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Abstract. This work deals with the static stochastic bicycle repositioning 
problem by proposing new formulations, an exact solution method, new valid 
inequalities, and new lower bounds. The problem is NP-hard, and it arises in the 
context of bicycle-sharing systems that need to ensure quality of service. The 
latter is understood as the availability of bicycles and docks to park them in a 
network of stations. Each station has a random request that can be in the form 
of either pickups or deliveries of bicycles. The static nature of the problem is 
because none of the input parameters change during the solution process, and 
stochasticity is given exclusively in the form of random variables for the station 
requests. The problem is formulated as a variant of the stochastic vehicle routing 
problem, and we propose an implementation of the integer L-shaped method 
to solve it. To speed up the resolution, we create customized lower-bounding 
functionals based on a complexity result we developed for the recourse problem. 
The results of computational experiments show that our implementation is 
superior to those in the literature, which leads us to generate and propose a new, 
challenging benchmark set of instances. 
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1 Introduction

The static stochastic bicycle repositioning problem (SBRP) arises in bicycle
sharing systems (BSS), a particular case of shared mobility systems when the
means of transport is a set of bicycles (Laporte et al., 2018). A BSS typically
comprises a network of stations with docks (to park the bicycles), requests for
bicycles at each station, and a capacitated vehicle fleet to reposition them by
picking them up or delivering them. These requests are not known in advance,
and they are revealed when a vehicle arrives at a station. There is also a
centralized depot from which bicycles can be picked up or delivered. To be an
effective means of transportation, the BSS must ensure the quality of service,
which is achieved by making available both bicycles and docks (Datner et al.,
2019). The problem is to determine a set of repositioning decisions for the fleet of
vehicles to follow such that requests are exactly or partially satisfied, incurring
a non-negative penalty in the latter case. Following the definitions of Pillac
et al. (2013) for static and dynamic stochastic processes, we characterize this
repositioning problem as static because it involves data with partially known
values represented as random variables whose realizations are only revealed
during the visit to the stations.

The SBRP, which has received little attention from the literature on exact
methods, is an NP-hard problem, as it can be seen to generalize stochastic
vehicle routing problems with recourse by imposing the conditions that each
station be visited exactly once, and all vehicle routes must start and end at the
depot. The few exact methods that have been implemented for the SBRP have
relied on decomposing the problem into simpler sub-problems by mathematical
programming techniques. However, these same methods have not taken into
account successful techniques that speed up convergence to the optimal solution,
like the lower bounding functionals (LBFs) of Birge and Wets (1986). Without
such techniques, numerical results show that considerable computational times
are required to obtain good feasible solutions for the SBRP, and few optimal
solutions have been reported.

Recently, the disaggregated integer L-shaped (DL-shaped) method was pro-
posed by Parada et al. (2024) as an efficient method to solve stochastic vehicle
routing problems, and this paper proposes an implementation of the method
to solve the SBRP. The method decomposes solutions into a finite number of
disjoint components and then builds on the integer L-shaped method of Laporte
and Louveaux (1993) to introduce different and more efficient LBFs and opti-
mality cuts. These new LBFs are linear inequalities built from lower bounds of
the recourse value of a component, which help to bind the recourse for a large
number of solutions (Laporte et al., 2002; Jabali et al., 2014). Adding such
inequalities in the search process has been shown to reduce the number of enu-
merated solutions (Côté et al., 2020). The suitability of the DL-shaped method
for the SBRP arises from how the latter is formulated as a stochastic vehicle
routing problem, with the a priori paradigm of Bertsimas et al. (1990). This
formulation minimizes the vehicle travel cost plus the expected recourse value.
The recourse value is a linear program that minimizes penalties for partially
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unsatisfied requests, subject to a set of bicycle flow constraints in a capacitated
network.

The contributions of this paper are as follows. First, we propose a new
dynamic programming (DP) formulation to compute the recourse value. This
new formulation has been shown to be very efficient. Next, we propose an
implementation of the DL-shaped method for the SBRP, which uses new valid
inequalities and new recourse lower bounds. These bounds were inspired by the
1-bicycle repositioning problem, a variant of the recourse problem that does not
require a set of a priori routes. We demonstrate that this variant is NP-hard to
solve. Lastly, we propose a new set of challenging instances that require several
vehicles, unlike the existing benchmark set where the majority of instances need
a single vehicle.

The rest of the paper is structured as follows. A literature review is presented
in Section 2. The problem is mathematically formulated in Section 3. Section
4 provides new lower bounds for the fleet size and for the recourse. Section 5
provides the theoretical and practical aspects behind the DL-shaped method.
Section 6 describes valid inequalities from the literature and new ones that are
used by the DL-shaped method, and Section 7 details the implementation of
the method. Section 8 presents the computational results of our study. Lastly,
we present our conclusions in Section 9.

2 Literature Review

This section conducts a literature review on the SBRP, structured as follows.
First, a historical retrospective of BSS is presented. Second, the diverse com-
binatorial optimization problems that are typically encountered and typically
manifest in BSS settings are shown. Third, the particular BSS addressed in this
article is characterized by the reference to where it was proposed. Finally, this
review highlights the contributions of the cited reference and expands on the
superior performance achieved by our proposed approach.

Bike-sharing systems (BSS) have a rich history of nearly 50 years, embody-
ing the pursuit of convenient and low-emission transportation options through a
blend of public and private policies (DeMaio, 2009). Over the past few decades,
these systems have experienced remarkable growth, with some expanding to
encompass thousands of bicycles and hundreds of stations, such as the BSS in
Montréal, Canada (Bixi-Montreal, 2024). Furthermore, recent trends suggest
that the worldwide market size for BSS will continue to grow and nearly triple
its market valuation by the end of the 2020s (Yahoo-Finance, 2023). However,
managing the quality of service in these large-scale systems presents a com-
plex challenge (Alvarez-Valdes et al., 2016). The significance of maintaining
adequate BSS performance extends beyond the systems themselves, as they of-
ten operate as integral components within broader multi-modal and integrated
transportation networks (Kuo et al., 2023). For a comprehensive review of con-
temporary BSS studies, as well as broader mobility systems, interested readers
are encouraged to explore the works of Shui and Szeto (2020) and Todd et al.
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(2021).
Diverse combinatorial optimization problems arise in BSS due to significant

variations in their designs and features, tailored to meet the specific needs of
users and cities. For instance, some BSS adopt free-floating bicycles, allowing
users the convenience of picking up and dropping off bikes anywhere in the ser-
vice area for spontaneous trips. Such free-floating BSS gives rise to problems
involving Markov decision processes (Luo et al., 2022). In contrast, station-
based BSS have fixed docking stations where bikes must be returned after use,
giving rise to inventory routing problems and vehicle routing problem variants
(Brinkmann et al., 2016; Erdoğan et al., 2014). Multi-modal integration with
public transit networks further enhances user experiences, enabling a seamless
combination of bikes with other transportation modes and resulting in multi-
layer network design problems for the different modes (Kuo et al., 2023; Crainic
et al., 2022). Similar issues arise when integrating electric scooters into BSS, as
their usage differs from bicycles, often serving for short trips in high-employment
areas (Caspi et al., 2020). Another category of problems occurs when BSS de-
sign prohibits the repositioning vehicle fleet from using stations for temporary
bicycle storage and transshipment (Bruck et al., 2019) or when a limit is im-
posed on the number of times that a bicycle can be loaded and unloaded from
a repositioning vehicle (Chemla et al., 2013). In all these problems, the objec-
tive depends on whether a repositioning time is considered, with goals typically
centered on minimizing the total time for bicycle repositioning or routing costs
of the repositioning fleet. Additional objectives often seek to minimize penal-
ties for unsatisfied or partially satisfied demand at stations (Raviv et al., 2013).
Furthermore, BSS features may include mobile apps, user accounts, and mem-
berships, providing exclusive benefits and discounted rates to encourage desired
user behaviors, such as bicycle returns to specific locations or adherence to des-
ignated routes. Such features give rise to pricing problems in BSS, where the
objective aims to maximize utility or profit (Haider et al., 2018).

This article deals with a station-based BSS without additional features and
a vehicle routing problem with stochastic pickups and deliveries that arises in
order to manage and reposition bicycles in the many stations. The problem was
proposed in Dell’Amico et al. (2018), and the objective is to minimize the repo-
sitioning time while allowing transshipment between stations. Furthermore, a
two-stage program is formulated where each feasible first-stage solution is a set
of a priori routes, and the second stage sees the realization of a finite number
of scenarios where, in each one, the unsatisfied demands of the stations in the
a priori routes must be minimized. To solve the problem, the authors begin by
computing an initial upper bound from a heuristic, which is based on the near-
est neighbor and constructive search of Toth and Vigo (2014). A novel aspect is
introduced by developing insertion and deletion operators that take into account
the correlations between pairs of stations with different types of requests (one
pickup and the other delivery, or vice versa). Using the initial upper bound,
the authors implement five different exact algorithms, including separation al-
gorithms for subtour inequalities, Bender’s feasibility, and optimality cuts. This
methodology is implemented for a set of 22 instances whose optimal solutions
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require one vehicle for the majority of the cases.
The SBRP, as introduced by Dell’Amico et al. (2018), extends the problem

initially proposed by Hernández-Pérez and Salazar-González (2004), known as
the one-commodity pickup and delivery traveling salesman problem (1-PDTSP).
Alternatively, one can view the SBRP as closely related to the single-commodity
vehicle routing problem with split pickups and deliveries (SPDVRP) outlined
by Li et al. (2023). The main difference with the latter two is in the fleet
size and number of visits allowed to the stations. For the 1-PDTSP, exactly one
vehicle needs to be used to visit each station exactly once while in the SPDVRP,
multiple station visits are allowed by a fleet of vehicles. In the SBRP, a fleet of
vehicles is available while maintaining the constraint that each station be visited
exactly once. By considering different features besides fleet size and number of
station visits, many other closely related problems to the SBRP arise. We refer
the interested reader to Table 1 in Li et al. (2023) for further details on these
closely related problems.

The primary contribution of Dell’Amico et al. (2018) lies in their design
and implementation of the exact approaches for the problem. In this article,
we extend their work by developing enhanced exact approaches. Notably, we
compare the authors’ most efficient exact approach, the so-called Multicut algo-
rithm, with our own methods and demonstrate the superior performance of the
latter. We show that our proposed approaches achieve more optimal solutions,
exhibit better average gaps, and accomplish these results in a fraction of the
computational time required by the Multicut algorithm.

3 Mathematical formulation

This section presents the notation that will be used throughout this paper, as
well as a mathematical formulation of the problem. Section 3.1 provides the
definition of the recourse, and Section 3.2 presents a novel DP formulation to
compute the recourse. Section 3.3 proposes a generalization of the recourse and
shows the complexity of this new problem.

The SBRP is defined as follows. Let G = (V,A) be a directed graph where
V = {0, 1, .., n} is the set of nodes with node 0 being the depot. N = {1, ..., n}
are the station nodes, and A = {(i, j) ∈ V × V : i 6= j} is the set of arcs.
Each arc (i, j) ∈ A has an associated travel time cij . Each station i ∈ N has
a maximum capacity of Hi bicycles as well as a desired balanced level di (with

Hi ≥ di). The random station requests are modeled via a vector (qξi ) for each

station i and scenario ξ in the finite set of all scenarios Ξ. qξi can take positive
or negative values to denote pickups or deliveries respectively. Each scenario ξ
occurs with a given probability pξ such that

∑
ξ∈Ξ p

ξ = 1. The scenario request
needs to be exactly or partially satisfied, in the latter case incurring a penalty
cost of ∆ for each unsatisfied bicycle. These partially unsatisfied bicycles cannot
exceed the quantities w+

i = min{dδHie, Hi−di} and w−i = min{dδHie, di}, with
δ given as an input parameter, and w+

i , w
−
i denoting the maximum unsatisfied

pickups and deliveries at station i.
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Let xij be a binary variable that indicates whether arc (i, j) ∈ A is traversed
or not, and z be a strictly positive integer variable denoting the number of
vehicles to be used. Let Q(x) denote the total expected recourse cost of the
solution x. The model follows:

min
∑

(i,j)∈A

cijxij +Q(x) (1)

s. to
∑

i∈V \{0}

x0i = z, (2)

∑
i∈V

xij = 1 ∀j ∈ N, (3)∑
i∈V

xji = 1 ∀j ∈ N, (4)

x(S) ≤ |S| − 1 S ⊆ N, |S| ≥ 2, (5)

x(P ) ≤ |P | − 1 P ∈ P inf , (6)

xij ∈ {0, 1} (i, j) ∈ A, (7)

z ∈ Z+. (8)

The objective in (1) is to minimize total travel time plus the total expected
recourse cost. Constraints (2)–(4) are connectivity constraints. Constraints
(5) are subtour elimination constraints where x(S) =

∑
i,j∈S xij . For compu-

tational efficiency, 2-cycles are directly added to the model, whereas 3-cycles
and above are dynamically added. Constraints (6) are infeasible path con-
straints that are dynamically added in the resolution, where P denotes a se-
quence of stations (a path) of the form P = (i1, . . . , ij , . . . , it), ij ∈ N, t ≤ n,

x(P ) =
∑t−1
j=1 xj(j+1), and P inf is the set of all infeasible paths. Lastly, equa-

tions (7)–(8) define the domain and the nature of the variables.

3.1 Recourse Calculation

The recourse can be calculated as follows. For a given solution xν , let Rν be the
set of routes, where each one starts and ends at the depot. Then, the expected
recourse cost is defined as:

Q(xν) =
∑
r∈Rν

Q(r), (9)

where Q(r) is the cost of the expected number of unsatisfied bicycles in route
r = (0, i1, . . . , it, 0) and is defined as follows:

Q(r) = ∆
∑
ξ∈Ξ

pξQ(ξ, r). (10)
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Q(ξ, r) is the number of unsatisfied bicycles for route r and scenario ξ and can
be calculated by solving the following linear program proposed by Dell’Amico
et al. (2018). Let N(r) be the set of stations of route r, and π+(i) be the
successor of station i in route r. The number of bicycles inside the vehicle is
represented by the variable fξi , while the bicycles that were not picked up are

counted by the variable wξ+i , and those that were not delivered are counted in

wξ−i . The linear program follows:

Q(ξ, r) = min
∑

i∈N(r)

(wξ+i + wξ−i ) (11)

s. to fξi = fξπ+(i) + qξi + wξ−i − w
ξ+
i i ∈ N(r), (12)

0 ≤ wξ+i ≤ w
+
i i ∈ N(r), (13)

0 ≤ wξ−i ≤ w
−
i i ∈ N(r), (14)

0 ≤ fξi ≤ Q i ∈ N(r). (15)

The objective (11) minimizes the recourse cost of route r by summing all

wξ+i and wξ−i variables. These excess and shortage variables are bounded in con-
straints (13) and (14) with w+

i = min{dδHie, Hi−di} and w−i = min{dδHie, di}.
Constraints (12) and (15) are flow conservation of bicycles at each station.
Throughout this paper, we adopt the convention that the expected recourse
cost of a route of stations Q(r) = (0, P, 0) will be equivalently denoted as Q(P ),
with P being a path. Lastly, whenever the program in (11)–(15) is infeasible
for a given scenario, an infeasible path inequality (6) is added to the model.

3.2 A New Dynamic Programming Formulation for the
Recourse

This section proposes a DP formulation that can solve the recourse problem in
pseudo-polynomial time, which turns out to be very efficient in practice.

The recourse problem of route r = {0, i1, . . . , it, 0} and scenario ξ is divided
into t + 1 stages where each stage k = 1, ..., t + 1 corresponds to a visit to a
station following the sequence in r. The requests at the stations are denoted
by qξk and can be positive or negative in the case of a pickup or a delivery.

Define the variable xξk ∈ [0, Q] as the vehicle load after repositioning operations

at stage k, and set xξt+1 = 0. Additionally, for k = 1, ..., t, define the variables

0 ≤ wξ+k ≤ w
+
k and 0 ≤ wξ−k ≤ w

−
k , for the missed pickups and missed deliveries,

similar to equations (13) and (14). Let Hξ
k(xξk) be the cost function. The DP

algorithm follows:

Hξ
k(xξk) = min

wξ−k ∈ [0,w−
k ]

wξ+k ∈ [0,w+
k ]

0≤xξk+wξ−k −w
ξ+
k ≤Q−q

ξ
k

{
wξ+k + wξ−k +Hξ

k+1(qξk + xξk + wξ−k − w
ξ+
k )

}
(16)
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The DP sums a each stage the minimum missed pickups or deliveries plus
the cost of going forward with residual vehicle capacity qξk + xξk + wξ−k − w

ξ+
k .

The optimal cost is obtained by min0≤x0≤Q{H
ξ
0 (x0)}.

Solving this DP algorithm has a pseudo-polynomial time complexity ofO(nQw∗),
where w∗ = max

k=1,...,t
{w+

k , w
−
k }.

3.3 Complexity

In Parada et al. (2024), the authors demonstrated that the DL-shaped method
can be enhanced by incorporating LBFs to gradually bound the second stage
cost from below. They also proposed a new type of LBFs that are based on sets
of nodes, which are used in conjunction with their optimality cut. The LBF of
a given set of nodes requires calculating a lower bound on the recourse. The
problem of finding the highest lower bound can be formulated as finding the
route that leads to the lowest recourse. Parada et al. (2024) had an easy way
to find such a route given the properties of their problem. In this section, we
show that finding such a route for the SBRP is an NP-hard problem.

To demonstrate our results, we first introduce a modification of the recourse
model from Section 3.1. Suppose we want to determine if a specific set of
stations can be satisfied by a single vehicle, without considering the routing cost.
This setting resembles the recourse model, with the exception that no routes
are provided as input. We refer to this problem as the 1-bicycle repositioning
problem (1-BRP).

Consider the following 1-BRP instance. Define N = {i1, . . . , i13} stations
with one scenario and bicycle requests of {3, 6, 6, 7, 7, 7, 8, 8, 8, 9, 22,−22,−22},
and a vehicle capacity of Q = 22. Assume, without loss of generality, that
only stations i1 and i11 allow missed bicycles equaling their requested values of
3 and 22. Figure 1 shows a solution to the instance as a sequence of stations
starting and ending in the depot. Different colors (grey and red) indicate pickup
and delivery requests without missed bicycles, while white denotes stations with
missed bicycles. The number of unsatisfied requests is shown by the correspond-
ing w+

1 , w
+
11 values. The residual capacity of the vehicle is also displayed above

the arcs.
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Figure 1: A Solution to the 1-Bicycle Repositioning Problem.

A further examination of Figure 1 shows that the sequence of stations is not
unique. Stations with the same number of bicycle requests, such as i4, i5, or
i7, can be swapped, creating different sequences. Notably, stations i1 and i11

can be moved anywhere in the sequence, and the resulting number of missed
bicycles will remain the same. However, the solution structure remains unique,
consisting of groups of three stations with no unmet bicycle requests, totaling
22 requests, followed by a station with a negative request. This unique triplet
arrangement can be used to prove the NP-completeness of the 1-BRP by using
a transformation from the following problem.

Definition 1. 3-Partition. Let B be a finite set of 3s non-negative integers
{b1, b2, ..., b3s} and Q a non-negative integer such that the following two con-

straints
∑3s
i=1 bi = sQ and Q

4 < bi <
Q
2 , for all 1 ≤ i ≤ 3s are satisfied. The

goal is to partition B into disjoint sets of triplets, such that the sum of each
triplet is Q.

Proposition 1. Finding a feasible solution for the 1-BRP with a recourse
smaller than or equal to k, where k ≥ 0 and is an integer, is strongly NP-
complete.

Proof. For a given 3-Partition instance, we can create an instance of the 1-BRP
problem in polynomial time using the following transformation. From the 3s
integers, we generate a set of 4s − 1 + dk/Qe stations, where station requests
associated with the 3s integers are assigned in a way that satisfies the two
constraints of 3-Partition. Next, there are s− 1 stations with a request of −Q.
The remaining dk/Qe stations have a request of k(modQ) for the first one and
Q for the rest. These dk/Qe stations allow maximum missed requests equaling
their demand. All the other stations do not allow missed requests. The vehicle
capacity is set to the value of Q.
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In a feasible 1-BRP solution created from 3-Partition, the stations are ar-
ranged so that there are groups of stations consisting of a 3-Partition triplet plus
a negative request station. The remaining stations that allow missed requests
can be sequenced anywhere, as they will always have maximum missed requests
regardless of their position. Therefore, the 1-BRP has a feasible solution if and
only if 3-Partition has one, and since 3-Partition is strongly NP-complete the
same holds true for the 1-BRP.

Figure 1 is an example of a recourse of k = 25 missed bicycles and a 3-
Partition instance {6, 6, 7, 7, 7, 8, 8, 8, 9} with s = 3. This solution has an equiv-
alent 3-Partition solution given by the three triplets of gray stations.

In Proposition 1, we encounter a decision problem related to the 1-BRP.
However, our focus is on finding the minimum recourse sequence, as this would
establish a lower bound for the SBRP. The latter is the 1-BRP optimization
problem. In other words, while we have a certificate of NP-completeness for the
decision problem, we are concerned with the optimization problem’s complexity.
It’s evident that a polynomial algorithm for the optimization problem would also
address the decision version, constituting a Turing reduction between the two
problems Garey and Johnson (1979). This, coupled with the NP-completeness
certificate, serves as proof that the 1-BRP optimization problem is NP-hard.

4 Lower Bounds

This section proposes lower bounds for the fleet size and the expected recourse
cost that are used to develop new valid inequalities for the SBRP. Section 4.1
presents the lower bounds for the fleet size, and Section 4.2 presents the lower
bounds for the recourse.

4.1 Lower Bounds for the Fleet Size

This section proposes two lower bounds on the fleet size required to serve a
set of stations S ⊆ N . Section 3.3 demonstrates that finding the least-recourse
feasible route to serve a given set S of stations is an NP-hard problem. We thus
turn our attention to proposing conditions that determine whether S can be
feasibly served or not. These conditions are denoted as feasibility conditions,
and the first bound proposed in this section uses them by enumerating fleet
sizes starting from one vehicle. The second bound embeds the conditions in a
set covering formulation. We begin by proposing the feasibility conditions.

The feasibility conditions build on the following idea. For one scenario, a set
of pickup request stations can be paired together with a set of delivery request
stations to reduce the unsatisfied request of the fleet that visits those two sets.
Assume that these two sets of stations are visited by a fleet of l vehicles, and
consequently, the total fleet capacity is lQ. Then, for the set of pickup requests,
we determine if the sum of the maximum unsatisfied pickup quantities, the
sum of delivery requests, and the fleet capacity is less than the sum of the

9

An Integer L-Shaped Method for the Static Stochastic Bicycle Repositioning Problem

CIRRELT-2024-26



pickup requests. If this condition does not hold, it implies that the set S is
infeasible. Similarly, for the delivery requests, we evaluate whether the sum of
the maximum unsatisfied delivery quantities, the sum of pickup requests, and
the fleet capacity is less than the sum of the delivery requests. If this condition
is not satisfied, the set S is also deemed infeasible. These two relations for
pickups and deliveries are consequently referred to as feasibility conditions, and
they are as follows: ∑

i∈S
qξi>0

qξi ≤ lQ+
∑
i∈S

w+
i +

∑
i∈S
qξi<0

|qξi |, (17)

∑
i∈S
qξi<0

|qξi | ≤ lQ+
∑
i∈S

w−i +
∑
i∈S
qξi>0

qξi , (18)

where equation (17) is the pickup feasibility condition and (18) the delivery
feasibility condition. Both conditions need to be satisfied for all scenarios.

In cases where the set S is found to be infeasible based on either the pickup
or delivery condition, we increase l until both conditions are satisfied.

The conditions can be used to find a lower bound of the fleet size to satisfy
the requests for the entire set of stations N . Let l+N , l

−
N be such that:

l+N = min
l≥1

l :
∑
i∈N
qξi>0

qξi ≤ lQ+
∑
i∈N

w+
i +

∑
i∈N
qξi<0

|qξi |, ∀ξ ∈ Ξ

 , (19)

l−N = min
l≥1

l :
∑
i∈N
qξi<0

|qξi | ≤ lQ+
∑
i∈N

w−i +
∑
i∈N
qξi>0

qξi , ∀ξ ∈ Ξ

 . (20)

After computing equations (19), (20) for all scenarios, the following lower
bound K0 on the fleet size arises:

K0 = max{l+N , l
−
N}. (21)

The second lower bound on the fleet size proposed in this section is given by
the following set covering formulation. Let K be a collection of sets of stations
that satisfy conditions (17) and (18) for one vehicle:

K =

{
S ⊆ N |

∑
i∈S
qξi<0

|qξi | ≤ Q+
∑
i∈S

w−i +
∑
i∈S
qξi>0

qξi , and
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∑
i∈S
qξi>0

qξi ≤ Q+
∑
i∈S

w+
i +

∑
i∈S
qξi<0

|qξi |, ξ ∈ Ξ

}
.

Let ζk be a binary variable that takes a value of 1 if set k ∈ K is taken and
0 if it is not, and bik be a parameter taking a value of 1 if station i is in set k
or 0 if it is not. The set covering formulation follows:

min
∑
k∈K

ζk (22)

s.t.
∑
k∈K

bikζk ≥ 1 ∀i ∈ N, (23)

0 ≤ ζk ≤ 1, k ∈ K. (24)

The lower bound on the fleet size is given by K1, computed as the ceiling of
the optimal solution to the problem in (22)–(24).

The size of K is exponential, and solving (22)–(24) to optimality is imprac-
tical. The following column generation (CG) approach is applied. Let αi be
the dual variable associated with the covering constraints (23) and zi a variable
taking a value of 1 whenever station i is in subset k. The pricing problem is as
follows:

max
∑
i∈N

αizi (25)

s.t.
∑
i∈N
qξi<0

|qξi |zi −
∑
i∈N

w−i zi −
∑
i∈N
qξi>0

qξi zi ≤ Q ξ ∈ Ξ, (26)

∑
i∈N
qξi>0

qξi zi −
∑
i∈N

w+
i zi −

∑
i∈N
qξi<0

|qξi |zi ≤ Q ξ ∈ Ξ, (27)

zi ∈ {0, 1} i ∈ N. (28)

The objective (25) maximizes the value of the reduced cost of the entering
variable zi to the set covering problem. Equations (26)–(27) are the feasibility
conditions for one vehicle. Equations (28) are variable definitions.

Lastly, we can compare both lower bounds K0, K1 in the following expres-
sion:

K = max{K0,K1}. (29)

We set K as the lower bound on the fleet size.
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4.2 Lower Bounds for the Recourse

This section proposes two recourse lower bounds for the recourse of the SBRP.
The bounds use the results of Section 4.1, namely the fleet size required for a
set of stations S ⊆ N .

Let lS = max{l−S , l
+
S } be the fleet size required to serve S, given by the

feasibility conditions (17) and (18). Then, for a given scenario ξ, a lower bound
of the recourse of S is given as follows:

L0(ξ, S, lS) = ∆ max{0, |
∑
i∈S

qξi | − lSQ}, (30)

where the quantity |
∑
i∈S q

ξ
i | − lSQ is the maximum unsatisfied requests in

S given that lS vehicles are minimally required. Next, by setting S = N in
equation (30), and considering the fleet size lower bound K, the following lower
bound on the recourse arises if K vehicles are used:

L1(K) =
∑
ξ∈Ξ

pξL0(ξ,N,K), (31)

5 The DL-shaped Method

This section presents the theoretical and practical aspects of the method. First,
the recourse function Q(x) is relaxed and bounded from below by the sum of
a set of continuous non-negative variables θi defined for each station i. The
authors refer to the inclusion of these variables in the model as a way to disag-
gregate the recourse. A master program is then constructed with the following
objective function:

min
∑

(i,j)∈A

cijxij +
∑
i∈N

θi. (32)

The value of θi variables can be viewed as their contribution to the cost of
the second stage, and this value is optimized by dynamically adding optimality
cuts from Parada et al. (2024), denoted as path cuts (P-cuts). A P-cut is added
for each feasible path of stations found during the resolution, and the cut binds
the xij variables of the path to the θi variables of the stations in that path.
Consequently, a P-cut will be active whenever the corresponding path is active
in a solution. The P-cut follows:∑

i∈N(P )

θi ≥ Q(P ) (x(P )− |P |+ 1) , (33)

where N(P ) is the set of stations in P . In Parada et al. (2024), it was
proved that if the recourse function Q(x) respects the monotonicity condition,
then the method will yield an optimal solution, if one exists in a finite number
of iterations of the method. This property requires that the expected recourse
cost of a path P must be no less than that of any path P ′, where P ′ is a
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subpath of P obtained by the removal of stations at the start or at the end of
P . Consequently, P ′ is denoted as a subpath of P and its definition follows:

Definition 2. Let P = (i1, . . . , it) be a path of stations that yields a feasible
solution to the recourse problem with respect to equations (11)–(15) for all sce-
narios. P ′ is a subpath of P if it can be written as P ′ = (ia, . . . , ib) for some
1 ≤ a ≤ b ≤ t, and it also yields a feasible solution to the recourse problem in
equations (11)–(15) for all scenarios.

Next, denote the set of subpaths of path P as P. As Dell’Amico et al. (2018)
state, removing the first and/or last stations of a feasible path yields a feasible
subpath, and this means that all the subpaths in P are feasible. We extend the
definition of the monotonicity condition of Parada et al. (2024) to the SBRP as
follows:

Definition 3. An instance of the SBRP satisfies the monotonicity condition if,
for any feasible path P ⊆ N , the following inequality holds:

Q(P ) ≥ Q(P ′), P ′ ∈ P, (34)

Proposition 2 proves that the recourse function of the SBRP respects the
monotonicity condition.

Proposition 2. The SBRP respects the monotonicity condition.

Proof. The expected recourse cost for both Q(P ) and Q(P ′) is computed using
the program in equations (11)–(15). As P has at least one additional station
compared to P ′, the program Q(P ) will include one extra flow variable and two
penalty variables, all of which are non-negative. Furthermore, the objective in
equation (11) is monotonically increasing with respect to the number of wξ+i
and wξ−i variables. This implies that the additional penalty variables in Q(P )
cannot reduce the objective’s value compared to the program Q(P ′). It follows
that the cost Q(P ) is necessarily greater than or equal to Q(P ′).

6 Valid Inequalities

This section builds on the theoretical properties described in Section 4 and on
the disaggregation of the recourse in Section 5 to develop new valid inequalities
for the SBRP.

6.1 Recourse Lower Bound Inequalities

The DL-shaped method relies on a new type of LBF called set cuts (S-cuts)
(Parada et al., 2024) to improve the convergence of the method. In the SBRP,
these S-cuts take a set S of stations as input, the minimum number of vehicles
required to serve S as lS = max{l−S , l

+
S }, and a lower bound on the expected

recourse of this set, which we denote as L(S) =
∑
ξ∈Ξ p

ξL0(ξ, S, lS). The result
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is a cut that bounds the set whenever a path that consecutively visits the stations
of S is active in a given solution.

In Section 5, the LBFs were mentioned as a means to accelerate the conver-
gence of the DL-shaped method to the optimal solution. Then, for a set S ⊆ N ,
inequality: ∑

i∈S
θi ≥ L(S) (x(S)− |S|+ lS + 1) , (35)

is a S-cut that is valid for the SBRP. In the inequality, lS is the minimum
number of vehicles required to serve S. We refer to Parada et al. (2024) for
proof that the S-cuts are valid inequalities.

Next, the following inequality:∑
i∈N

θi ≥ L1(K)−∆Q(z −K) (36)

is valid for the SBRP. Validity of this inequality arises from the fact that
L1(K) was proposed in Section 4 as a lower bound on the recourse when K
vehicles are used to satisfy all the stations in N . If z > K, this means that
there are at least Q(z − K) additional bicycle requests that can be satisfied.
The recourse can be penalized by a factor of ∆ times the additional bicycle
requests served.

From equation (30), another valid inequality can be developed if all arcs in

G are individually considered. Let σξij = max{0, |qξi + qξj | −Q} be the recourse
cost associated with traversing arc (i, j) in scenario ξ. Then, the inequality:∑

i∈N
θi ≥ ∆

∑
(i,j)∈A

∑
ξ∈Ξ

pξσξijxij , (37)

is valid for the SBRP. The validity of this inequality is given by first defin-
ing the set S = {i, j} for each arc (i, j) ∈ A. In the SBRP, at most one
vehicle can traverse each arc, so equation (30) for S reduces to L0(ξ, S, 1) =

max{0, |qξi+q
ξ
j | −Q}. It follows that any solution using a given set of arcs can-

not have a smaller expected recourse cost than the sum of the lower bounds on
each arc.

Equations (36) and (37) are added at the root node of the DL-shaped
method.

6.2 Infeasible Path Inequalities

The infeasible path inequality (6) is a valid inequality that is dynamically added
whenever there is a path P in the resolution that is infeasible for the recourse
problem in (11)–(15), for at least one scenario. In this case, we search for the
smallest infeasible subpath and add an inequality (6) for it.
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6.3 Infeasible Set Inequalities

The conditions defined by equations (17) and (18) can be extended to find
sets of stations that do not satisfy either condition. First, suppose that an
infeasible set of stations S ⊂ N is given. From equations (19) and (20), compute
lS = max{l−S , l

+
S } as the minimum number of vehicles required to satisfy S. The

infeasible set inequality follows:

x(S) ≤ |S| − lS , (38)

The validity of this inequality is due to the fact that lS is a lower bound of
the fleet required to visit the stations in S. Then, equation (38) takes the form
of the classical rounded capacity constraints, which are valid inequalities for
variants of the capacitated vehicle routing problem and, in particular, for the
SBRP.

There are two ways in which we identify infeasible sets of stations. First,
starting from a given route r = (0, i1, . . . , it, 0), denote set S = {i1, . . . , it} and
compute lS . If lS is strictly greater than one, the route requires at least one
more vehicle, and the set S is infeasible. Second, any set of stations violating a
subtour elimination constraint is also an infeasible set.

6.4 Infeasible Arc Inequalities

The infeasible arc inequalities were proposed in Dell’Amico et al. (2018) as a
direct consequence of properties taken from the traveling salesman problem with
pickups and deliveries, as proposed by Hernández-Pérez and Salazar-González
(2004). These properties define a set of infeasible arcs Ainf , and the inequalities
are as follows:

xij +
∑
h∈N

xjh ≤ 1, (i, j) ∈ Ainf , (39)

∑
h∈N

xhi + xij ≤ 1, (i, j) ∈ Ainf . (40)

We include these inequalities at the root node of our branch and cut frame-
work.

7 Implementations of the DL-shaped Method

To solve the SBRP, we implemented three different variants of the DL-shaped
method proposed by Parada et al. (2024). The variants differ based on the
choice of one of the three types of optimality cut separation routines that we
propose.

The DL-shaped method solves the problem like a branch-and-cut algorithm.
A model is created in a mixed-integer solver that takes care of solving the
linear relaxations and performing branching to find integer solutions. At each
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node of the branch-and-bound tree, the solver calls user-defined methods to
identify violated inequalities. In those methods, we search for violated subtour
elimination, S-cuts, infeasible sets, infeasible paths, and optimality cuts. The
solver initialization includes the following two steps:

a) Compute the lower bounds K0 and K1 on the fleet size and compute the
expected recourse cost as L1(K).

b) Build the model with objective (32) and constraints (2)–(8), (36), (37),
(39), (40). Provide an upper bound value to the problem if one is given.

For step (b), we provide an upper bound computed by means of the Adaptive
Large Neighborhood Search (ALNS) heuristic of Ropke and Pisinger (2006).

Next, upon an incumbent solution xν found by the solver, the following four
steps are executed:

c) Build a graph G(xν) with all the non-zero valued arcs in xν and enumerate
all connected components of G(xν).

d) For each connect component S of G(xν), check if it violates subtour in-
equality (5). If so, compute the minimum number of vehicles required to
satisfy S, namely lS = max{l−S , l

+
S } from equations (19) and (20), and add

an infeasible set inequality (38) to the model.

e) For each connect component S with a violated subtour or infeasible set
inequality, compute recourse lower bound given by (30). If its S-cut (35)
is violated, add it to the model.

f) If no violated inequality has been found in steps (c)-(e) and the solution
xν is integral, check the feasibility of each path of the solution by com-
puting the end load feasibility window of Dell’Amico et al. (2018). Add
an infeasible path inequality (6) for each infeasible path.

If no inequality is added in steps (a)-(f) and the solution is integral, then so-
lution xν is feasible, and we proceed with one of three optimality cut separation
routines:

1. P&S cuts: For each route in solution xν , we enumerate all subpaths of
contiguous stations of length two or more. For each subpath P , check if
the set S that is composed of the stations in P violates an S-cut, and if so,
add it to the model. Also, compute the recourse cost of subpath P using
(16). Check if P violates a P-cut, and if so, add it to the model. We only
add the five most violated cuts of each kind.

2. Benders cuts: Find a violated Benders according to the equation (18)
of Dell’Amico et al. (2018). To do so, we formulate and solve the linear
relaxation of the dual of the subproblem given by equations (11)–(15).
The cut is provided by the optimal value of the dual variables.
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3. Hybrid cuts: Find a mixture of violated P&S cuts and Benders cuts. To do
so, we invoke the Benders cuts separation routine whenever the solution
uses one vehicle, and the P&S cuts separation routine otherwise. This
approach was inspired by initial computational experiments that showed
the effectiveness of the Benders cut whenever the solution uses exactly one
vehicle and the P&S cuts for solutions using multiple vehicles.

The procedure stops when all the nodes from the branch-and-bound tree
have been explored. In this case, the incumbent solution is the optimal one.

8 Computational Results

This section presents the results obtained for our implementations of the DL-
shaped method in the set of instances of Dell’Amico et al. (2018) and a newly
generated set of challenging instances. The DL-shaped method was implemented
in C++ with Cplex 12.10, and experiments were run in a CPU with the following
characteristics: Intel E5-2683 v4 Broadwell @ 2.1Ghz. A maximum run time of
1 hour was set for each instance.

Section 8.1 describes the existing instances for the SBRP and introduces the
new set of instances. In Section 8.2, the results of our DL-shaped implementa-
tions are compared with the best results of Dell’Amico et al. (2018). Section
8.3 shows the effectiveness of our new valid inequalities. Section 8.4 presents
the results of our vehicle lower bounds K0 and K1. Finally, Section 8.5 presents
the results for the new set of instances. These latter results are compared with
our implementation of the Multicut algorithm of Dell’Amico et al. (2018), the
best algorithm of the authors.

We adopt the following formulas to present our results. For an individual
instance, the gap percentage is computed as (UB − LB)/LB × 100, where UB
and LB represent the upper and lower bounds. When calculating the average
gaps for instances within the same class, we use the non-optimal solutions as
the denominator. Dell’Amico et al. (2018) use different conventions, so to en-
sure comparability with their results, we re-calculated their numerical values
according to our adopted formulas

8.1 Characterization of the Instances

Dell’Amico et al. (2018) proposed 22 instances that were developed from real-
world data gathered from BSS of mostly American cities. Each instance varies
from 20 to 100 stations and has |Ξ| = {30, 91} scenario realizations of the
requests. The authors use ∆ = dεcmine where ε is a parameter and cmin =
min(i,j)∈A{cij}. The parameters ε, δ are each considered to have the following
values: {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. With the various parameter combinations,
a total of 242 instances are defined across 11 distinct ε, δ configurations. The
majority of these 242 instances require one vehicle to be solved, and the scenarios
for a given instance are generally similar to one another in terms of the station
requests.
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Our numerical results demonstrate that instances with similar scenario re-
quests and requiring only one vehicle, such as those from Dell’Amico et al.
(2018), are easier to solve compared to those with very different scenario re-
quests and multiple vehicles. The main reason why is that the resolution of the
latter encounters a higher number of infeasible solutions, necessitating efficient
feasibility checks and recourse bounding procedures by the solution algorithm.
Inspired by this fact, we generated 100 new instances with different scenario
requests and required multiple vehicles.

Specifically, to generate the new set of 100 instances, we placed a given
number of |V | stations (including the depot) in a [0,100]×[0,100] area. To obtain
a challenging set, station requests were randomly defined in the interval [−Q,Q]
within a fixed number of |Ξ| = 20 scenarios. Lastly, we fixed ε = δ = 0.2 for
this new set.

8.2 Results for Values of ε and δ

Results for pairs ε, δ are presented in Table 1. The rows show each of the
ε, δ configurations that were tested (11 in total). Each configuration shows the
values of the Multicut algorithm and our values that were obtained by solving
with the three types of optimality cuts detailed in Section 5. The first column
gives the values of ‘δ’ or ‘ε’ according to the respective parameter value. When
‘δ’ varies, ε = 0.2 is set, and conversely, when ‘ε’ varies, δ = 0.2 is set. ‘Ins’
denotes the number of instances for each pair ε, δ. ‘Opt’ denotes the number
of optimal solutions found, ‘Gap%’ denotes the average percentage gap of the
non-optimal instances, and ‘Time’ denotes the average time in seconds to reach
either the optimal solution or the best solution found.

Multicut P&S cuts Benders cuts Hybrid cuts
δ Ins Opt Gap% Time Opt Gap% Time Opt Gap% Time Opt Gap% Time
0.0 22 2 203.9 3287.5 7 38.2 2427.3 7 38.2 2521.7 7 38.1 2490.1
0.2 22 11 34.2 1847.9 13 22.3 1436.5 13 22.2 1519.0 13 22.2 1542.4
0.4 22 17 2.8 872.2 18 1.9 939.4 20 3.0 761.9 18 1.5 796.6
0.6 22 20 0.3 476.0 17 0.9 1072.7 19 1.1 922.3 20 1.6 820.1
0.8 22 20 0.3 473.3 16 0.9 1265.2 19 1.1 830.0 19 1.1 921.0
1.0 22 20 0.3 461.3 16 0.9 1303.7 20 1.5 952.2 19 1.1 917.2

Total/Avg. 132 90 40.3 1236.4 87 10.8 1407.5 98 11.2 1251.2 96 10.9 1247.9
ε Opt Gap% Time Opt Gap% Time Opt Gap% Time Opt Gap% Time
0.0 22 13 38.5 1690.1 14 23.9 1249.5 14 23.9 1306.6 14 24.0 1292.3
0.2 22 11 34.2 1847.9 13 22.3 1436.5 13 22.2 1519.0 13 22.2 1542.4
0.4 22 10 32.9 2003.3 12 20.1 1688.1 13 23.4 1609.2 12 20.3 1577.2
0.6 22 10 35.4 2063.2 9 16.9 2080.8 11 19.8 1771.6 10 18.5 1914.6
0.8 22 10 37.2 2220.8 9 18.1 2074.6 10 19.0 2044.4 9 18.5 2032.9
1.0 22 8 33.0 2303.5 9 18.4 2123.6 10 19.7 2094.8 9 18.6 2054.3

Total/Avg. 132 62 35.2 2021.5 66 20.0 1775.5 71 21.3 1724.3 67 20.3 1735.6
Global Tot. 264 152 37.8 1628.9 153 15.4 1591.5 169 16.3 1487.7 163 15.6 1491.8

Table 1: Results for the instances of Dell’Amico et al. (2018)

Our methods are superior when compared to the Multicut algorithm. For
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example, for Benders cuts, with respect to the 11 possible parameter pairs, our
implementation of the DL-shaped method improves results from the Multicut
algorithm in 7 of these parameter pairs. Specifically, the improved parameter
pairs are ε = 0.2, δ = {0.0, 0.2, 0.4} and ε = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, δ = 0.2.

When we compare the performance of our three types of optimality cuts,
the Benders cut performs best, although this is partly owing to our available
instance set, which consists mainly of instances requiring one vehicle to solve. To
show this, Table 2 presents the results of the DL-shaped method and Multicut
algorithm only for the instances whose known solution requires more than one
vehicle.

Multicut P&S cuts Benders cuts Hybrid cuts
δ Ins Opt Gap% Time Opt Gap% Time Opt Gap% Time Opt Gap% Time
0.0 6 1 64.6 3054.1 6 0.0 305.1 6 0.0 276.4 6 0.0 264.1
0.2 3 3 0.0 258.8 3 0.0 121.0 3 0.0 37.2 3 0.0 119.2
0.4 1 0 3.3 3600.0 1 0.0 3207.4 1 0.0 3411.3 0 0.0 3590.0
0.6 - - - - - - - - - - - - -
0.8 - - - - - - - - - - - - -
1.0 - - - - - - - - - - - - -

10 4 22.6 2304.3 10 0.0 1211.2 10 0.0 1241.6 9 0.0 1324.5
ε Ins Opt Gap% Time Opt Gap% Time Opt Gap% Time Opt Gap% Time
0.0 3 3 0.0 27.1 3 0.0 0.4 3 0.0 0.4 3 0.0 0.5
0.2 3 3 0.0 258.8 3 0.0 121.0 3 0.0 37.2 3 0.0 119.2
0.4 3 2 0.5 1275.0 2 1.5 1242.9 3 0.0 576.6 2 1.5 1202.7
0.6 3 3 0.0 220.7 2 2.4 865.9 3 0.0 308.3 2 2.3 1207.3
0.8 3 3 0.0 920.1 2 4.7 900.3 2 1.4 1200.1 2 4.7 1209.5
1.0 2 2 0.0 57.1 2 0.0 268.2 2 0.0 34.9 2 0.0 184.4

Total/Avg. 17 16 0.1 459.8 14 1.4 566.4 16 0.2 359.6 14 1.4 653.9
Global Tot. 27 20 7.6 1074.6 24 1.0 781.3 26 0.2 653.6 23 1.0 877.4

Table 2: Results for only the multi-vehicle instances

The column headers in Table 2 are the same as Table 1, with the exception
of a different meaning for the columns ‘Ins’ and ‘Opt’. In Table 2, these columns
count the number of instances whose known optimal solution uses more than
one vehicle and the number of these latter instances that are optimal for each
type of optimality cut or the Multicut algorithm. A value of ‘-’ indicates that
no multi-vehicle solution is known for the given ε, δ pair.

These multi-vehicle instances are few in comparison to the total number of
solved instances (10 and 17 for the different ε, δ pairs in contrast to the 98
and 71 that the Benders cut solve in Table 1), but they show that our three
optimality cuts perform similarly, as all three of them achieve a similar number
of optimal solutions. Additionally, the superiority of our methods compared
to the Multicut algorithm is preserved, as all three optimality cuts achieve
significantly more optimal solutions for the different values of δ.
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8.3 Effectiveness of the Valid Inequalities

This section analyzes the effectiveness of our proposed valid inequalities. We
created eight different configurations of the DL-shaped method to test. They
are divided into two groups of 4 configurations each, where the first group uses
the Benders cuts and the second one uses the P-cuts. Each configuration can
be differentiated by the use or not of the S-cut (35) and by the use or not of
the Infeasible Set inequality (38). Results are presented in Table 3 on the 242
instances of Dell’Amico et al. (2018). Each instance was run for a maximum of 5
minutes. Column ‘Opt’ indicates the number of optimal solutions found by the
configuration, ‘Gap%’ denotes the average percentage gap of the non-optimal
instances, ‘Time’ represents the average time to either the optimal solution or
the best one found within the time limit of 5 minutes, and ’Inf.Set’, ’Inf.Path’, ‘S-
cuts’, ’Benders’ and ’P-cut’ are the average number of cuts of type of equations
(38), (6), (35), Benders optimality and (33).

Optimality Cut: Benders
S-Cut Inf. Set Opt Gap Time Inf. Sets Inf. Paths S-Cuts Benders
Yes Yes 125 26.0 197.7 321.9 0.0 422.5 35.7
No Yes 118 28.5 211.7 470.3 0.0 0.0 63.3
Yes No 116 25.1 215.7 0.0 382.4 356.2 31.3
No No 111 29.0 220.4 0.0 464.3 0.0 49.5

Optimality Cut: P-cuts
S-Cut Inf. Set Opt Gap Time Inf. Sets Inf. Paths S-Cuts P-Cuts
Yes Yes 119 23.4 168.6 365.3 0.0 549.7 481.1
No Yes 105 22.1 184.3 775.6 0.0 0.0 691.0
Yes No 110 23.6 181.0 0.0 305.0 431.2 363.2
No No 102 21.5 186.4 0.0 509.3 0.0 186.4

Table 3: Convergence with and without the S-cuts and Infeasible Sets.

As shown in Table 3, the use of S-cuts and infeasible sets accelerates the con-
vergence of the DL-shaped method. Specifically, when employing the Benders
optimality cuts, the utilization of S-cuts alongside infeasible sets resulted in a
notable improvement in convergence. Instances where both S-cuts and infea-
sible sets were used showcased a reduced average gap percentage and a higher
number of optimal solutions within the 5 minutes compared to runs where these
cuts were not utilized. Similarly, in the context of P-cuts, the incorporation of
S-cuts and infeasible sets also demonstrated a similar trend. The average gap
percentage decreased, and the number of optimal solutions increased notably in
instances where these cuts were employed in conjunction.

Lastly, we note that when a route is infeasible, it always seems there is an
infeasible set of stations that can be found. This is an exciting result because
infeasible set inequalities are stronger than infeasible path inequalities. We also
noted this behavior in our other results.
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8.4 Results for Lower Bounds on the Fleet Size

This section analyzes the effectiveness of the two new lower bounds K0 and K1.
To do so, we first present results without these two bounds and we then present
the values of K0 and K1 for the instances with δ = 0.0, because these are the
instances that require the largest fleet sizes in the set of Dell’Amico et al. (2018).

The results with and without the lower bound K are given in Table 4 for the
242 instances of Dell’Amico et al. (2018) with the following columns. Column
‘K’ indicates the lower bound used, and the columns ‘Ins’ and ‘Opt’ count the
number of instances and optimal solutions in the set. The column ‘Gap%’ is the
average percentage gap of the non-optimal instances, and the column ‘Time’ is
the average time to either the optimal solution or the best one found within the
time limit of 5 minutes.

K Opt Gap% Time
max{K0,K1} 125 26.0 197.7

1 117 34.6 213.2

Table 4: Effectiveness of the vehicle lower bound K in a 5 minute-run.

Results from Table 4 show that using a good lower bound on the number of
vehicles helps solve more instances, reducing computing times and reducing the
optimality gap.

We also present results for the case of δ = 0.0 in Table 5. Column ‘Opt’
indicates with a value of 1 that the instance was solved to optimality and 0
otherwise. The columns ‘K0’, and ‘K1’ denote the number of vehicles resulting
from both lower bounds on fleet size. A value of ’-’ for the ‘K1’ column indicates
that the linear relaxation could not be solved during the time limit for the col-
umn generation algorithm. The column ‘#veh.’ denotes the number of vehicles
used by the best solution found at the end of the method. For the cases where
the best solution is non-optimal, the value in the column ‘#veh.’ is an upper
bound on the required fleet size. Solutions might exist with fewer vehicles, but
these may be more costly.
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Multicut DL-Shaped
Instance #veh. Opt K0 K1 #veh. Opt

Reggio Emilia 1 1 1 1 1 1
Washington (20)1 3 0 2 2 2 0
Washington (20)2 6 0 5 8 8 1
Chicago (20)1 8 0 6 6 8 1
Chicago (20)2 7 0 3 5 6 1

Washington (30)1 3 0 3 3 3 1
Washington (30)2 3 1 3 3 3 1
Chicago (30)1 13 0 7 8 13 1
Chicago (30)2 5 0 4 4 4 0

Washington (40)1 7 0 4 4 4 0
Washington (40)2 12 0 7 10 10 0
Chicago (40)1 10 0 4 4 7 0
Chicago (40)2 8 0 3 3 6 0

Washington (50)1 12 0 7 8 8 0
Washington (50)2 17 0 6 11 13 0

Chicago (50) 13 0 6 6 8 0
Washington (66) 4 0 3 3 3 0
Chicago (66) 22 0 10 10 13 0

Washington(80)1 6 0 3 3 4 0
Washington(80)2 33 0 11 - 30 0
Washington(90) 36 0 12 - 33 0
Washington(100) 14 0 7 - 7 0

Total 243 2 194 7

Table 5: Lower Bound Values on Fleet Size for ε = 0.2 and δ = 0.0.

The total number of optimal solutions, presented in the last row of the table,
is the smallest compared to any other ε, δ configuration, making it the most
challenging to solve. However, thanks to K0, K1, the DL-Shaped algorithm
achieves many more optimal solutions than Multicut. Moreover, for many in-
stances, the values of K0, K1 are close to the number of vehicles used by the
best solution found. Table 5 also indicates that further research is needed in
the SBRP for cases where the lower bounds of the fleet size deviate significantly
from the best solution found.

8.5 Results for the new instances

This section presents the results for the new set of instances and compares them
to our implementation of the Multicut algorithm of Dell’Amico et al. (2018).
All of these instances were solved with the pair ε = δ = 0.2, and the results are
presented in Tables 6 to 9. Additionally, we also analyze the effectiveness of the
valid inequalities and vehicle lower bounds in Tables 8 and 9. To implement the
Multicut algorithm, we followed Section 4.3 in the authors’ work.

Tables 6 and 7 present the comparison between our implementation of the
Multicut algorithm and the variant of our DL-shaped method with P&S cuts as
follows. Column ‘n’ denotes the number of stations while the column ‘#veh.’
denotes the average number of vehicles used by optimal solutions or the best
solutions found. Column ‘Opt’ gives the number of optimal solutions, while col-
umn ‘Gap%’ provides the percentage with the gap of the non-optimal instances.
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Column ‘Time’ shows the average time to either the optimal solution or the
best one found within the time limit of 3600 seconds. For the results with the
Multicut algorithm, the columns ‘Benders Feas.’ and ‘Benders Opt’ denote the
average number of Benders feasibility and optimality cuts. For the results with
the DL-shaped, the columns ‘Inf.Set’, ‘S-cuts’ and ‘P-Cuts’ denote the average
number of cuts of type of equations (38), (35) and (33). A ‘-’ under the ‘Opt’
header indicates that no optimal solution was found.

Multicut
n Ins #veh. Opt Gap% Time Bender Feas. Benders Opt
30 20 2.1 12 20.1 1413.8 1142.2 451.0
40 20 2.1 5 42.8 2834.4 1969.8 422.0
50 20 1.9 3 51.8 3225.8 1342.3 485.0
60 20 1.5 - 71.1 3600.0 1087.8 340.0
70 20 1.3 - 54.4 3600.0 883.9 162.0

Total/Average 100 1.8 20 48.0 2934.8 1285.2 372.0

Table 6: Results for Multicut algorithm in the new instances.

DL-Shaped
n Ins #veh. Opt Gap% Time Inf. Set S-Cuts P-Cuts
30 20 2.6 20 0.0 66.0 100.6 211.8 41.6
40 20 2.5 18 3.3 729.0 279.1 657.2 58.7
50 20 2.4 12 6.8 1759.4 578.6 1330.6 300.4
60 20 2.8 10 8.7 2621.4 632.7 1898.7 377.2
70 20 1.8 2 2.5 3442.2 770.3 1705.5 680.2

Total/Average 100 2.4 62 4.3 1723.6 472.2 1160.8 291.6

Table 7: Results for the new instances.

The DL-shaped method consistently outperformed the Multicut algorithm
throughout this new instance set by achieving three times more optimal solutions
in, on average, less computation time. Our approach yielded average gaps of
approximately 4%, significantly smaller than the Multicut algorithm’s average
gaps, which were more than ten times larger. Notably, our algorithm was able
to solve instances with up to 70 stations, while the Multicut can only solve up
to one instance with 50 stations.

This superior performance is attributed to our efficient algorithms for han-
dling infeasible set inequalities and S-cuts. Unlike Multicut, which poten-
tially generates multiple Benders feasibility cuts for each infeasible solution,
our method efficiently returns a single cut for the smallest infeasible compo-
nent found, preventing rapid problem size growth. Moreover, our DL-shaped
method’s ability to generate S-cuts for both feasible and infeasible solutions en-
ables more effective bounding of the recourse than solely binding it in feasible
solutions via Benders cuts.

Next, to analyze the effectiveness of our new valid inequalities and vehicle
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lower bounds in the new set of 100 instances we present in Tables 8 and 9 the
results of a 5-minute run with each of the new valid inequalities as well as the
vehicle lower bound K.

Configuration Optimality Cut: P-cuts
S-Cut Inf. Set Opt Gap Time Inf. Sets Inf. Paths S-Cuts Benders
Yes Yes 36 11.3 214.1 572.1 0.0 789.8 163.6
No Yes 34 7.8 218.3 736.1 0.0 0.0 377.6
Yes No 27 12.2 236.9 0.0 628.4 737.0 131.4
No No 31 7.9 227.7 0.0 931.0 0.0 318.4

Table 8: Convergence with and without the S-cuts and Infeasible Sets for the
new instances.

K Opt Gap% Time
max{K0,K1} 36 11.3 214.1

1 32 11.7 225.8

Table 9: Effectiveness of the vehicle lower bound K on the new instances.

Table 8 demonstrates the impact of utilizing the S-cuts and the infeasible sets
on convergence. When both are employed, we observe a significant improvement
in convergence rates compared to when either one or none are utilized. This is
particularly evident in the higher number of optimal solutions achieved, along
with reduced average gaps and computation times.

Similarly, Table 9 showcases the effectiveness of the vehicle lower bounds.
By incorporating both K0 and K1 into the resolution instead of setting K = 1,
we attain more optimal solutions at lesser average gaps and computation times.

In summary, within this new benchmark set, the utilization of both S-cuts
and infeasible sets, along with the incorporation of the vehicle lower bounds,
leads to the most favorable outcomes in terms of convergence to optimal solu-
tions, reduced average gaps, and computation times.

9 Conclusions

In this article, we have presented a new formulation, valid inequalities, and
lower bounds for the stochastic bicycle repositioning problem. We implemented
the disaggregated integer L-shaped method to solve the problem exactly. The
idea of this method is to disaggregate the recourse into components and bind
each of these components in a dynamic fashion using optimality cuts and lower
bounding functionals. A novel aspect of our implementation is that we success-
fully included a mixture of more than one type of optimality cut. This was
the case when we included both path cuts and Benders cuts to produce to so-
called Hybrid cuts. Additionally, a key aspect of the method is that it develops
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and includes lower bounding functionals to accelerate convergence to the op-
timal solution. We built our lower bounding functionals using novel recourse
lower bounds that we proposed. These bounds were inspired by the 1-bicycle
repositioning problem, which has been proven to be NP-hard.

In terms of our findings, we achieve state-of-the-art results for solving a
benchmark set, and this leads us to propose a challenging set of instances.
Among the factors that contribute to our success are the new dynamic pro-
gramming formulation for the recourse, the infeasible set inequalities, and the
lower bounds on fleet size. On this latter topic, future research should focus on
deriving tighter bounds for the fleet size.
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