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Abstract. We consider a waste collection problem with intermediate disposal 
facilities to accommodate the usage of smaller, but more sustainable vehicles, 
with less capacity than the traditional waste collection trucks. The optimization 
problem consists in determining the locations to place the collection points and 
the routes of a capacitated collection vehicle that visits these locations. We first 
present a mixed-integer linear programming formulation that exploits the 
sparsity of the road network. To efficiently solve practical instances, we propose a 
solution method that decomposes the problem into a set covering problem to 
select the locations and a capacitated vehicle routing problem with intermediate 
facilities to determine the routes and price the set covering solution. We apply 
column generation to solve this routing problem and present a novel approach 
for the set covering problem that exploits the properties of the problem to 
efficiently find a set cover by using a graph theoretical approach. We compare 
our method with the set construction method and the heuristic Benders 
decomposition approach presented in a previous work. Computational 
experiments on instances derived from real-life data confirm the difficulty of our 
problem and show the superior performance of the developed decomposition 
method with respect to the number of best solutions and the average gaps to 
the best solution 
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1. Introduction
In this article, we investigate a waste collection problem involving vehicles that are smaller, but more sus-

tainable than the traditional collection trucks. Such vehicles can be efficient in residential areas with family

houses or in city centers with narrow streets. However, due to their limited capacity and driving speed, the

installation of intermediate disposal facilities is required to avoid long trips to the final disposal facility.

We formulate the problem as a capacitated multi-vehicle covering tour problem with intermediate facili-

ties (Cm-CTP-IF), which is a variation of the capacitated multi-vehicle covering tour problem on a road

network (Cm-CTP-R; Fischer et al. 2023b). It was introduced in the context of designing more efficient

and sustainable collection systems for non-recoverable waste. Given the road network with a vehicle depot,

candidate locations to place collection points and a set of intermediate facilities, the decisions we address

in this paper consist in selecting the locations of collection points where residents must leave their bags

and determining the routes of a capacitated vehicle. The vehicle performs exactly one rotation that starts

and ends at the depot and carries out a sequence of collections with disposals at the available intermediate

facilities. For each residential building, a given rank defines and sorts the candidate locations eligible for

that building in compliance with some criterion (e.g., walking distance) and we assume that residents will

always consider the highest-ranked selected location for leaving their bags. The goal of the Cm-CTP-IF

is to determine routes of minimum total travel time that visit a subset of candidate locations, such that all

residents are covered (their waste is picked-up at a candidate location from their rank) and the capacity

of the vehicle is respected. Figure 1 illustrates the Cm-CTP-IF on a street network of a small part of a

Swiss municipality, in which bold nodes represent residential nodes and all nodes (including the bold ones)

candidate locations to place collection points.

(a) Street network of a small part of a Swiss municipality. (b) A solution to the Cm-CTP-IF.
Figure 1 Street network of a small part of a Swiss municipality and a possible solution to the Cm-CTP-IF.

The contributions of this paper are the following:
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1. We introduce and formulate a new variation of the Cm-CTP-R (Fischer et al. 2023b) that includes

intermediate facilities. To handle the large instances derived from real-life data (Fischer et al. 2023b), we

develop a solution method that decomposes this problem into the subproblems it is built on: a Set Covering

Problem (SCP) and a Capacitated Vehicle Routing Problem with Intermediate Facilities (CVRP-IF). We

also propose extensive computational results to demonstrate the advantage of this approach.

2. Taking advantage of the road network structure, we propose a new heuristic to solve the SCP based

on the fact that finding a minimum clique cover in a chordal graph is known to be polynomial (Golumbic

2004).

3. We show that a resolution of the Shortest Path Problem with Resource Constraints (SPPRC) with

dynamic programming and the concept of ng-path (Baldacci et al. 2011) is more efficient on a road network

than a complete network for the CVRP-IF.

The remainder of the paper is organized as follows. Section 2 briefly presents research related to our

problem. Section 3 formally defines the problem. Section 4 presents the road-network based MILP formu-

lation. Section 5 introduces the general idea of the decomposition method, Section 6 presents the graph

theoretical approach for the SCP and Section 7 describes the column generation approach for the CVRP-IF.

Section 8 reports the computational experiments, and Section 9 gives some concluding remarks.

2. Related work
The Cm-CTP-R introduced by Fischer et al. (2023b) is closely related to the multi-vehicle covering tour

problem (m-CTP; Hachicha et al. 2000), in which up to m vehicle tours are designed that start and end

at the depot with minimum total length such that the nodes to cover lie within a preset distance of a tour

node (i.e., a node visited by a vehicle). Additional constraints are defined to limit the number of nodes

and the length of any tour. The Cm-CTP-R is modeled as a particular version of the m-CTP in which

these additional constraints are replaced by vehicle capacity constraints. Moreover, nodes to cover do not

only have to be covered by a tour node but must also be allocated to the highest-ranked one that belongs

to the solution. Two MILP formulations are proposed, one that exploits the sparsity of the road network

and one that is based on a complete-graph representation typically used in vehicle routing problems (VRP;

Ben Ticha et al. 2018). Numerical results show that the road-network-based formulation outperforms its

customer-based counterpart and provides a more intuitive characterization of the actual network. To solve

large instances, a two-phased heuristic approach is developed that addresses the two subproblems the Cm-

CTP-R is built on: a SCP to select the candidate locations and a split-delivery vehicle routing problems

(SDVRP) to determine the routes. The approach provides good solutions with optimality gaps below 1.7%

and finds better solutions for most of the instances that the exact method cannot solve within the time limit.

For an overview of relevant research in the context of m-CTP and VRPs with road-network information,

we refer the reader to Fischer et al. (2023b) and Ben Ticha et al. (2018), respectively.
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Angelelli and Speranza (2002) introduce the term intermediate facility as a warehouse where the vehicles

can renew completely their capacity, and define a periodic VRP (PVRP) with intermediate facilities which

has applications in collection problems. They propose a tabu search algorithm and test different versions of

the algorithm on PVRP instances taken from the literature and on randomly generated instances. They show

that with an extended set of moves in the algorithm an improvement on the quality of the solutions can be

obtained. Markov et al. (2016) consider a complex recyclable waste collection problem that is an extension

to the VRP by integrating intermediate facilities, a heterogeneous fixed fleet and a flexible assignment of

destination depots. They propose a multiple neighborhood search heuristic which achieves optimality on

small instances, shows competitive performance to state-of-the-art solution methods and leads to savings in

practice.

The concept of rotation is introduced by Crevier et al. (2007) as the set of all routes assigned to a vehicle

in the context of a real-life grocery distribution problem in Canada. The authors consider an extension of

the multi-depot vehicle routing problem (MDVRP) in which vehicles may be replenished at intermediate

depots along their route. They propose a three-phase methodology based on adaptative memory and tabu

search for the generation of a set of routes, and on integer programming in the execution of a set partitioning

algorithm for the determination of least cost feasible rotations. The method is tested on randomly generated

instances and on MDVRP benchmark instances, and reports reasonably fast running times. Tarantilis et al.

(2008) propose a three-step algorithmic framework to solve the VRP with intermediate replenishment facil-

ities based on a cost-saving construction heuristic, a tabu search within the variable neighborhood search

methodology and a guided local search to eliminate low-quality features from the final solution produced.

They are able to produce six new best solutions and reach the best known solutions for all six of the remain-

ing benchmark instances of Crevier et al. (2007). Muter et al. (2014) develop a branch-and-price algorithm

for the MDVRP with inter-depot routes (MDVRPI), where vehicles can discharge their loads at intermediate

depots. They propose two column generation algorithms, a traditional one-level column generation scheme,

and a two-level decomposition scheme in which the pricing problem is solved in two phases and represented

with a depot graph consisting of the depot nodes and the routes as arcs to generate rotations in the second

phase. They are able to solve exactly some instances with up to 50 customers by applying improvements

in the two-phased algorithm. A generic MDVRP in which vehicles are based at multiple depots is studied

in Ramos et al. (2020). They propose a new formulation based on the two commodity flow formulation in

which the location of the available vehicle fleet and the role of each facility in the network (depot, interme-

diate facility, or both) are also decisions made by the model. They develop a matheuristic approach to allow

the solution of real instances and are able to find some new and better solutions to instances introduced in

Muter et al. (2014) and to solve instances introduced in Crevier et al. (2007) for the first time as a MDVRPI.

A combination of the CTP and the multi-depot VRP is introduced by Allahyari et al. (2015), in which a

set of vehicle routes over a subset of available customers with the minimum routing and allocation costs is
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built, such that the unvisited customers have to be within a predetermined distance of at least one visited

customer. They propose a hybrid solution approach combining GRASP, iterated local search and simulated

annealing, and show the effectiveness of the proposed solution technique on instances of the introduced

problem and three variants of the VRP. Nedjati et al. (2017) consider an extension to the location-routing

problem (LRP) with service time restriction, replenishment at intermediate depots, and customer mobility in

a predefined walking distance. They present a bi-objective integer linear programming model and propose

a heuristic solution method based on the genetic algorithm to solve the different size test problems. They

show the good performance of the algorithm and present the impact of valid inequalities in fastening the

exact solution procedure.

3. Problem definition
In this section, we formally define the Cm-CTP-IF using the notation and the modeling assumptions intro-

duced in Fischer et al. (2023b). We are given a directed strongly connected graph G = (V ∪W,A) with

two node sets V and W , and an arc set A representing the road network. W is a set of nodes with positive

demand and V includes nodes that represent candidate locations, intermediate facilities and road intersec-

tions. For each demand node i ∈W , its demand di must be satisfied at exactly one node from its rank

V rank
i ⊆ V , which contains candidate locations that are within a maximum walking distance from i. We

assume that V rank
i is totally ordered based on the assumed criterion to sort candidate locations, which in our

case is in increasing order of walking distance. We assume that di must be satisfied at the first node in V rank
i

at which a vehicle stops. This assumption is based on real-world observations that a resident will simply

go to their closest location where a collection point is placed rather than abide by specific assignment deci-

sions. For two nodes j, j′ ∈ V rank
i , rank(i, j′)< rank(i, j) indicates that node j′ is preferred over node j by

demand node i, with rank(i, j) being the index of node j in V rank
i . Then, the set of candidate locations that

can be visited by the vehicle are defined as V sto =∪i∈WV rank
i .

The set V fac ⊂ V contains the available intermediate facilities where the vehicle can dump the load. Note

that some of them might not be used in a solution. Let cll′ be the non-negative length of arc (l, l′) ∈ A

representing the travel time of (l, l′) that can be asymmetric, i.e., cll′ ̸= cl′l. To capture the time needed to

dump the load, a fixed cost is added to each arc entering an intermediate facility h ∈ V fac. We consider

a single vehicle that is located at a distinguished depot node σ ∈ V and is characterized by its capacity

Q. It performs exactly one rotation that starts and ends at the depot and is composed of a set of single-

facility (i.e., starting and ending at the same intermediate facility) and inter-facility (i.e., connecting two

different intermediate facilities) routes with a mandatory visit to a final intermediate facility h∈ V fac before

going back to the depot (Crevier et al. (2007)). In contrast to Fischer et al. (2023b), we do not allow for

split collection because it is assumed that intermediate facilities are closer to the residential buildings and

therefore, overall costs are not significantly improved by this approach. To this end, we assume di ≤Q,∀i∈
W .
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A solution of the Cm-CTP-IF is specified by a sequence of the selected candidate locations V sel ⊆ V sto

and the given intermediate facilities (i.e., which are not necessarily distinct), and it covers a demand node

i ∈W if V rank
i ∩ V sel ̸= ϕ. A solution is feasible if V sel covers all demand nodes (i.e., V sel is a set cover of

W ) and the vehicle performs exactly one connected rotation collecting the demands di at the highest-ranked

nodes in V rank
i ∀i ∈W , while respecting its capacity Q in all routes. The objective of the Cm-CTP-IF is to

find a feasible solution with minimum total travel time which is computed as the sum of the lengths of the

shortest paths between consecutive nodes in the sequence plus a penalty tsto for each stop performed by the

vehicle.

4. Road-network-based formulation

We extend the road-network-based formulation presented in Fischer et al. (2023b) in which decision vari-

ables are introduced for each road segment (Letchford et al. (2013)). LetM= {1, . . . ,m} be the set of the

m routes, where m defines an upper bound on the number of routes that can be performed based on the

vehicle’s capacity Q. Let V facσ = V fac ∪ {σ} bet the set of available intermediate facilities and the depot.

Let xll′k be an integer variable indicating the number of traversals on arc (l, l′) ∈ A in route k ∈M and

yj be a binary variable taking value 1 if the vehicle stops at node j ∈ V sto, 0 otherwise. Two non-negative

continuous variables qj and qjk define the total amount of demand satisfied at node j ∈ V sto and the amount

collected in each route k at node j, respectively, and a binary variable zij indicates if the demand of i ∈W

is satisfied at j ∈ V rank
i . Finally, we introduce a non-negative continuous variable fll′k to capture the flow

passing through arc (l, l′) ∈A in route k ∈M, and a non-negative continuous variable ghh′ to indicate the

flow between each pair {h,h′} : h,h′ ∈ V facσ.
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min
∑
k∈M

∑
(l,l′)∈A

cll′xll′k +
∑

j∈V sto

tstoyj (1a)

s.t.
∑

j∈V rank
i

zij = 1 ∀i∈W (1b)

∑
j′∈V rank

i :

rank(i,j′)>rank(i,j)

zij′ ≤ 1− yj ∀i∈W,j ∈ V rank
i (1c)

∑
i∈W :j∈V rank

i

dizij = qj ∀j ∈ V sto (1d)

qj ≤Djyj ∀j ∈ V sto (1e)

yj ≤ qj ∀j ∈ V sto (1f)

zij ≤ yj ∀i∈W,j ∈ V rank
i (1g)∑

k∈M

∑
l∈V :(l,j)∈A

xljk ≥ yj ∀j ∈ V sto (1h)

∑
k∈M

∑
l∈V :(l,h)∈A

xlhk

−
∑
k∈M

∑
l∈V :(h,l)∈A

xhlk = 0 ∀h∈ V fac (1i)

∑
k∈M

∑
l∈V :(σ,l)∈A

xσlk = 1 (1j)

W totxll′k − fll′k ≥ 0 ∀(l, l′)∈A,k ∈M (1k)

fll′k = 0 ∀(l, l′)∈A :

l ∈ V facσ, k ∈M (1l)∑
h′∈V facσ

gh′h −
∑

h′∈V facσ

ghh′

+
∑
k∈M

∑
l∈V :(l,h)∈A

flhk = 0 ∀h∈ V fac (1m)

∑
h∈V fac

gσh = 0 (1n)

∑
h∈V fac

ghσ =W tot (1o)

∑
k∈M

qjk = qj ∀j ∈ V sto (1p)∑
j∈V sto

qjk ≤Q ∀k ∈M (1q)

∑
l′∈V :(l′,l)∈A

xl′lk

−
∑

l′∈V :(l,l′)∈A

xll′k = 0 ∀l ∈ V \V fac, k ∈M (1r)

∑
h∈V fac

∑
l∈V :(h,l)∈A

xhlk ≤ 1 ∀k ∈M (1s)

∑
l′∈V :(l,l′)∈A

fll′k −
∑

l′∈V :(l′,l)∈A

fl′lk

=

{
qlk ∀l ∈ V sto

0 ∀l ∈ V \ (V sto ∪V facσ)
∀k ∈M (1t)

yj ∈ {0,1}, qj ≥ 0 ∀j ∈ V sto (1u)

zij ≥ 0 ∀i∈W,j ∈ V rank
i (1v)

qjk ≥ 0 ∀j ∈ V sto, k ∈M (1w)

xll′k ∈Z≥0, fll′k ≥ 0 ∀(l, l′)∈A,k ∈M (1x)

ghh′ ≥ 0 ∀h,h′ ∈ V facσ (1y)
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The objective function (1a) expresses the total cost, which is computed as the sum of the total travel times

plus tsto times the total number of stops. Constraints (1b) ensure that the demand of node i∈W is satisfied

at exactly one candidate location from its rank. Constraints (1c) state that this demand is satisfied at the first

node in V rank
i at which the vehicle stops. Constraints (1d) guarantee that the total demand that is assigned to

node j ∈ V sto is equal to the total amount that is collected at that node. Constraints (1e) link the variables

qj with the variables yj and impose an upper bound Dj =min{(
∑

i∈W :j∈V rank
i

di),Q} ∀j ∈ V sto on the total

amount that can be satisfied at node j. Constraints (1f) link the same variables in the opposite direction such

that the vehicle can stop at a node j only if some demand is assigned to it. This prevents from suboptimal

solutions in which selected nodes are not needed to satisfy demand. Constraints (1g) link the variables zij

with the variables yj by imposing that demand can only be assigned to a node j ∈ V rank
i ∀i ∈W which is

visited by the vehicle. Constraints (1p) link the variables qj and qjk to each other such that the total demand

satisfied at node j ∈ V sto corresponds to the total demand satisfied in all routes. Constraints (1q) limit the

demand satisfied in route k ∈M to the vehicle’s capacity Q.

Constraints (1h) - (1j) and (1r) - (1s) force the variables x to take values that make up a valid rotation.

More precisely, constraints (1h) specify that the vehicle can stop at a node j ∈ V sto only if it traverses an

incoming arc of node j at least once. Constraints (1i) state the degree constraints for each facility h ∈ V fac.

Constraint (1j) ensures that the depot is visited exactly once in a rotation. Constraints (1r) define that the

vehicle enters and leaves any node h∈ V \V fac the same number of times in route k ∈M. Constraints (1s)

ensure that in each route k ∈M at most one facility is visited.

Constraints (1k) - (1n) ensure connectivity by defining the flow on the variables fll′k and ghh′ . Con-

straints (1k) link the variables fll′k with the variables xll′k. If xll′k = 0, i.e.arc (l, l′) is not traversed in route

k, then the flow fll′k does not pass through it, and therefore fll′k = 0. If xll′k = 1, then W tot =
∑

i∈W di

defines an upper bound on the total flow. Constraints (1l) impose a 0 outflow for l ∈ V facσ. Constraints (1m)

link the variables fll′k with the variables ghh′ by passing the flow on the route level f to the rotation level

g. Constraint (1n) defines a 0 outflow at the depot. Constraint (1o) enforces that the total amount going into

the depot is equals the total amount satisfied in the rotation. To ensure a last visit to an intermediate facility

before going back to the depot, arcs entering the depot are defined in G only for pairs {l, σ} : l ∈ V fac.

Constraints (1t) define that the net outflow of any node l ∈ V sto must be the amount qlk satisfied at node l in

route k ∈M. For any other node, these constraints impose a 0 net outflow. Finally, constraints (1u) - (1y)

define the domain of the decision variables. Note that the binary constraints on variables zij are unnecessary

as automatically enforced.

5. Decomposition method
To solve large instances derived from real-life data, we propose a solution method that decomposes the Cm-

CTP-IF into a SCP and a CVRP-IF. In our context, the SCP has a particular structure that can be exploited.

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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We do so by introducing a novel approach for the SCP which consists in finding a minimum clique cover in

an intersection graph of the demand nodes’ walkable subgraphs (Section 6). This method returns a set cover

V sel defining an instance of CVRP-IF, which is tackled by a column generation technique (Section 7).

Algorithm 1 presents the general procedure of the decomposition method. Line 1 initialises the best

solution bestSol. Line 3 calls the first phase of the method in which a set cover V sel is created (Section 6).

This phase corresponds to the optimization problem (1b) − (1g). If the set cover V sel has not been treated by

the second phase, we build an integer routing solution (Line 5). The second phase corresponds to (1h) - (1t),

which is solved by column generation (Section 7). Finally, Lines 6 - 9 update the best solution. Once the

stopping criterion is met (i.e. in the computational experiments we set a 12-hour time limit, see Section 8),

we improve the best solution with the diving heuristic (Section 7.4) before returning it.

Algorithm 1 Decomposition method

Input: G= (V ∪W,A), V rank
i ∀i∈W

Output: Solution to the Cm-CTP-IF

1: Define bestSol←∅

2: while the stopping criterion is not met do

3: Create set cover V sel in the first phase (Section 6)

4: if V sel was not already treated by the second phase then

5: Generate an integer routing solution S from V sel by column generation (Section 7) and give a feedback to

nodes in V sel (Section 7.3)

6: if cost(S) < cost(bestSol) then

7: bestSol← S

8: Improve bestSol with diving heuristic (Section 7.4)

9: return bestSol

6. Set Covering Problem (SCP)
The SCP is solved with a novel minimum clique cover approach that benefits from the structure of the road

network and the properties of the underlying graphs. We refer to this approach as the Clique method in the

remainder of the paper.

6.1. A minimum clique cover in a chordal graph

For each demand node i ∈W , consider the set of candidate locations j ∈ V rank
i . Assume first that each j is

at a distance sufficiently small from i, such that there is only one possible path on the road network from

i to j. If this is the case, the union over j ∈ V rank
i of these paths is a tree Ti. Assume further that taking

the union over i ∈W of all these trees does not create any cycle, i.e., induces a forest (i.e., a possibly

disconnected disjoint union of trees). Notice that this is likely to happen if the road network is relatively

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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sparse, and the sets V rank
i are defined by a reasonably small maximum walking distance, such as depicted

in Figure 2a. Clearly, for any two demand nodes i, i′ ∈W , their trees Ti and T ′
i intersect if and only if

V rank
i ∩ V rank

i′ ̸= ∅. Consider the intersection graph of these trees GI = (W,EI), such that {i, i′} ∈EI if and

only if V rank
i ∩ V rank

i′ ̸= ∅. Figure 2b displays the intersection graph corresponding to the set of trees of

Figure 2a. Under the above assumptions, such a graph has the property of being chordal, or equivalently

without chordless cycle on at least 4 nodes. Indeed, as was shown in Gavril (1974), a graph is chordal if and

only if it is the intersection graph of a set of subtrees in a tree. Still under the above assumptions, another

useful property is that for any clique C in GI, there exists at least one node j which belongs to all the

sets V rank
i ∀i ∈ C (Helly property; Helly 1923). Thus, the problem of finding a minimum set of candidate

locations covering all demand nodes is equivalent to finding a minimum set of cliques in GI covering all its

nodes. It turns out that in chordal graphs, this problems admits an efficient polynomial algorithm (Golumbic

2004), which we are using here.

(a) Family of subgraphs Ti ∀i∈W . (b) A minimum clique cover in the intersection graph GI.
Figure 2 Family of subgraphs Ti ∀i∈W and a minimum clique cover in its intersection graph GI.

6.2. A clique cover heuristic

The above sufficient conditions for GI to be chordal may however in general not be satisfied. To enable us

to exploit the problem structure, we first build a reduced graph GD = (V I ∪W,E) where V I ⊂ V is the

set of road intersections and E is a set of undirected edges that reconnects the nodes in GD based on the

road network information in G. More precisely, for each node l ∈ V \(V I ∪W ) with its two incident arcs

(l′, l), (l, l′′)∈A, we add an edge {l′, l′′} to E. Notice that a node l ∈ V \(V I ∪W ) always has exactly two

incident arcs, since it will never be placed at the end of a road unless it is a demand node (in W ), and only

intersection nodes (in V I) have more than two incident arcs.

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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We define an edge weight wl′l′′ ∀{l′, l′′} ∈E which is initialized to 0 for every edge and will be updated

with we = αwe+(1−α)we ∀e∈E based on the feedback we provided by the routing problem (Section 7.3).

We then construct a minimum spanning tree (MST) in GD and define V MST
i ⊆ V rank

i ∀i∈W so that j ∈ V MST
i

is within the maximum walking distance from i in MST (instead of G). Let Ti ∀i ∈W be the union over

j ∈ V MST
i of the paths from i to j in MST. Since each tree Ti is a subtree of MST, the resulting intersection

graph GI = (W,EI) with EI = {{i, i′}|i ̸= i′ and V MST
i ∩V MST

i′ ̸= ∅} is chordal.

Algorithm 2 presents the detailed procedure to find such a clique cover in the intersection graph GI. Given

G= (V ∪W,A) and ranks V rank
i ∀i ∈W , we first use the algorithm from Kruskal (1956) to find a MST in

the reduced graph GD = (V I ∪W,E) and define updated ranks V MST
i ⊆ V rank

i ∀i ∈W based on the MST.

Then we create the intersection graph GI = (W,EI) as above, and apply the exact algorithm from Golumbic

(2004) to find a minimum clique cover in GI.

Algorithm 2 Clique cover

Input: G= (V ∪W,A), V rank
i ∀i∈W

Output: Clique cover of the intersection graph

1: Find a MST in the reduced graph GD = (V I ∪W,E) (see Kruskal 1956) and define V MST
i ⊆ V rank

i ∀i∈W

2: Construct the intersection graph GI = (W,EI) with {i, i′} ∈EI⇔ V MST
i ∩V MST

i′ ̸= ∅

3: Find a minimum clique cover in GI (see Golumbic 2004)

4: return Clique cover

6.3. A set cover heuristic

The procedure to generate a set cover V sel from the obtained clique cover is shown in Algorithm 3. For each

clique C of the clique cover, we select a candidate location j ∈ V rank
i that maximizes the total coverage, i.e.,

the number of demand nodes that are covered with V sel ∪ {j}. Given the selected set cover nodes in V sel,

we apply two additional moves to repair and improve V sel (Lines 5 - 11 in Algorithm 3). In case and as long

as there exists a node j ∈ V sel that aggregates more waste than the vehicle’s capacity Q, we select a demand

node i that is satisfied at node j and add a node j′ ∈ V rank
i \ V sel, such that pref(i, j′) < pref(i, j), to V sel.

Finally, we remove redundant nodes from V sel where a node j ∈ V sel is redundant if its total demand with

respect to V sel, denoted by q(V sel)j , does not exceed Q. Recall that the total demand q(V sel)j associated

with any collection node j ∈ V sel depends on the current composition of the set cover V sel, since the demand

di ∀i∈W is assigned to the first node in V rank
i that belongs to V sel.

To improve V sel further, we construct a giant tour (also known as traveling salesman tour) with the

procedure presented in Fischer et al. (2023b). Such a giant tour starts and ends at the depot and visits nodes

in V sel∪V alt, where V alt contains alternative nodes to the nodes in V sel. An alternative to j ∈ V sel is another

node j′ ∈ V sto \ V sel that can cover at least the same demand nodes and might bring some improvement in

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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Algorithm 3 Set cover V sel

Input: Clique cover (CC)

Output: V sel

1: Define set cover V sel← ϕ

2: for each clique C ∈ CC do

3: Select node j ∈∩i∈CV
rank
i with maximum coverage

4: V sel← V sel ∪{j}

5: while ∃ j ∈ V sel with q(V sel)j >Q do

6: Find a demand node i which is satisfied at node j

7: Find a node j′ ∈ V rank
i \V sel : pref(i, j′)< pref(i, j)

8: V sel← V sel ∪{j′}

9: for j ∈ V sel do

10: if V sel\{j} is a set cover and q(V sel\{j})j′ ≤Q ∀j′ ∈ V sel\{j} then

11: V sel← V sel\{j}

12: return V sel

the routing (e.g., nodes across the street). The construction of the giant tour is based on the savings obtained

from the gradual insertion of nodes (inspired by Clarke and Wright 1964), which is repeated until the nodes

visited in the tour form a set cover such that V sel can be redefined with these nodes. We refer the reader to

Fischer et al. (2023b) for more details on this procedure. Finally, if needed, V sel is repaired according to

Lines 5 - 11 in Algorithm 3, such that nodes are not assigned more demand than the vehicle’s capacity.

6.4. Diversification

To diversify the generation of set covers and to prevent stalling in the search of a new set cover, we apply

the following two mechanisms in Lines 1 and 3 of Algorithm 2. To find a minimum clique cover in the

intersection graph GI (Algorithm 2), the applied algorithm (Golumbic 2004) first defines a perfect elimina-

tion ordering (PEO) of the nodes in GI. We use the maximum cardinality method (Rose and Tarjan 1975)

to define such a PEO, which can be initialized at any node in GI. The first diversification mechanism is to

choose a random start node in GI for the maximum cardinality method. The second diversification mech-

anism revolves around the edge weights to find a MST in the reduced graph GD (Algorithm 2), which are

updated based on the feedback given from the routing solution with the function we = αwe+(1−α)we ∀e∈

E. Following the results of the computational experiments (see Section 8.3), the alpha value is initialized to

1. If the first diversification mechanism and the weight updates are not able to produce a new set cover, we

define α= α− 0.1 until either a new set cover is found or α reaches the value 0, in which cases we reset α

to its initial setting (i.e., α= 1).

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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7. Capacitated Vehicle Routing Problem with Intermediate Facilities
(CVRP-IF)

This section describes the column generation approach to address the CVRP-IF in the proposed decom-

position method (Section 5). Column generation is a technique to solve problems with a large number of

variables by iteratively adding some of the variables to the model (Dantzig and Wolfe 1960). It seems to be

a promising strategy for the Cm-CTP-IF since the routes of a small vehicle with intermediate facilities tend

to be shorter than for instance the tours considered in Cm-CTP-R. Given a set cover solution V sel ⊆ V sto to

the SCP, we follow the standard procedure in which iteratively the linear relaxation of a restricted master

problem (Section 7.1) is solved followed by a subproblem (Section 7.2) consisting in finding feasible routes

of negative reduced cost. This process terminates as soon as no route with negative reduced cost can be

found. Finally, we solve a MILP with all generated columns set as binary variables to obtain an integer

routing solution. At the end of Algorithm 1 and before returning the best solution bestSol, we apply a div-

ing heuristic (Section 7.4) in which additional columns may be generated to improve the integer routing

solution of bestSol.

7.1. Routing master problem

The compact formulation (1h) − (1t) can be reformulated in the spirit of a Dantzig-Wolfe decomposition

(Dantzig and Wolfe 1960). Let qj ∀j ∈ V sto : qj = 0 ∀j /∈ V sel represent a solution to the SCP and define the

amount of demand assigned to each node j. Let R be a set of routes starting and ending at the intermediate

facilities or the depot V facσ, with R+
h ⊆ R and R−

h ⊆ R representing the subsets of routes that start and

end at h, respectively. Note that R is different fromM, thus we use index r ∈R instead of index k ∈M.

Let Wr =
∑

j∈V sel qjr be the amount of demand picked up in route r ∈ R, with qjr indicating the amount

of demand collected at node j in route r, and let cr ∀r ∈ R be the travel cost of route r. We introduce a

continuous variable xr indicating if route r ∈ R is selected and refer to the following formulation as the

routing master problem (RMP).

Decomposition Method for a Capacitated Multi-Vehicle Covering Tour Problem with Intermediate Facilities
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min
∑
r∈R

crxr +
∑

j∈V sto

cpickνj + ccollλ (2a)

s.t.
∑
r∈R

qjrxr + νj = qj ∀j ∈ V sto (ξj) (2b)∑
r∈R−

h

xr −
∑

r∈R+
h

xr = 0 ∀h∈ V facσ (βh) (2c)

∑
r∈R+

σ

xr = 1 (γ) (2d)

W tot
∑

r∈R+
h
∩R−

h′

xr − ghh′ ≥ 0 ∀h,h′ ∈ V facσ (δhh′) (2e)

∑
h′∈V facσ

gh′h −
∑

h′∈V facσ

ghh′ +
∑

r∈R−
h

Wrxr ≥ 0 ∀h∈ V fac (ζh) (2f)

∑
h∈V fac

gσh = 0 (η) (2g)

∑
h∈V fac

ghσ +W totλ=W tot (κ) (2h)

xr ≥ 0 ∀r ∈R (2i)

νj ≥ 0 ∀j ∈ V sto (2j)

λ≥ 0 (2k)

ghh′ ≥ 0 ∀h,h′ ∈ V facσ (2l)

We build a multi-digraph H = (V facσ,AH) where each arc a ∈AH represents a route r ∈R starting and

ending at the respective nodes. Figure 3 displays such a graph and a possible solution. Note that the vehicle

can dump its load at intermediate facilities only, which is why routes ending at σ (i.e., dashed lines) do

not visit any set cover nodes. Starting with a set of empty routes connecting each pair of nodes (i.e., no

collection), the subproblem then generates new routes for each pair {h,h′}, h ∈ V facσ, h′ ∈ V fac which are

added to AH if their reduced costs are negative. To ensure feasibility of the problem, artificial variables νj

for nodes j ∈ V sto that are not satisfied and λ for demand that is not collected are introduced and highly

penalized in the objective function by cpick and ccoll, respectively. The goal of the RMP is to select a subset

of routes RV sel ⊆R that collect the demand from the set cover nodes V sel at minimum total cost.

7.2. Pricing problem

The routing subproblem, which aims at finding routes with negative reduced cost with respect to the RMP,

is also called the pricing problem (PP). The PP formulation (3) makes use of variables analogous to those
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(a) H = (V facσ,AH), with AH representing routes in R. (b) A possible solution RV sel ⊆R in red.
Figure 3 Graph H = (V facσ,AH) and a possible solution RV sel

to the RMP in red.

defined in the complete formulation (1) and the dual variables of the RMP (2), which are depicted in paren-

theses next to their constraints. As defined, the PP allows to generate routes that collect any amount of

demand at any node with 0≤ qj ≤ qj ∀j ∈ V sto. Let 1{σ}(h) indicate if the starting node h corresponds to

σ.

min
∑

(l,l′)∈A

cll′xll′ −
∑

j∈V sto

(ξj + ζh′)qj

+βh −βh′ −1{σ}(h)γ−W totδhh′ (3a)

s.t.
∑

j∈V sto

qj ≤Q (3b)

qj
∑

(l,j)∈A

xlj ≥ qj ∀j ∈ V sto (3c)

∑
(l′,l)∈A

xl′l −
∑

(l,l′)∈A

xll′ = 0 ∀l ∈ V \V facσ (3d)

∑
(h,l)∈A

xhl = 1 (3e)

∑
(l,h′)∈A

xlh′ = 1 (3f)

fll′ ≤Qxll′ ∀(l, l′)∈A (3g)∑
(l,l′)∈A

fll′ −
∑

(l′,l)∈A

fl′l

=

{
ql ∀l ∈ V sto

0 ∀l ∈ V \ (V sto ∪V facσ)
(3h)∑

(h,l)∈A

fhl = 0 (3i)

∑
(l,h′)∈A

flh′ =
∑

j∈V sto

qj (3j)

qj ≥ 0 ∀j ∈ V sto (3k)

xll′ ∈Z≥0 ∀(l, l′)∈A (3l)

fll′ ≥ 0 ∀(l, l′)∈A (3m)
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To generate new routes in an efficient way, we rely on dynamic programming to solve a SPPRC. The

goal is to find a shortest path from h ∈ V facσ to h′ ∈ V fac on the road-network graph G = (V,A), such

that the path respects the vehicle capacity and the path cost correspond to reduced cost (3a). Working with

the original road-network graph can lead to significant savings in computing time as shown by Letchford

et al. (2014), who present pricing routines for the VRP with time windows. We show that keeping the road-

network structure is also beneficial to the Cm-CTP-IF, as nodes along a path are considered and can help

to create better routes (Section 8.2). To reduce the number of nodes examined, we simplify G by removing

nodes that do not belong to V sel ∪ {h,h′} and are not intersection nodes (i.e., nodes with in degree smaller

than 2), and reconnecting their predecessors and successors by assuming a shortest path distance on these

arcs. In G, a path is allowed to visit any node l ∈ V several times which is why it can contain cycles.

However, the demand qj ∀j ∈ V sto can only be collected once, which is why we face a special SPPRC,

where elementarity constraints only apply in some cases. For each node j ∈ V sel with qj > 0, we introduce

a duplicate node j′ that represents the collection of the associated demand and is therefore subject to the

elementarity constraints. More precisely, a node j ∈ V sel can be visited several times but its duplicate j′ at

most once. Furthermore, we forbid to split the demand in the PP to speed-up the resolution, so only routes

collecting demand qj = qj ∀j ∈ V sto are considered. This restriction should not make an important difference

in the final solution as intermediate facilities are close to the demand nodes (.i.e, splitting the demand is less

efficient) and as proven by the experimental comparisons with other approaches (see Section 8.4).

More formally, a label L represents a partial path in G starting from the source node h, where c(L)

corresponds to its reduced cost, q(L) represents the accumulated collected demand and U(L) ⊆ V sel is

the set of nodes visited and satisfied along the path. Then, we apply the concept of ng-path which was

introduced as a new route relaxation for the capacitated VRP (CVRP) and the CVRP with time windows

(Baldacci et al. 2011 ). Ng-paths are a compromise between elementary and non-elementary paths and are

built according to customer sets (i.e., ng-sets) which are associated with each customer and often contain

neighbours within a short travelling distance. The larger the size of these sets, the closer the ng-path is to an

elementary path. Following that, we define for each collection node j′ ∈ V sel a neighbourhood Nj′ ⊆ V sel

that contains the closest nodes to j′ in G and itself such that |Nj′ | is lower than a given ng-size. The set

U(L) is replaced by a subset Π(L) which is empty at the source node h and then built recursively so that it

only contains nodes in Nj of the last visited node j ∈U(L). A label L can be extended to a collection node

j′ ∈ V sel along an arc (l, j′) ∈A to collect the demand qj′ if j′ /∈Π(L). When extended, a new label L′ is

created with Π(L′) = (Π(L)∩Nj′)∪ {j′}. Because the cardinality of Π(L′) is less than or equal to |Nj′ |,
the replaced condition is less restrictive yielding generally more dominated labels and faster computation

times. We believe that the concept of ng-path is even stronger when applied to road-network graphs, where

labels can only be extended locally to the nearest intersection nodes and not to every neighbor as in the

complete-graph representation, and thus, ng-sets of lower cardinality are required to ensure elementarity

constraints (as shown in Section 8.2).
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7.3. Feedback mechanism

To connect the two phases (SCP and CVRP-IF) with each other, we provide some feedback from the routing

solution to the candidate locations which is then considered in the creation of the MST (Section 6.2) in the

next iteration. More precisely, we use the dual variable values ξj of constraint (2b) provided by the RMP

(Section 7.1) in the last iteration of column generation, which gives an estimated cost for collecting a unit

of demand at node j ∈ V sto given the set of routes R, and associate it with each node j ∈ V sel. Recall the

reduced graph GD = (V I∪W,E), where V I ⊂ V is the set of road intersections and E is a set of undirected

edges that reconnects the nodes in GD based on the road network information in G. Let V sto
e ∀e∈E be the set

of candidate locations that either lie between the two end nodes of e in G (i.e., those that have been removed

to build GD) or on one of its end nodes. We then define a new edge weight we =
∑

j∈V sto
e

ξj/|V sto
e | ∀e ∈E

that will be provided as a feedback to the clique cover heuristic (Algorithm 2 in algorithm 2), so that in

the first phase of a next iteration, the MST is defined in a way to avoid cliques of demand nodes that result

in the selection of candidate locations with a high cost. This mechanism will first lead to diversification as

there is no information available for candidate locations that have not been selected in any solution. Over

time more candidate locations will be chosen and associated with a cost ξj so that the creation of set covers

will tend to improve with respect to the routing cost.

7.4. Diving heuristic

To improve the best solution obtained from the solution method (Algorithm 1), we apply a diving heuristic

(Joncour et al. 2010) at the end of the algorithm (Algorithm 1) in which additional columns may be gener-

ated to improve the integer routing solution. More precisely, if the optimal solution of the RMP is fractional,

the heuristic applies a depth-first search until an integer solution is found. The heuristic repetitively fixes

one fractional variable xr = 1 corresponding to an elementary route and uses column generation to include

promising additional routes. At the end of the heuristic, a MILP with an extended set of columns set as

binary variables (i.e., xr ∈ {0,1}) is solved which on average leads to better integer solutions as shown in

Section 8.2.

8. Computational experiments
In this section, we present the results of the computational experiments. The solution approach has been

implemented in Java. To solve the MILP and the RMP we used the Gurobi 9.5.2 MIP solver via its Java API.

The instances were tested on a computer with a Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz processor,

32 GB of RAM, operating under Linux, and a time limit of 12 hours was set.

8.1. Problem instances

We use the problem instances introduced by Fischer et al. (2023b) which are made available online under the

below link1. They are defined with respect to the number of demand nodes |W | ∈ {50,100,200,600} and
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are labelled accordingly. The three main parameters that characterize an instance are the maximum walking

distance w ∈ {50,100,200,300}, the number of routes m ∈ {5,10,20}, and the number of intermediate

facilities f ∈ {1,2,3}, whose locations are given. This results into 36 instances for each dataset, which

yields 144 instances in total. Finally, we assume a stop penalty value of tsto = 5 s. Since we do not allow to

split demand in the collection process, we preprocess each demand node i∈W with di >Q, by distributing

its demand in excess to its closest nodes l ∈ V \W and add each such l to the set of demand nodes W .

8.2. Analysis of column generation

This section presents some statistics of the proposed column generation approach for the CVRP-IF. They

have been generated on a subset of the instances (i.e., benchmark instances) selected to be as representa-

tive as possible over the datasets by keeping all parameters but one fixed. More precisely, for the datasets

W50,W100, and W200, we define w = 50,m= 10 and f = 2 as a starting point and then vary only one

of the three parameter values at a time, resulting in 24 instances in total. For each of the instances, a set

cover V sel is built and used for the different tests. To evaluate the benefit of the road-network graph G in

the PP where a SPPRC is solved by dynamic programming (Section 7.2), we introduce a complete directed

graph G′ = (V ′,A′) which is made up by the node set V ′ = V sel∪{h,h′} and the arc set A′ such that an arc

(j, j′)∈A′ represents a shortest path from j ∈ V ′ to j′ ∈ V ′ of length ℓjj′ . For the ng-path approach, we set

a minimal ng-size ratio ρ= 10% to compute the ng-size for each instance with ⌈ρ|V sel|⌉ (i.e., a percentage

ρ of the respective set cover size).

As shown in Table 1, with the road-network graph all instances can be solved within the time limit, while

with the complete graph no optimal solution can be found for the instance W200,w = 50,m = 5, f = 2.

On average over the instances that both graph representations were able to solve, the RMP is solved faster

with the road-network graph G, and less iterations and columns are needed, confirming the benefit of using

the road-network graph G in the PP. Note that the average and median improvements of the computational

time show consistent improvements for all 23 instances when solving with the road-network graph (the

minimum improvement is 29.64%).

Based on the same benchmark instances, we validate the concept of ng-path in the SPPRC and decide

on the size of the associated ng-sets for the subsequent computational experiments. Table 2 presents some

statistics on various sizes of such sets, with the minimal ng-size ratio /rho. The benefit of applying the

concept in general is clearly visible when comparing the number of instances solved for any value of ρ with

respect to not using the concept at all (i.e., ρ= 100%). On average over the instances that all ρ values were

able to solve, the linear program (LP) of the RMP is solved faster with decreasing values of ρ. However,

smaller values of ρ report weaker bounds on the routing cost, as shown in the gaps to the best objective

values reported by the various settings of ρ, due to an increased ratio of non-elementary columns in the LP.

1 https://drive.switch.ch/index.php/s/unpTFHxEwccSXRl
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Table 1 Comparison of the performance of solving RMP when using a complete graph (G′) or the

road-network graph (G) (average values are used when not specified) to solve the SPPRC by dynamic

programming (Section 7.2).
Graph representation G′ G

# Instances solved 23 24
Comp. time (s) 4074.99 208.41
Improvements of comp. time (%) - 78.41%
Median improvements of comp. time (%) - 84.16%
# Iterations 29.04 20.57
# Columns 4202.87 2902.26

As a consequence, we believe that a ng-size ratio of 10% gives the best trade-off between lower bounds and

computation times and decide to use it for our experiments.

Table 2 Validation of the concept of ng-path to solve the SPPRC by dynamic programming (Section 7.2)

and performance of solving RMP with respect to various minimal ng-size ratios ρ.
Minimal ng-size ratio ρ (%) 5% 10% 15% 20% 100%

# Instances solved 24 24 23 23 17
Average ng-size ratio (%) 8.54% 11.56% 17.13% 21.89% 100.00%

Comp. time (s) 5.41 5.41 6.05 6.84 1862.88
Gap to best obj. value (%) 0.10% 0.02% 0.01% 0.00% 0.00%
Non-elem. cols. (%) 12.28% 9.36% 5.77% 7.84% 0.00%

# Iterations 9.94 10.59 10.29 11.06 10.18
# Columns 1508.24 1457.41 1473.94 1517.35 1368.65

Table 3 represents statistics of the column generation approach for the benchmark instances on datasets

W50,W100 and W200. As can be seen from it, on average most of the time is spent in the PP where a

SPPRC is solved by dynamic programming (Section 7.2). We observe that the RMP LP, compared to the

RMP MILP, takes up on average the biggest parts with respect to the computation time, and with increas-

ing dataset size (i.e., number of demand nodes |W |), more iterations and columns are needed on average

to solve the instances. Furthermore, the approach reports relatively small average integrality gaps, which

confirm the applicability of the reformulation to estimate the routing cost. Finally, these integrality gaps

are smaller (i.e., 0.61% on average over all instances) than the ones reported before applying the diving

heuristic (Section 7.4) at the end of the algorithm (i.e., 2.24% on average over all instances), and therefore

shows the benefit of using this heuristic.

8.3. Analysis of the developed decomposition method

In this section, we validate the feedback and the diversification mechanisms used in the developed decom-

position method. As explained in Section 7.3, we provide some feedback from the routing solution to the

candidate locations which is then considered in the creation of the MST (Section 6) in the next iteration by

updating the edge weights. On the same benchmark instances as introduced in Section 8.2, we tested various
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Table 3 Statistics of the column generation approach (i.e., average values) for the benchmark instances on

datasets W50,W100 and W200.
Column generation W50 W100 W200

Comp. time RMP (%) 2.23% 0.71% 0.37%
Comp. time PP (%) 97.77% 99.29% 99.63%

Comp. time RMP LP (%) 99.76% 99.90% 98.45%
Comp. time RMP MILP (%) 0.24% 0.10% 1.55%

Int. gap RMP (%) 0.08% 0.48% 1.27%
Int. gap RMP before Diving (%) 1.53% 2.08% 3.12%

# Iterations 14 15 93
# Columns 1768 2646 7491

fixed values of α to see the impact of the feedback mechanism in general and decide on the value of α for

the subsequent experiments. Figure 4 visualizes for each value of α (i.e., label next to the point) the average

gap of the objective value to the best solution (%) and the average computation time (·103 s) when the best

solution is found. This plot clearly shows the benefit of applying the feedback mechanism as α= 0 (i.e., not

using the feedback mechanism) reports the highest average gap to the best solution (i.e., 0.9%) while α= 1

(i.e. using the feedback mechanism considering only the previous routing solution) has the lowest average

gap to the best solution (i.e., 0.5%) with approximately the same average computational time (i.e., 8400 s).

As the other α values that are a bit faster in finding the best solution (i.e., 0.9%, 0.2% and 0.6%) are worse

with respect to the average gap to the best solution (i.e., 0.77%, 0.7%, 0.78%, respectively), we decide to

use the initial value of α = 1 for our experiments which also reports the best solution for most instances

(i.e., 7/24, other α values # is best ≤ 4).
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Figure 4 Analysis of the value of α (i.e., label next to the point) in the feedback mechanism (Section 7.3) with

respect to the average computation time (·103 s) and average gap to the best solution (%).
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The two diversification mechanisms used in the decomposition method (Section 5) are 1) to start at a

random node in the intersection graph GI when finding a minimum clique cover and 2) to change the value

of α in the feedback mechanism. Note that the second mechanism is only applied when the first does not

produce a new set cover. On the same benchmark instances as above (Section 8.2), Table 4 presents the

number of instances for which each of the diversification mechanisms was used together with the average

integrality gaps (%) before and after applying the mechanisms. With increasing size of the instances (i.e.,

number of demand nodes |W |), the diversification mechanisms are less used as there exist more set covers

in total which can easily be found with the default setting of the clique cover approach (Section 6). The

first mechanism (i.e., clique cover) is used more often and leads to an average decrease of 1.27% of the

integrality gap, while the second mechanism (i.e., alpha value) reports an average decrease of 0.25% of the

integrality gap for the smallest dataset. Since both mechanisms on average lead to an improvement when

applied (even if the alpha value diversification does not seem to add much value), we decide to keep them in

the decomposition method for the subsequent experiments as both do not require additional computations

when not used.

Table 4 Analysis of the diversification mechanisms used in the decomposition method (Section 6).
Diversification mechanisms W50 W100 W200

# instances 8 8 8
Av. int. gap (%) 0.08% 0.48% 1.27%

# clique cover diversification (ccd) used 8 8 3
Av. int. gap ccd used (%) 0.08% 0.48% 0.08%
Av. int. gap before ccd (%) 1.63% 1.66% 0.87%

# alpha value diversification (avd) used 3 0 0
Av. int. gap avd used (%) 0.14% - -
Av. int. gap before avd (%) 0.39% - -

8.4. Comparison of the solution methods.

In this section, we assess the performance of the developed solution method and first compare it with an

additional approach that uses the set construction method constructSet() presented in Fischer et al. (2023b)

for the SCP. Given a set cover V sel, we then apply column generation (Section 7) to solve the CVRP-IF as in

our solution method. Algorithms 2 - 3 are replaced by the procedure constructSet() that generates a set cover

by iteratively adding nodes until the resulting set is a set cover. This procedure first selects a demand node at

random and then chooses a candidate location that covers this demand node and maximizes the total number

of demand nodes that are covered. Finally, it checks for redundant nodes, that is, nodes that can be removed

from V sel while it continues to be a set cover. We refer to this approach as the Iterative method. In Table 5,

we observe that for some of the instances of the largest dataset (i.e., W600) both methods were not able to

find a solution within the time limit. This is mainly because of the difficulty of the routing problem which
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used more than 90% of the time on average. On average over the instances that both methods were able to

solve, the Clique method clearly outperforms the other method with respect to the number of best solutions

and the average gaps of the objective value to the best solution found by the two methods. Furthermore, the

Clique method was able to find and treat more set covers on average. For the datasets W50 and W200 the

Iterative method returned its best solution faster than the Clique method, and for the largest dataset (i.e.,

W600) the Iterative method needed less iterations to find its best solution. Nevertheless, those differences

in time and number of iterations are in general small compared to the superior solution quality of the Clique

approach.

Table 5 Comparison of the solution methods based on results aggregated over the datasets

W50,W100,W200, and W600.
W50 W100 W200 W600

Iterative1 Clique Iterative1 Clique Iterative1 Clique Iterative1 Clique

# feasible solutions 36 36 36 36 36 36 21 21
# is best 6 35 8 29 9 27 8 13
Av. gap to best solution (%) 0.75% 0.01% 0.49% 0.06% 0.45% 0.29% 0.48% 0.29%
Av. # treated set covers 25349 30922 36943 39296 18008 18127 1022 1035
Av. time best solution (s) 5246 10617 17315 13383 14718 15055 17532 16796
Av. iteration best solution 69780 22969 72050 21774 8346 8013 354 389
Av. time SCP (%) 1.82% 31.24% 1.94% 5.89% 1.44% 5.97% 0.64% 3.29%
Av. time CVRP-IF (%) 98.18% 68.76% 98.06% 94.11% 98.56% 94.03% 99.36% 96.71%

Fischer et al. (2023a) propose a heuristic Benders decomposition approach to solve the Cm-CTP-IF in

which a SCP is solved in the master problem and a CVRP-IF is solved with column generation in the

subproblem. In this heuristic, the Benders cuts that are added to the master problem are approximated, as

deriving valid Benders cuts leads to a dramatic increase in computation time. We refer the reader to Fischer

et al. (2023a) for more details on their approach. For the instances used in their and our experiments, namely,

|W | ∈ {50,100,200},w ∈ {100,200,300},m ∈ {5,10,20}, f ∈ {1,2,3}, Table 6 shows the number of

feasible solutions, and for the instances that all methods were able to solve, the number of times each

method returned the best solution and the average gap to the best solution (%). Theses results clearly show

the superiority of the Clique approach compared to all previous methods for the Cm-CTP-IF as it returned

the best solution for most instances (i.e., 48/51) and reported the lowest gap to the best solution on average

(i.e., 0.01%).

9. Conclusion
In this article, we formulated the Cm-CTP-IF which is inspired by a waste collection problem with interme-

diate disposal facilities to accommodate the usage of smaller vehicle types. It is a variation of the Cm-CTP-

R introduced in Fischer et al. (2023b) which is closely related to the m-CTP. We extended their proposed

1 Fischer et al. (2023b)
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Table 6 Comparison of the solution methods with respect to the MILP formulation (Section 4) and the

heuristic Benders decomposition approach (Fischer et al. 2023a) on a subset of instances (i.e.,

|W | ∈ {50,100,200},w ∈ {100,200,300},m∈ {5,10,20}, f ∈ {1,2,3}).
MILP Benders Iterative Clique

# feasible solutions 51 81 81 81
# is best 0 0 7 48
Av. gap to best solution (%) 10.59% 6.37% 0.70% 0.01%

road-network-based MILP formulation and developed a solution method that decomposes the problem into

a SCP and a CVRP-IF to handle larger instances derived from real-life data. We applied column generation

to solve the CVRP-IF and presented a novel approach for the SCP that exploits the structure of the problem

to efficiently find a set cover by using a graph theoretical approach. We also compared our method with an

approach that uses the set construction method presented in Fischer et al. (2023b) and a heuristic Benders

decomposition approach introduced in Fischer et al. (2023a).

The results show that the Cm-CTP-IF is a difficult problem and for some of the largest instances no

solution could be found within the time limit. Nevertheless, our solution method which includes validated

feedback and diversification mechanisms clearly outperforms the other existing methods with respect to the

number of best solutions and the average gaps to the best solution. The proposed road-network structure

and the concept of ng-path are beneficial to solve the routing problem faster, which has an impact on the

computational efficiency as most of the time is consumed in the CVRP-IF or more precisely in the PP.

Further research will be needed to improve the dynamic program for solving the PP so that less time is

spent on that problem and more set covers can be evaluated within the time limit. For instance, to speed up

the dynamic program, the road network could be exploited by considering promising subsets of the selected

candidate locations that lie between the respective pair of facilities (i.e., start and end facilities) of each PP,

resulting in routes that are well suited for each pair. On the graph theoretical aspect, it could be interesting to

study whether the intersection graph of subtrees of a planar graph (instead of a tree) has some structure that

could be exploited. Indeed, it is reasonable to assume the walkable network to be planar. The goal would

therefore be to directly apply some minimum clique cover algorithm to the whole graph, without the need

to restrict to a selected spanning tree.
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