second term of the objective

function disregards any remaining data storage at the sink node n+1. The flow conservation

constraints (2)–(4) ensure the amount of flow into a node equals the amount of flow out

of it for every node q ∈ V ′i, except for the source and sink nodes. Constraints (5) set

the maximum number of observations per target. In these constraints, Oτ
i is the set of

observation tasks related to target τ ∈ T that can be performed by satellite i ∈ S. The

pitch angle of satellite i ∈ S at the start of task p ∈ Oi or p ∈ Di is defined by constraints (7)

or (8), respectively. Setup times ∆sipq of satellite i ∈ S between observation tasks (p, q ∈ Oi)

and download tasks (p, q ∈ Di) are given by constraints (9) and (10), respectively. ∆sipq

are then employed on constraints (11) to ensure satellite i ∈ S adjusts its pose between

observation or download activities.

Constraints (12) model decision variables zgii
′

pq , used in constraints (13) to provide setup

time constraints between two download tasks involving the same ground station. Con-

straints (14) ensure that the start time of task p ∈ V ′i is within its time window. As we

consider dip ≥ δp, the upper bound on tip can be narrowed by δp for both observation and

download tasks. Constraints (15) and (16) set bounds on download durations. The initial

on-board memory storage at the start of the planning horizon is defined by constraints (17),

while constraints (18) and (19) enforce minimum and maximum storage limits for a satel-

lite at the end of observation and download tasks, respectively. Similarly, constraints (22)
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ensure the energy level at the beginning of the planning horizon, whereas constraints (23)

establish its minimum and maximum values for observation and download tasks. Onboard

memory storage and energy variations between two consecutive tasks are controlled by con-

straints (21) and (25), respectively. These constraints use ∆lip and ∆eip, which are modeled

by constraints (20) and (24), respectively. We link xi
pq, t

i
p, and tiq with constraints (26).

Finally, constraints (27)–(30) define the domains of the variables.

3.3. Linearizations

Let ϑi
pq = |ϑi

p − ϑi
q| = max{ϑi

p − ϑi
q, ϑ

i
q − ϑi

p}. Constraints (9) are linearized as follows:

∆sipq = ω1|φi
p − φi

q|+ ω2ϑ
i
pq + β1, i ∈ S, p, q ∈ Oi (31)

ϑi
pq ≥ ϑi

p − ϑi
q, i ∈ S, p, q ∈ Oi (32)

ϑi
pq ≥ ϑi

q − ϑi
p, i ∈ S, p, q ∈ Oi (33)

ϑi
pq ≤ ϑi

p − ϑi
q +M1

pq(1− y′ipq), i ∈ S, p, q ∈ Oi (34)

ϑi
pq ≤ ϑi

q − ϑi
p +M1

pqy
′i
pq, i ∈ S, p, q ∈ Oi (35)

y′ipq ∈ {0, 1}, ∀i ∈ S, ∀p, q ∈ Oi (36)

ϑi
pq ∈ R≥0, ∀i ∈ S,∀p, q ∈ Oi. (37)

Note that constraints (10) can be linearized similarly. Also, nonlinear constraints (6)
and (12) are linearized by constraints (38)–(42), and (43)–(47), respectively, as follows:

yipq + yiqp ≤ 1 i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′
i (38)

yipq + yiqp ≤
∑

r∈Vi\{0}

xi
pr +

∑
u∈Vi\{0}

xi
qu i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′

i (39)

yipq + yiqp ≥
∑

r∈Vi\{0}

xi
pr +

∑
u∈Vi\{0}

xi
qu − 1 i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′

i (40)

yipq + yiqp ≤
∑

r∈Vi\{0}

xi
pr i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′

i (41)

yipq + yiqp ≤
∑

u∈Vi\{0}

xi
qu i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ V ′

i (42)

zgii
′

pq + zgi
′i

qp ≤ 1, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (43)

zgii
′

pq + zgi
′i

qp ≤
∑

r∈Vi\{0}

xi
pr +

∑
u∈Vi′\{0}

xi′

qu, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (44)

zgii
′

pq + zgi
′i

qp ≥
∑

r∈Vi\{0}

xi
pr +

∑
u∈Vi′\{0}

xi′

qu − 1, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (45)

zgii
′

pq + zgi
′i

qp ≤
∑

r∈Vi\{0}

xi
pr, g ∈ G, i, i′ ∈ S, p ∈ D′g

i , q ∈ D′g
i′ (46)

zgii
′

pq + zgi
′i

qp ≤
∑

u∈Vi′\{0}

xi′

qu, g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ . (47)

11

The Integrated Agile Earth Observation Satellite Scheduling Problem

CIRRELT-2024-28



The remaining constraints can be linearized in the following way by employing
Miller–Tucker–Zemlin (MTZ) constraints (Miller et al., 1960).

tiq ≥ tip + dip +∆sipq −M2
pq(1− yipq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (48)

ti
′

q ≥ tip + dip +∆σ −M3
pq(1− zgii

′

pq ), g ∈ G, i, i′ ∈ S, p ∈ D′g
i , q ∈ D′g

i′ (49)

liq ≥ lip +∆liq −M4
pq(1− xi

pq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (50)

liq ≤ lip +∆liq +M5
pq(1− xi

pq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (51)

eiq ≥ min{Ei
max, e

i
p + ϵipq −∆eiq} −M6

pq(1− xi
pq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (52)

eiq ≤ min{Ei
max, e

i
p + ϵipq −∆eiq}+M7

pq(1− xi
pq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0} (53)

tiq ≥ tip + dip −M8
pq(1− xi

pq), i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0}. (54)

Nonlinear constraints (11), (13), (21), (25), and (26) are linearized by constraints (48),

(49), (50)–(51), (52)–(53), and (54), respectively, where Mm
pq , m ∈ {1, ..., 8}, p, q ∈ V , are

sufficiently large numbers.

4. Model improvements

This section describes two improvements to the model just presented. Section 4.1

introduces the efficient strategy, and Section 4.2 provides an improved formulation to (1)–

(30).

4.1. The efficient strategy

This section details the efficient strategy, which is based on dummy tasks. To this

end, we assume, without loss of generality, that the instances adopt a single satellite and

tasks with non-overlapping time windows. Furthermore, as a single satellite is considered,

variables xi
pq can be simply referred to as xpq.

4.1.1. Motivation and how the strategy works

Figure 3a depicts a straightforward implementation using the decision variables xi
pq of

the original model. It depicts an instance with four observation tasks, where the arcs

(dashed and solid) represent all possible decisions. The solid arcs highlight the feasible

solution sequence 0, 1, 2, 4, 5. We refer to the solution space of this instance as every

possible sequence of nodes starting at the source (0) and ending at the sink (5).

Figure 3b shows the same 4-task instance, now with additional dummy nodes. We

modified the graph by removing arcs between distant nodes and introducing new arcs that

involve these artificial nodes so that the original solution space of the instance is preserved.

We use fa:b to indicate that an artificial task is associated with (or covers) all nodes between
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a and b, including both a and b. Moreover, if a = b, fa:b becomes fa. If a dummy node

and a task are related, only one of them can be scheduled. In the figure, dummy f1:2 is

associated with tasks 1 and 2, and dummy f3 covers task 3. The solution space remains

unchanged because, for every node, one still has the option of either selecting it or not.

0 51 2 3 4

Dummy Task Created Selected

(a) Straightforward implementation.

0

f1:2 f3

51 2 3 4

Dummy Task Created Selected

(b) Implementation with dummy nodes.

Figure 3: The same solution space of a 4-task instance represented on different graphs.

In our efficient strategy, a dummy node and its associated tasks have arcs to the sub-

sequent artificial node and the nodes covered by it. For example, in Figure 3b, nodes f1:2,

1, and 2 are linked to node f3 and 3. Since there is no dummy task covering node 4, nodes

f3 and 3 need to have arcs to tasks 4 and 5 (sink), to maintain the original solution space

of the instance. Analogous to a task, the source node has arcs to nodes f1:2, 1, and 2. The

solution sequence 0, 1, 2, 4, 5 is represented by the solid arcs.

Associating a dummy node with a single task minimizes the number of variables in the

efficient implementation, as demonstrated in Appendix B. Figure 4 illustrates the strategy

for a single satellite instance with six observation tasks. The straightforward version is not

depicted, but it follows the same pattern as Figure 3a. Table 1 summarizes the number of

outgoing arcs of every node for a 6-task instance according to both implementations.

0

f2 f3 f4 f5

71 2 3 4 5 6

Dummy Task

Figure 4: Efficient strategy for an instance with six tasks.

Table 1: Number of outgoing arcs for both implementations for an instance with six tasks.

Implementation #Outgoing arcs Total
Straightforward 7 6 - 5 - 4 - 3 - 2 1 0 28

Efficient 3 2 2 2 2 2 2 2 2 2 1 0 22
Node 0 1 2 2 3 3 4 4 5 5 6 7
Type source task dummy task dummy task dummy task dummy task task sink

According to Table 1, the number Nbx(n) of xpq variables associated with the straight-
forward implementation of an instance with n = 6 tasks is: 7+6+5+ · · ·+2+1+0 = 28.
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In fact, Nbx(n) is generally computed as follows:

Nbx(n) = (n+ 1) + n+ (n− 1) + ...+ 2 + 1 =
n+1∑
i=1

i =
1

2
(n2 + 3n) + 1. (55)

In Figure 4, tasks 2, 3, 4, and 5 (4 out of 6) have four outgoing arcs (to dummy nodes
or other tasks). In addition, there are six more arcs: 5 at the beginning of the planning
horizon (3 and 2 leaving nodes 0 (source) and 1) and one at the end (between nodes 6 and
7 (sink)). Hence, there exists 4× (6− 2) + 6 = 22 arcs. Starting with the 4-task instance,
such a pattern repeats itself. As a result, the number of arcs Nbxeff (n) for the efficient
strategy can be computed as:

Nbxeff (n) = 4(n− 2) + 6 = 4n− 2. (56)

The straightforward implementation demands considerable computational effort due to

the O(n2) number of xpq variables as indicated by equation (55). With the efficient strategy,

the number of xpq variables is O(n). Our efficient strategy yields the minimum number of

xpq variables, as stated in Proposition 1.

Proposition 1. (Optimality of the efficient strategy). For any number n ≥ 4 of tasks, let

P (n) state that equation (56) amounts for the minimum number of arcs, e.g., xpq variables,

while preserving the solution space associated with the instance.

Proof. See Appendix B.

A dummy node in model (1)–(30) has dip = δp = ρp = 0. Moreover, we consider the end

of the time window of a dummy node to be equal to the largest time window end time of

the tasks covered by it.

4.1.2. Practical issue: setup time constraints

Setup time constraints are only added for tasks associated with the same dummy or

consecutive dummies. These constraints are not included when any of the tasks is dummy.

In Figure 5, for example, consecutively selecting tasks k− 1 and k+1 (which require setup

time constraints) can yield an infeasible solution. For this reason, tasks that need setup

time constraints must be covered by adjacent dummies.

4.1.3. Theoretical issue: overlapping tasks

Another problem arises when two or more tasks have overlapping time windows. Let

that be the case of tasks k−1 and k of Figure 5, which are covered by consecutive dummies.

This implies that k− 1 must always be scheduled before k. However, the efficient strategy
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fk-1 fk fk+1

k-1 k k+1

... ...

Dummy Task Created Selected

Figure 5: Transition time issues if tasks k − 1 and k + 1 are selected consecutively.

would eliminate feasible solutions if the overlap is large enough so that k can be scheduled

before k−1. To avoid this issue, all overlapping tasks should be covered by the same dummy

node. While this is a theoretical concern, in practice, it can be ignored to significantly speed

up the solver’s execution at the risk of possibly discarding some feasible solutions.

4.2. An improved formulation

Model (1)–(30) handles all relevant aspects of the problem, but demands considerable

computational effort. Besides an important reduction in the number of xpq variables, it

is also possible to reduce this model by removing the yipq variables and the associated

constraints (6), (11), and (26). In order to model setup times, a few other constraints must

be considered. The details addressed in this section concern the changes in the roll angles

and are also valid for the changes in the pitch angles.

Let φi
1g1

= |φi
1 − φi

g1
|, φi

g12
= |φi

g1
− φi

2|, and φi
12 = |φi

1 − φi
2|, depicted in Figure 6,

be the changes in roll angles between tasks 1 and g1, g1 and 2, and 1 and 2, respectively,

where 1 and 2 are observation tasks and g1 is a download task. The triangle inequality of

equation 57 holds and, as a consequence, the inequality of equation 58 also holds:

φi
1g1 + φi

g12 ≥ φi
12, (57)

ω1φ
i
1g1 + ω1φ

i
g12 ≥ ω1φ

i
12. (58)

1 g1 2 ......
φ1g1

φ12

φg12

Figure 6: Setup times involving observation and download tasks.

Feasible solutions can still be obtained if one replaces the right-hand side of inequal-

ity (58) with the expression on its left-hand side on the corresponding setup time con-

straints. To ensure this condition holds for subsequences involving both observation and

download tasks, the following additional constraints are required when consecutive tasks p

and q are of different types:
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∆sipq = max{ω1, ω3}|φi
p − φi

q|+max{ω2, ω4}|ϑi
p − ϑi

q|+
max{β1, β2}

2
, i ∈ S,

p ∈ Oi, q ∈ Di or

p ∈ Di, q ∈ Oi.
(59)

Note that the pitch angle is properly considered in constraints (59). Constraints (9)–

(10) still have to be applied when both p and q are either observation or download tasks.

Moreover, constraints (60) also have to be included:

xi
pq(t

i
p + dip +∆sipq − tiq) ≤ 0, i ∈ S, p ∈ Vi \ {n+ 1}, q ∈ Vi \ {0}. (60)

We call this new model the improved formulation, which consists of model (1)–(5),

(7)–(10), (12)–(25), (27)–(28), (30), and new constraints (59) and (60).

5. Proposed MIP-based heuristic

The main idea of the MIP-based heuristic (MBH) is to explore a reduced solution space

associated with an instance of the problem in a controlled fashion. This control is achieved

through neighborhood structures that set the lower and upper bounds of the variables

before the MIP solver is invoked. A neighborhood is defined on a given solution by fixing

most of the solution while allowing the MIP solver to reoptimize some parts of the solution

and possibly obtain a better neighbor solution. For example, a neighborhood could be

defined as a swap of a selected task with a non-selected task: the MIP model would then

switch the value of one task variable from 1.0 to zero while choosing the best non-selected

task from zero to 1.0. Our neighborhoods are more intricate, and we next describe the

seven neighborhoods proposed, which define the set N .

Algorithm 1 contains the pseudocode of the MBH procedure, which starts by allocating

time for building an initial solution (line 2). Section 6.3.2 discusses the criterion for such

division. Next, an initial solution is built (line 3). If the procedure to build an initial

solution is not able to find a feasible solution within time limit′(0), an empty solution is

set (an arc between the source and sink nodes with no intermediate tasks), which is also

a feasible solution. The main loop of the algorithm (lines 5–8) runs |N | times, once for

each neighborhood. The time left is proportionally distributed at each iteration among the

remaining neighborhoods (line 6). The selected neighborhood N k is applied (line 7), and

we store both the solution and the runtime of the operator. The order in which we apply

the neighborhoods is detailed in Section 6.3.3. We use the stored runtime to adjust the
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remaining time for subsequent iterations (line 8). At the end of the MBH procedure, the

best solution found is returned (line 9).

Algorithm 1 MIP-based heuristic.

1: procedure MBH(N , time limit)
2: time limit′ ← Divide time limit among the neighborhoods
3: s, runtime← build initial solution(time limit′(0))
4: rem time← time limit− runtime
5: for k = 1 to |N | do
6: time limit′ ← Divide rem time among the remaining neighborhoods
7: s, runtime←N k(s, time limit′k)
8: rem time← rem time− runtime

9: return s

The neighborhoods control the computational effort of the MIP solver by fixing and

releasing the bounds of the decision variables. More specifically, we change the bounds

of the xi
pq arc variables by fixing them to their value in the current solution (either to

zero by enforcing that the arc is not used or to one to enforce that the two tasks are

performed), while leaving some carefully selected xi
pq variables free ({0, 1}), which can be

used to optimize these variables and constraints of the model.

At each iteration of MBH, the bounds of all xi
pq arcs are initially fixed according to the

incumbent solution, and then released based on the design of the current neighborhood.

The seven neighborhood structures (N 1–N 7) are presented next.

5.1. Unscheduled targets neighborhood (N 1)

Each observation target is associated with a number of tasks (e.g., different observation

windows) within the planning horizon. In the unscheduled targets neighborhood, we select

the α% of unscheduled targets with the fewest tasks. The idea is that these targets have

few observation opportunities and might be more difficult to schedule. The tasks associated

with these selected targets compose set U . The neighborhood then releases the bounds of

arcs used in the incumbent solution and arcs between tasks in the incumbent solution and

download tasks, dummy tasks, or tasks in U .

We use parameter κ to implement multiple iterations of the unscheduled targets neigh-

borhood, described in Algorithm 2. Two situations can happen between consecutive iter-

ations. On the one hand, the solver might not improve the incumbent solution, in which

case the bounds remain unchanged at the next iteration. This allows the solver to have

extra time on harder cases. On the other hand, the solver might improve the incumbent

solution by, for example, collecting some unobserved targets, in which case the set of free

arcs change at the next iteration.
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Algorithm 2 Unscheduled targets neighborhood (N 1).

1: procedure α κ unsch targets(s, tl)
2: runtime← 0
3: for k = 1 toκ do
4: U ← {Tasks related with the α% of unscheduled observation targets with fewest tasks}
5: Release the bounds of every arc used in the solution or between a task in the solution and a download task, a

dummy task, or a task in U
6: s, opt time← optimize(s, tl)
7: runtime← runtime+ opt time

8: return s, runtime

Figure 7 depicts an example of the procedure for an instance with a single satellite,

α = 50%, and κ = 1. The solid arrows represent the incumbent solution, while the dashed

black arrows connect nodes in the incumbent solution with the observation tasks related

with 50% unscheduled targets. Download task g and dummy task f4 are connected to the

incumbent solution by the dashed gray and the dotted arrows, respectively. Both nodes 2

and 5 are observation opportunities for the same target with id 4. Since target 4 is excluded

from the α = 50%, the bounds of arcs involving tasks 2 and 5 remain fixed. Observation

targets 1 and 4 are not considered unscheduled targets because the corresponding tasks 1

and 4, respectively, are part of the incumbent solution.

0

f2 f3 f4 fg

61 2 3 4 g 5

Dummy Task Solution Sol–target Sol–dwn Sol–dum

Tasks : Id
1 : 3
2 : 4
3 : 2
4 : 1
5 : 4

50%

Figure 7: Unscheduled targets neighborhood (N 1) for a single-satellite instance with α = 50%, and κ = 1.

5.2. Intra-satellite neighborhood (N 2)

The intra-satellite neighborhood, described in Algorithm 3, releases the bounds of arcs

associated with one satellite per iteration. A full run of this operator takes m iterations,

one per satellite. At each iteration (lines 3–6), the bounds of 1
m

of the total number of arcs

are released (line 4), the solver is executed (line 5), and the runtime updated (line 6). The

algorithm terminates by returning the incumbent solution and the runtime (line 7).

5.3. Multi-satellite neighborhood (N 3)

The multi-satellite neighborhood relies on divisions of the planning horizon into λ inter-

vals. At each iteration, the bounds of the arcs with tasks within the current interval are

released, and the bounds of those with any task outside it are fixed. While the straight-

forward idea might be to use equal-length intervals, it can lead to unbalanced solver runs,
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Algorithm 3 Intra-satellite neighborhood (N 2).

1: procedure intra sat(s, tl)
2: runtime← 0
3: for i ∈ S do
4: Release bounds of every xi

pq such that the target associated with task p is not scheduled to another satellite

5: s, opt time← optimize(s, tl)
6: runtime← runtime+ opt time

7: return s, runtime

where some intervals have more tasks and are harder to solve, and others have fewer tasks

and are easier. To prevent this, intervals are set to have about the same number of tasks.

The neighborhood, illustrated in Algorithm 4, starts by dividing the tasks available to

each satellite into λ intervals (line 2). At each iteration of the main loop (lines 4–8), one

interval is selected. Next, the bounds of arcs with tasks within the selected interval are

released for each satellite (lines 5–6), representing 1
λ
of the arcs. Subsequently, the solver

is executed (line 7), and the runtime is updated (line 8). At the end, the solution and the

runtime are returned (line 9).

Algorithm 4 Multi-satellite neighborhood (N 3).

1: procedure λ multi sats(s, tl)
2: I ← Divide the tasks available to each satellite in λ intervals. For a given satellite, all intervals have the same number

of tasks
3: runtime← 0
4: for k = 1 toλ do
5: for i ∈ S do
6: Release bounds of xi

pq whose p and q are within interval I[i][k]

7: s, opt time← optimize(s, tl)
8: runtime← runtime+ opt time

9: return s, runtime

5.4. Double-satellite neighborhood (N 4)

The double-satellite neighborhood considers every pair of satellites, unlike a single satel-

lite as in the intra-satellite neighborhood. The procedure, presented in Algorithm 5, takes(
m
2

)
= m!

2!(m−2)! iterations (lines 3–7). At each iteration, the bounds of arcs associated with

two satellites ( 2
m

of the arcs) are released (line 5). Next, the solver is executed (line 6),

and the runtime is updated (line 7). The algorithm returns the incumbent solution and

the runtime (line 8).

5.5. Variations of the neighborhood structures

For large instances, even the neighborhoods we defined can still yield challenging MIPs

to be optimized. Intending to continuously obtain small improvements in every call to the
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Algorithm 5 Double-satellite neighborhood (N 4).

1: procedure doub sats(s, tl)
2: runtime← 0
3: for i ∈ S do
4: for i′ > i ∈ S do
5: Release bounds of every xi

pq and xi′
pq

6: s, opt time← optimize(s, tl)
7: runtime← runtime+ opt time

8: return s, runtime

MIP solver, we have also implemented variations of neighborhoods unscheduled targets,

intra-satellite, and double-satellite that release the bounds of fewer variables per iteration.

• download tasks (N 5) – a special case of unscheduled targets neighborhood in which

α = 1, κ = 1, and only the arcs used in the solution or between tasks in the solution

and download tasks are released.

• µ intra-satellite (N 6) – similar to the intra-satellite neighborhood but the tasks avail-

able to each satellite are further divided in µ intervals (µ×m iterations). The bounds

are released for the arcs in one interval ( 1
µm

) at a time.

• π double-satellite (N 7) – differs from the double-satellite neighborhood because the

satellites are further divided into π intervals (2
(
m
π

)
iterations). Bounds are released

for arcs of each interval for two satellites, corresponding to 2π
m

of bounds per iteration.

6. Computational experiments

This section describes the computational experiments conducted to assess the perfor-

mance of the proposed methods. Both the model and the algorithm were implemented in

C++ and compiled with g++, version 12.3.0. We used Gurobi 11.0.1 API for modeling and

solving the mixed-integer linear programs. All tests were executed on a computer equipped

with an Intel® Core™ i9-13900K processor with 32 threads at 3.0 GHz and 128 GB of RAM.

Cho et al. (2018) solved the constellation mission scheduling problem (CMSP) with a so-

called two-step binary linear programming TSBLP model, whose performance was evaluated

against a greedy first-in first-out (FIFO) greedy strategy. They implemented both solution

approaches in Python and made the code available to us upon request. We evaluate the

performance of the MBH procedure on the CMSP against both TSBLP and FIFO on the

same machine. We also report the results of the MBH method on the IAEOSSP against

the standalone MIP solver.
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6.1. Benchmark instances

To create the set of benchmark instances for both CMSP and IAEOSSP, we modified

the data used in Cho et al. (2018) for the conventional version of the problem, designed

based on real-world satellite missions. This dataset was composed of a single instance file

with tasks for 1000 observation targets, 12 satellites, four ground stations, and a planning

horizon of 7 days.

We changed the existing dataset by (i) rounding, to the nearest integer, the numbers

associated with time windows start and end times; (ii) removing observation tasks whose

time window overlaps with the time window of any download task; and (iii) following the

authors of the original set, dividing the single large instance file into smaller instances.

More specifically, we created 32 instances that differ in the number of observation targets

(200, 400, 600, and 800), satellites (1, 3, and 6), ground stations (1, 2, and 4), and plan-

ning horizon (1, 2, and 3 days). For more information on the instances, as well as their

parameters, we refer to Cho et al. (2018). Our instances and detailed results are available

online at https://github.com/yurerocha/IAEOSSP.

6.2. Solving the CMSP

The CMSP considers conventional satellites in which the values of the setup times of

the satellites disregard the changes in the pitch angle. In fact, this is the main difference

between the CMSP and the IAEOSSP. In view of this, one can adapt model (1)–(30) to

solve the CMSP by removing constraints (7)–(10), and adding the following constraints:

∆sipq = ω1|φi
p − φi

q|+ β1, i ∈ S, p, q ∈ Oi (61)

∆sipq = ω3|φi
p − φi

q|+ β2, i ∈ S, p, q ∈ Di. (62)

The new formulation introduced in this section is called the CMSP model. Hereafter, we

refer to the improved formulation for the IAEOSSP, combined with the efficient strategy,

as IAEOSSP model (Section 4.2). In a similar fashion, the improved formulation for the

CMSP, combined with the efficient strategy, is referred to as CMSP model. In both the

IAEOSSP formulation and the CMSP model, we ignore the issue discussed in Section 4.1.3;

the impact of this decision is discussed in Section 6.6.

6.3. Parameter values and order of neighborhood exploration

In this section, we discuss how the parameters were tuned for the MBH procedure.

Section 6.3.1 provides some preliminary information regarding the tuning, whereas Section
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6.3.2 explains the time limit allocation, and Section 6.3.3 concludes with the order in which

neighborhoods are applied.

6.3.1. Preliminaries

The benchmark instances were divided into eight groups according to the number of

targets and satellites. To tune the parameters, we selected, from each group, the instance

with the largest planning horizon and the smallest number of ground stations. Such in-

stances seem more challenging because there are more targets, although there are fewer

opportunities to download data.

We tune the MBH heuristic on the CMSP as this allows us to compare with

the literature. The gaps are computed as follows: gap = 100 × {[best(FIFO,

TSBLP)−MBH]/best(FIFO, TSBLP)}, where function best(FIFO, TSBLP) chooses the

solution with the highest objective value among FIFO and TSBLP.

We build an initial solution with Gurobi parameters SolutionLimit = 1 and

TimeLimit = time limitinit sol.

6.3.2. Time limit

Except for neighborhoods unscheduled targets and download tasks, whose percentage

of bounds released is not straightforward to compute (see Section 5), we divided the time

limit proportionally among the neighborhoods according to their computational effort by

iteration. Unless otherwise stated, we set a 1-hour time limit for the MBH procedure on

the IAEOSSP and the CMSP formulations.

The time limit for an iteration of a move that releases the bounds of arcs associated

with a single satellite is denoted as tsat. This value is recomputed at every iteration of

the MBH. The following time limits tl were adopted for each iteration of the procedures:

tl = tsat for the initial solution and neighborhoods unscheduled targets, intra-satellite, and

download tasks; tl = mtsat
λ

for multi-satellite; tl = 2tsat for double-satellite; tl =
tsat
µ

for µ

intra-satellite; and tl = 2tsat
π

for π double-satellite.

6.3.3. Neighborhood structures

We used an incremental approach, similar to the one described in Kramer and Subra-

manian (2019), to select the order in which to apply the neighborhood operators. These

operators were sorted in non-descending order of the percentage of bounds released per it-

eration, considering instances with the largest number of satellites. A few exceptions exist

to this rule, such as neighborhoods unscheduled targets and download tasks.
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We begin the local search phase by applying the unscheduled targets neighborhood

(N 1) to the initial solution. This choice is motivated by the computational effort of the

neighborhood, which can be controlled by α, which limits the percentage of unscheduled

targets with few opportunities to be observed. We adopted κ = 2 to limit the scope of the

neighborhood (number of iterations).

Settings 1, 2, and 3 of Table 2 show the results of applying different values of α with

a time limit of 600 seconds. The tuning starts with α = 70 up to 100, in increments of 10

(setting 1). When applying this setting, we observe a gap to the solution from the literature

of 2.43%. Next, we include α = 60 before them, i.e., α = {60, . . . , 100} (setting 2). This

decreases the gap to 1.99%. Including α = 50 before them (setting 3) worsens the average

gap, so we select setting 2 and move on to the next neighborhood.

We now set the time limit to 3600 seconds and, at each time, add new operators after

those applied in the previous settings. Setting 4 results from setting 2 with a time limit of

3600 seconds, which improves the gap to 1.84%. In setting 5, we include the download tasks

neighborhood (N 5), which is included after exploring similar neighborhoods to facilitate

downloading the data, which corresponds to half of the objective of the problem. This

setting achieves a gap of 0.58%. Setting 6 includes the intra-satellite neighborhood (N 6)

with µ = 2, improving the gap to 0.26%. Setting 7 includes the intra-satellite neighborhood

(N 2) and improves the gap to 0.25%, while setting 8 adds the download tasks neighborhood

again, after two similar neighborhoods were applied. The download tasks neighborhood

brings the gap to −0.09%, improving the literature results. Next, setting 9 includes the

multi-satellite neighborhood (N 3) with λ = 4 and improves the gap to −0.34%. In setting

10, which incorporates the download tasks neighborhood again, the gap does not improve.

Setting 11 then includes the double-satellite (N 7) with π = 2 and double-satellite (N 4)

neighborhoods, and improves the gap to −0.65%. The former neighborhood is only applied

to instances with fewer than 4 satellites for two reasons: first, applying the neighbor-

hood double-satellite with π = 2 on instances with a large number of satellites takes a

considerable number of iterations; and second, the neighborhood double-satellite takes few

iterations on the small sized instances. The combination of the two neighborhoods balances

the number of iterations. Setting 12 includes the download tasks neighborhood again, im-

proving the gap to −0.68%. Settings 13 and 14 include the multi-satellite neighborhoods

(N 3) with λ = 2 and λ = 1, improving the gap to −0.82% and −0.89%, respectively.

Finally, setting 15 tries to include the download tasks neighborhood again, but the gap

degrades to −0.83%, which makes setting 14 the best sequence of neighborhood operators.
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Table 2: Results obtained for different settings of neighborhood structures.

Setting Neighborhoods (N ) Time limit (s) Gap (%)
1 N 1: α = 70, . . . , 100, κ = 2 600 2.43
2* N 1: α = 60, . . . , 100, κ = 2 600 1.99
3 N 1: α = 50, . . . , 100, κ = 2 600 2.11
4* Setting 2 + tl = 3600 3600 1.84
5* Setting 4 + N 5 3600 0.58
6* Setting 5 + N 6: µ = 2 3600 0.26
7* Setting 6 + N 2 3600 0.25
8* Setting 7 + N 5 3600 −0.09
9* Setting 8 + N 3: λ = 4 3600 −0.34
10 Setting 9 + N 5 3600 −0.34
11* Setting 9 + N 7: π = 2 + N 4 3600 −0.65
12* Setting 11 + N 5 3600 −0.68
13* Setting 12 + N 3: λ = 2 3600 −0.82
14* Setting 13 + N 3: λ = 1 3600 −0.89
15 Setting 14 + N 5 3600 −0.83
* indicates a selected setting

6.4. Comparison with the literature

Table 3 compares the results of our MBH algorithm on the CMSP model against both

the FIFO heuristic and the TSBLP model of Cho et al. (2018). In this table, “Obj”

denotes the value of the objective function obtained by our solution approach, “Opt (%)”

the optimality gap obtained by the commercial solver, whereas “Gap (%)” indicates the

percentage gap (computed as specified in Section 6.3.1) between the best results found by

the MBH and those from the two competing algorithms.

Table 3: Results obtained for the CMSP.

Instance
FIFO

CMSP
TSBLP

MBH Instance
FIFO

CMSP
TSBLP

MBH
c m k h Obj Opt (%) Obj Gap (%) c m k h Obj Opt (%) Obj Gap (%)

200 1 1 1 1440 1640 64.38 1600 1640 −2.50 600 3 2 2 14220 16290 84.02 16230 16330 −0.62
200 1 1 2 3290 3840 43.95 3730 3820 −2.41 600 3 2 3 18950 21040 65.34 21500 21340 0.74
200 1 2 1 1970 2190 27.54 2120 2190 −3.30 600 3 4 2 16670 19780 50.62 19610 19630 −0.10
200 1 2 2 3910 4290 33.40 4150 4290 −3.37 600 3 4 3 21850 24980 40.27 25070 25160 −0.36
200 3 1 1 4760 5360 50.37 5192 5360 −3.24 600 6 2 2 24700 26470 34.04 29590 29610 −0.07
200 3 1 2 9050 10050 14.47 9910 10030 −1.21 600 6 2 3 30950 33830 4.88 35180 35380 −0.57
200 3 2 1 6000 6540 22.37 6330 6540 −3.32 600 6 4 2 28910 31250 13.54 32920 33180 −0.79
200 3 2 2 9870 10620 8.00 10480 10620 −1.34 600 6 4 3 33670 34960 1.49 35330 35380 −0.14
400 1 1 1 1590 1850 143.24 1850 1850 0.00 800 3 2 2 16030 18090 109.25 18090 18370 −1.55
400 1 1 2 3650 4460 104.37 4440 4460 −0.45 800 3 2 3 21550 22980 106.15 24320 24360 −0.16
400 1 2 1 2370 2630 71.40 2580 2630 −1.94 800 3 4 2 18660 21740 76.07 21870 22190 −1.46
400 1 2 2 4820 5490 67.55 5370 5490 −2.23 800 3 4 3 24760 27270 73.05 28690 28930 −0.84
400 3 1 1 5340 6180 119.76 6012 6180 −2.79 800 6 2 2 27720 31970 48.70 34020 33870 0.44
400 3 1 2 11140 12890 68.61 12840 13010 −1.32 800 6 2 3 35980 35400 34.29 42290 42710 −0.99
400 3 2 1 7140 7960 70.21 7860 7960 −1.27 800 6 4 2 33480 35590 33.58 39460 39640 −0.46
400 3 2 2 12790 14620 47.63 14490 14610 −0.83 800 6 4 3 40990 39590 20.08 45210 45280 −0.15
Average 5571 6288 59.83 6185 6292 −1.97 Average 25568 27577 49.71 29336 29460 −0.44

As Table 3 shows, the MBH algorithm obtained the best results for 29 out of the

32 instances. In one of the three remaining instances, we achieved a solution with the

same objective value as the TSBLP formulation. The average gaps for the other two
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instances were 0.74% and 0.44%. Furthermore, considering the instances with up to 400

observation spots, our method improved the solutions found by −1.97% on average. For

the instances with 600 and 800 observation targets, the MBH procedure also attained

competitive solutions, with an average gap of −0.44%.

6.5. Results of the model with agile satellites

Table 4 presents the results of the MBH method against the MIP solver

on the IAEOSSP model. Column “Gap (%)” is computed as gap = 100 ×
{[Obj(model)−Obj(MBH)]/Obj(model)}.

Table 4: Results obtained for the IAEOSSP formulation.

Instance IAEOSSP MBH Instance IAEOSSP MBH
c m k h Obj Opt (%) Obj Gap (%) c m k h Obj Opt (%) Obj Gap (%)

200 1 1 1 1540 41.35 1540 0.00 600 3 2 2 14130 47.05 14280 −1.06
200 1 1 2 3420 32.33 3420 0.00 600 3 2 3 19010 37.59 19300 −1.53
200 1 2 1 1940 15.07 1940 0.00 600 3 4 2 16770 24.14 16910 −0.83
200 1 2 2 3810 18.83 3810 0.00 600 3 4 3 22110 18.30 22370 −1.18
200 3 1 1 4880 27.10 4880 0.00 600 6 2 2 26860 22.32 27570 −2.64
200 3 1 2 9070 10.60 9070 0.00 600 6 2 3 26420 29.98 33270 −25.93
200 3 2 1 5790 12.67 5790 0.00 600 6 4 2 29460 11.18 30270 −2.75
200 3 2 2 9660 3.80 9660 0.00 600 6 4 3 33910 3.37 34030 −0.35
400 1 1 1 1770 81.11 1770 0.00 800 3 2 2 15380 59.12 15790 −2.67
400 1 1 2 4110 63.04 4110 0.00 800 3 2 3 20850 52.10 21540 −3.31
400 1 2 1 2260 44.14 2260 0.00 800 3 4 2 18270 34.42 18610 −1.86
400 1 2 2 4730 40.36 4730 0.00 800 3 4 3 24210 31.16 24970 −3.14
400 3 1 1 5790 69.90 5790 0.00 800 6 2 2 26680 56.25 31190 −16.90
400 3 1 2 11900 38.30 11940 −0.34 800 6 2 3 30890 49.10 36050 −16.70
400 3 2 1 6980 40.84 6980 0.00 800 6 4 2 32150 29.34 35910 −11.70
400 3 2 2 12930 27.84 12990 −0.46 800 6 4 3 40580 13.39 42400 −4.48

Average 5661 35.46 5668 −0.05 Average 24855 32.43 26529 −6.06

As Table 4 shows, our method clearly outperformed the MIP solver, finding solutions

with the same or better objective values. The MBH approach improved the best-known

solutions for 18 out of 32 instances. More specifically, it improved the results for two in-

stances involving 200 and 400 observation spots, with an average gap reduction of 0.05%,

and for all 16 instances involving 600 and 800 observation points, with an average gap im-

provement of 6.06%. Some improvements are significant, with a maximum improvement of

more than 25% for an instance with 600 observation points. This is achieved by scheduling

more observation tasks but also to downloading more data; this improved scheduling makes

better use of the energy and storage capacities of the satellites and explores the solution

space better.

6.6. Impact of formulations, efficient strategy, and overlapping tasks issue

We conducted experiments using the MIP solver to determine the best formulation and

assess the different strategies’ impact on the CMSP model. More specifically, we evaluated
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the performance of the CMSP with the straightforward formulation (S) of Section 3, the

efficient strategy (E) of Section 4.1, and the improved formulation (I) of Section 4.2. When

the efficient strategy is adopted, one can also consider the theoretical issue of overlapping

tasks (O) of Section 4.1.3. Table 5 summarizes the four different models indicating which

strategies are used in each one, whereas Table 6 provides the number of constraints and

variables (continuous and binary) for an instance with 600 observation targets under the

four models.

Table 5: The formulations/strategies.

Names
Formulations Strategies

Straightforward Improved Efficient Overlapping issues
CMSP-S ✓
CMSP-I ✓

CMSP-IEO ✓ ✓ ✓
CMSP-IE ✓ ✓

Table 6: Number of constraints, continuous variables, and binary variables for an instance with 600 obser-
vation targets for different formulations/strategies.

Components
# per model

CMSP-S CMSP-I CMSP-IEO CMSP-IE
Constraints 1,515,108 1,458,354 51,428 49,829

Continuous variables 2,933,253 2,933,253 124,621 121,727
Binary variables 1,660,613 1,458,354 51,428 49,829

The results with average gaps grouped by instances according to their corresponding

number of observation targets are summarized in Table 7. As the table suggests, the CMSP

model with the improved formulation (average gap of 6.68%) significantly improved upon

the straightforward formulation (average gap of 41.27%). The remaining strategies also

played essential roles; for example, the efficient strategy achieved an average reduction of

5.0%, and disregarding the overlapping issues reduced the average gap to 1.36%.

Table 7: Impact of the formulations/strategies.

#Observations targets
Average gap (%)

CMSP–S CMSP–I CMSP–IEO CMSP–IE
200 −2.55 −2.68 −2.68 −2.59
400 0.07 −1.25 −1.03 −1.23
600 71.76 4.51 3.30 3.04
800 95.81 26.16 7.14 6.21

Average 41.27 6.68 1.68 1.36
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7. Concluding remarks and future work

This paper investigated the integrated agile Earth observation satellite scheduling prob-

lem (IAEOSSP). We have formulated the IAEOSSP as a mixed-integer linear programming

(MILP) problem. Moreover, we have devised an improved formulation that reduces the

computational effort by removing variables and constraints from the model while possibly

losing feasible solutions; an efficient heuristic strategy that decreases the number or arcs

from O(n2) to O(n), where n is associated with the number of opportunities for observing

targets and downloading data; and a MIP-based heuristic (MBH) procedure that combines

the MIP solver with a local search heuristic. To compare the MBH with existing algo-

rithms, we solved a special case of the IAEOSSP, that considers conventional satellites,

known as the constellation mission scheduling problem (CMSP).

The MBH method on the CMSP model outperformed a greedy algorithm and a two-step

binary linear programming (TSBLP) formulation from the literature by achieving better

solutions on 29 out of 32 instances. We also evaluated our heuristic method against the

standalone MIP solver over the IAEOSSP model. In this case, both approaches performed

well on the instances with 200 and 400 targets, whereas the MBH procedure obtained an

average gap reduction of 6.06% for the remaining instances with up to 800 targets.

Prospective directions for further research include exploring area targets that cannot

be acquired by a single observation, incorporating due dates for tasks, and modeling the

energy consumption associated with changes in the satellites’ pose.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used ChatGPT in order to improve

readability. After using this tool/service, the authors reviewed and edited the content as

needed and take full responsibility for the content of the publication.
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