

 CIRRELT-2024-16

A Contextual Framework for Learning
Routing Experiences in Last-mile
Delivery

 Huai Jun (Norina) Sun
 Okan Arslan

June 2024

A Contextual Framework for Learning Routing Experiences
in Last-mile Delivery

Huai Jun (Norina) Sun1, Okan Arslan1,2,*

1. Department of Decision Sciences, HEC Montréal
2. Interuniversity Research Centre on Enterprise Networks, Logistics and

Transportation (CIRRELT)

Abstract. This paper presents a contextual framework for solving the data-driven
traveling salesman problem in last-mile delivery. The objective of the framework
is to generate routes similar to historic high-quality ones as classified by
operational experts by considering the unstructured and complex features of the
last-mile delivery operations. The framework involves learning a transition
weight matrix and using it in a TSP solver to generate high quality routes. In order
to learn this matrix, we use descriptive analytics to extract and select important
features of the high-quality routes from the data. We present a rule-based
method using such extracted features. We then introduce a factorization of the
transition weight matrix by features, which reduces the dimensions of the
information to be learned. In the predictive analytics stage, we develop (1) Score
Guided Coordinate Search as a derivative-free optimization algorithm, and (2)
label-guided methods inspired by supervised learning algorithms for learning
the routing preferences from the data. Any hidden preferences that are not
obtained in the descriptive analytics are captured at this stage. Our approach
allows us to blend the advantages of different facets of data science in a single
collaborative framework, which is effective in generating high-quality solutions
for a last-mile delivery problem. We test the efficiency of the methods using a
case study based on Amazon Last-Mile Routing Challenge organized in 2021. A
preliminary version of our rule-based method received the third place and a
$25,000 award in the challenge. In this paper, we improve the learning
performance of our previous methods through predictive analytics, while
ensuring that the methods are effective, interpretable and flexible. Our best
performing algorithm improves the best score in the literature achieved on the
available training dataset by 40.1%. It also enhances the performance of our rule-
based method on an out-of-sample testing dataset by more than 23.1%.

Keywords: traveling salesman problem, learning, data-driven, derivative-free
optimization, last-mile delivery

Acknowledgements. The authors gratefully acknowledge funding provided by
the Natural Sciences and Engineering Research Council of Canada under grant
RGPIN-2022-04979.

Results and views expressed in this publication are the sole responsibility of the authors and do
not necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la
position du CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: okan.arslan@hec.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
Bibliothèque et Archives Canada, 2024

© Sun, Arslan and CIRRELT, 2024

1. Introduction

Given a complete graph, the problem of finding a shortest tour that visits every node in the

graph is defined as the traveling salesman problem (TSP), which is a well-known NP-hard problem

(Applegate et al. 2011). In the TSP arising in last-mile delivery operations, the tour starts and ends

at a designated node referred to as the depot and visits a set of customers. The intricate dynamics

of the urban routing due to factors such as tra�c conditions or parking availability complicate the

route planning process and the goodness of a route cannot easily be expressed using a measure such

as distance, time or cost, as in the TSP. The experienced drivers do not usually follow the shortest,

fastest or least-cost routes, but use their tacit knowledge about the complex environment to execute

e�cient delivery operations. When the routes that are optimized with respect to a single measure

are provided to drivers, they usually modify these routes. These modifications are often necessary

in real-world operational settings, and require human intervention. The tacit knowledge that drives

such modifications lack formalization. In this paper, we develop a data science framework to solve

the data-driven TSP (DD-TSP). The aim is to generate tours similar to those that were historically

executed by experienced drivers.

1.1. Literature Review

Consider a complete graph G= (N,A), where N is the set of nodes and A is the set directed arcs,

representing direct travel between nodes. We have n := |N | and the cost of arc (i, j)2A is dij � 0.

Node 0 represents the depot, and nodes N \{0} represent the customers. Let yij be a binary variable

if and only if arc (i, j) is on the selected path, and 0 otherwise. The objective function of the TSP is

linear in yij variables, which allows it to be modeled as a mixed integer linear program. Therefore,

it is viable to obtain both lower and upper bounds on the optimal objective function value. Exact

algorithms sequentially obtain such lower and upper bounds in order to reduce the optimality gap

and prove optimality of a solution. The heuristics, on the other hand, obtain valid upper bounds

on the objective function by finding feasible solutions. There is a multitude of both exact and

approximate solution approaches for the TSP in the literature (Applegate et al. 2011). One of the

best performing heuristics for the TSP is developed by Lin and Kernighan (1973) and an e↵ective

implementation is presented by Helsgaun (2000). For a review of heuristic algorithms developed

for the TSP, we refer the reader to Laporte (1992). Several metaheuristics are also developed

such as genetic algorithm (Potvin 1996), tabu search (Knox 1994), simulated annealing (Pepper,

Golden, and Wasil 2002, Wang, Geng, and Shao 2009), variable neighborhood search (Carrabs,

Cordeau, and Laporte 2007, Hore, Chatterjee, and Dewanji 2018), among others. Kottho↵ et al.

(2015) report that the Lin-Kernighan-Helsgaun (LKH) algorithm (Helsgaun 2000) and the genetic

algorithm with a powerful edge assembly crossover operator (Nagata and Kobayashi 2013) are the

two most powerful algorithms for inexact solution of the TSP.

1

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Recent works on the TSP using machine learning are ample, and we categorize them into three

classes related to our work: (1) those that generate routes directly and act as heuristics, (2) those

that help improve the existing heuristics to improve their e�ciency, and (3) those that are used

for experience learning.

Stand-alone heuristics: Learning algorithms are used to generate feasible routes. In other

words, they serve as alternatives to heuristics. Along this line, Bello et al. (2016) train a recurrent

neural network to predict a distribution over di↵erent city permutations and generate a TSP route.

Deudon et al. (2018) develop a neural network model for solving the TSP directly, and compare

their results with OR-tools heuristic (Google 2022). Miki, Yamamoto, and Ebara (2018) develop a

method for learning the optimal tour as an image using a convolutional neural network. Nazari et al.

(2018) develops a reinforcement learning algorithm to generate routes for the capacitated VRP.

Their approach outperforms classical heuristics and OR-Tools heuristics on medium-sized instances

in solution quality with comparable computation time. Delarue, Anderson, and Tjandraatmadja

(2020) uses deep reinforcement learning to generate routes. Their model achieves an average opti-

mality gap of 1.7% on standard library instances of medium size. Bresson and Laurent (2021) uses

transformer architecture to learn heuristics to potentially outperform human-developed heuristics.

According to reported performances, the optimality gap is 0.39% for 100-node TSP instances. Note

that, when the machine learning models are used as a stand-alone heuristic, their performance

to this date is usually inferior to the performance of existing human-developed state-of-the-art

heuristics.

Improving the heuristics: On the second stream of research, machine learning algorithms are

used to improve the performance of the human-developed (meta)heuristics. Examples include the

work by Zheng et al. (2021) that combine three reinforcement learning methods (Q-learning, Sarsa

and Monte Carlo) with the LKH algorithm. Sultana et al. (2021) presents a learning-based approach

for routing problems that uses a penalty term and reinforcement learning to guide the search e↵orts.

Xin et al. (2021) improve the e↵ectiveness of the LKH heuristics using deep learning. Hudson

et al. (2021) present a framework for solving the TSP based on graph neural networks and guided

local search. These aforementioned methods report performance improvements over the human-

developed heuristics without machine learning support, but the improvements may be marginal.

Varol, Özener, and Albey (2024) develop a TSP tour length estimator using neural networks as

alternative to continuous approximation models. Their method involves an e�cient method for

obtaining valid lower bounds and partial solutions to the TSP. For a recent survey on machine

learning algorithms designed for TSP, we refer the reader to Junior Mele, Maria Gambardella, and

Montemanni (2021).

2

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Contextual optimization and experience learning: The idea of learning input parameters

of a problem to guide the classical optimization solvers is a recent idea that has been tested in

various settings (Parmentier 2022) including vehicle routing (Canoy et al. 2023, 2024). Similarly, we

approach the experience learning from a contextual optimization perspective, in which the available

side information is leveraged to produce best empirical performance on a dataset. Sadana et al.

(2024) classify the contextual optimization into three paradigms as ‘decision rule optimization’,

‘sequential learning and optimization’, and ‘integrated learning and optimization’. The learning

the routing preferences fall under the decision rule paradigm, in which a parameterized mapping

is developed to the desired solution space.

In 2021, (Amazon 2021) organized the Amazon Last-mile Routing Challenge 2021 competition,

which was based on the same idea of generating routes that are similar to those by executed by

the drivers. We present further details about this competition in Section 4. The first-place holders

(Cook, Held, and Helsgaun 2024) implement a penalty-based local search by considering constraints

that are obtained through an analysis of historical routing data. Using the same data, the second

place holders (Mo et al. 2023) develop a neural network for predicting the arc transition penal-

ties. The third place holders (Arslan and Abay 2021) also implemented a penalty-based network

transformation in which the penalties are obtained through an analysis of the data. We present

this method in detail in Section 4.3. All three studies focus on learning the transition penalties

(or weights). Using the same data, Özarık, da Costa, and Florio (2024) develop a pool-and-select

framework, in which candidate sequences are pooled as a function of their features as seen in the

dataset, and then their scores of predicted using a regression model. Scroccaro et al. (2023) propose

an inverse optimization framework and develop a stochastic first-order algorithm for learning the

preferences of the drivers. Their algorithm also achieves a high performance on the Amazon com-

petition data. Ghosh et al. (2023) develop a method by first sequencing the customer zones, and

then sequencing the customer stops in every zone. When compared to the aforementioned papers

developing methods for solving the Amazon challenge, our best performing algorithm improves the

best score reported by (Cook, Held, and Helsgaun 2024) on the Amazon training data by 40.1%.

Even though it is generally uncommon to report training data performances, our interpretable

and flexible method demonstrates the potential improvement scale that can be achieved on this

data. We also improve on our previous results (Arslan and Abay 2021) by 23.1% on the Amazon

testing data placing it the second in all the performances reported in the literature. Furthermore,

our method involves a contextual framework, that can easily be adopted to any features beyond

customer zones.

3

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

1.2. Contributions and Organization of the Paper

In this paper, we present a contextual framework to solve the data-driven traveling salesman

problem (DD-TSP) arising in last-mile delivery operations. The objective is to generate routes

that are similar to high quality ones as classified by operational experts. The framework involves

learning a transition weight matrix and using a classical TSP solver to generate high quality routes.

The contributions of this paper are as follows:

• We present a framework for modeling the DD-TSP, in which the aim is to generate a transition

weight matrix for new problem instances.

• We introduce a factorization of the transition weight matrix by features, which reduces the

dimensions of the information to be learned.

• We develop di↵erent methods for learning the transition weight matrix:

—Score Guided Coordinate Search (SGCS): a custom derivative-free optimization algorithm,

—Rule-based Feature Impact Matrix (RFIM): a rule-based method based on expert views,

—Label-guided Feature Impact Matrix (LFIM): a method for learning the transitions directly

from the data, and

—Rule-based Label-guided Feature Impact Matrix (R+LFIM): combination of the two former

methods.

Our methods are e↵ective, interpretable and the flexible.

• We test the e�ciency of these methods using a case study based on Amazon Last-Mile Routing

Challenge. Our best performing algorithm improves the best score in the literature achieved on the

available training dataset by 40.1%. We also improve on our previous methods, which achieved a

third place in the Amazon challenge, by 23.1% on out-of-sample dataset.

We now present the problem and our methodological framework in the following section. Two

algorithms are presented in Section 3. A case study is introduced in Section 4 and the results are

presented in Section 5. E↵ectiveness, interpretability and flexibility of the methods are discussed

in Section 6 and the study is concluded in Section 7.

2. Problem Definition and Methodological Framework

Consider a last-mile routing problem P , which aims to sequence a set of given customers, with an

unknown objective function representing the preferences of the decision makers. Let s represent an

instance of problem P including features such as distance matrix, travel times, number of parcels

per customer, parcel sizes, customer zones, customer time windows, and weather information. Note

that these features may be any type such as numerical, categorical, geospatial or binary. Let S be a

set of instances of problem P . Consider a proxy problem bP with the same solution space as P and

with a proxy objective function that approximates the unknown preferences of the decision makers.

4

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

These unknown preferences are generally hard to communicate and represent the tacit knowledge

of the planners. A proxy problem bP is the classical TSP that minimizes one feature, which we

refer to as T representing the distances or travel times between node pairs. Now, consider an

optimization oracle ⌘ :Rn⇥n!R that solves the approximate problem bP and generates an optimal

solution x
⇤
s := ⌘(T) for an instance s2 S using T as the only feature. Its proxy objective function

leaves out the other features representing the side information. Generally, during the execution of

this prescribed solution x
⇤
s in real-world operations, it is modified by the operational experts (by

the planners before the execution or by the drivers during the execution) as x̂s that reflect the

unknown preferences of the planners due to the side information. The objective of this study is to

learn these preferences so that the optimization oracle ⌘ produces routes similar to those that are

historically executed reflecting the operational expertise. In this context, one needs to evaluate the

di↵erences between the solutions x⇤
s and x̂s, which is achieved by a scoring function �(x⇤

s, x̂s) that

compares the two solutions x
⇤
s and x̂s, and evaluates the dissimilarity between them. Clearly, we

have �(x̂s, x̂s) = 0.

For solving problem P , the goal is to produce solutions similar to x̂s, which is deemed to be

“superior” operationally than the solution x
⇤
s that is an “optimal solution” of the proxy problem

bP . We can measure the average loss of the solutions x⇤
s generated by the optimization oracle with

respect to the executed solutions x̂s over s2 S by
X

s2S

�(x⇤
s, x̂s)

|S| . (1)

The problem of minimizing this error can be approached from two perspectives. One can modify the

optimization oracle ⌘ so that the optimal solutions x⇤
s generated by this oracle is more representative

of the real-world operations. This can be done in a rule-based fashion, by discussing with operational

experts and better representing their preferences in the objective function of the mathematical

model. However, the planners’ tacit knowledge may not always be easily articulated. In this paper,

we approach this problem from a data-driven perspective, and learn these preferences using data.

This learning is represented by transforming the instance s into matrix D
s so that the “optimal”

solution generated by ⌘(Ds) generates solutions closer to historically preferred routes. Note that

the side information available in instance s may be used to improve the sequencing decisions,

and it is embedded into matrix D
s, which no longer represents the actual distances, but rather

the transition weight between node pairs. In other words, the matrix D
s for s 2 S represents the

experience and the preferences of the drivers. Each arc weight dij in D
s represents the penalty of

including arc (i, j) in the solution. By modifying the weight, one can encourage or discourage this

transition to apprear in the solution. For this reason, Ds is referred to as the transition weight

matrix. The nomenclature is presented in Table 1.

5

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 1 Nomenclature

Symbol Definition

S Instance set

Ds
Transition weight matrix for instance s2 S

⌘ Optimization oracle

� Scoring function

F Feature space

Ff Feature impact matrix for feature f 2F
�f

Weighted scoring matrix for feature f 2F
Isf Incidence matrix of nodes in instance s2 S to feature f 2F

2.1. Problem Definition

We now define the problem considered in this paper.

Definition 1. Given a set of instances s2 S and executed routes x̂s for s2 S, the data-driven

traveling salesman problem (DD-TSP) is defined as finding the transition weight matrix D
s for

s 2 S, such that the average dissimilarity between the executed solutions x̂s, and the solutions

generated by the optimization oracle ⌘(Ds) over the set of instances S is minimized.

DD-TSP can be expressed in compact form as follows:

min
D

X

s2S

�(⌘(Ds), x̂s)

|S| . (2)

Note that there are two nested optimization models in (2). While the outer optimization model

minimizes the loss with respect to a scoring function �(·), the inner optimization oracle ⌘(·) solves

a TSP using D
s, which is obtained by transforming the input data. The scoring function �(·) has

no particular structure, it can potentially be nonlinear or a nonsmooth function. The transition

weight matrix is expected to incorporate the tacit knowledge by encoding the side information.

2.2. Factorization of the Transition Weight Matrix

Observe that even for a small problem instance with 100 nodes, model (2) requires learning 1002

elements of the transition weight matrix D
s for a given instance s 2 S. Furthermore, the set of

nodes varies for every instance. Considering particularly the unstructured scoring function �(·),

learning the transition likelihood between every node pair may be computationally impractical.

Therefore, inspired by the singular value decomposition and principal component analysis (Wall,

Rechtsteiner, and Rocha 2003), we consider constructing the unknown full-dimensional Ds matrix

by factoring out the features and investigating their impacts independently. Let F be the feature

space, Isf be the incidence matrix of nodes in instance s2 S to feature f 2F , and Ff be the feature

impact matrix, which describes the impact of feature f to the transition between nodes. Matrix Ff

is square, and it measures the impacts of the transition between node pairs with particular features.

6

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

For s2 S, we include the side information using the following factorization of the transition weight

matrix

D
s =

Y

f2F

{Isf
T
FfI

s
f}�, (3)

where � represents the element-wise product of matrices. In other words, the matrix D
s is the

element-wise product of the matrices {Is
fTFfI

s
f}n⇥n for f 2 F . Note that, by pre- and post-

multiplying the feature impact matrix Ff by the instance matrix I
s
f , we implement a dimensionality

expansion and obtain a weight per transition between node pairs corresponding to feature levels.

Therefore, the problem is expressed as

argmin

X

s2S

�(⌘(
Y

f2F

{Isf
T
FfI

s
f}�, x̂s)

|S| . (4)

In this model, the variables are the elements of the matrices Ff for f 2 F . Observe that, by this

factorization, we benefit from dimensionality reduction similar to the principle component analysis.

A problem instance s with five customer nodes (C1, . . . ,C5) and two features is given in Figure 1.

The first feature is the distance, and the second feature is the customer zone. The incidence matrix

of the first feature is an identity matrix because distance between every node pair is unique. The

second feature has three levels (or categories) as Z1,Z2 and Z3 (emphasized in red color in the

figure). The incidence matrix for the second feature represents the zone (i.e., the feature level) that

customers reside in. In this example, the second feature impact matrix F2 encourages delivering

parcels within the same zone, and discourages transitions between zones. The transitions between

Z1 and Z3 are the most penalized among other possible transitions. The matrix in the rightmost

column of the table is the D
s matrix and it is obtained by the element-wise product of the two

matrices in the fifth column. When this D
s matrix is used as input to the TSP, the optimization

oracle produces a feasible solution, which is then evaluated in the scoring function (by comparing

to the executed route in the real world). The objective in this paper is to learn the feature impact

matrices Ff for f 2 F corresponding to the side information (F2 in the example in Figure 1) so

that solving the TSP using the resulting D
s matrix yields “superior” solutions in practice that

better represent the preferences of the decision makers.

Note that these features may be independent or dependent. The factorization may capture the

independent relationships, and the feature matrices can be learned sequentially. On the other hand,

the dependent information among factors may be lost in such a factorization. Nevertheless, learning

capacity of algorithms such intricate relationships in large datasets is limited. Therefore, in this

paper, we adapted factorization of the function in order to foster interpretability and flexibility

of the methods. Similar to model building and variable selection strategies such as backward and

forward methods in linear regression (Montgomery, Peck, and Vining 2021), our framework assumes

learning features in a sequential manner.

7

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Figure 1 An example for an instance with five nodes and two features (distance and parcel size) for calculating

the transition weight matrix Ds.

2.3. Decomposition of the Transition Weight Matrix

When certain levels of a feature only apply to a subset of the route instances, the transformation

function can be decomposed based on these levels. In particular, a delivery operation originating

from a depot in a city may lead to di↵erent tacit information that only applies to this depot.

Therefore, the side information at this depot only applies to routes in their delivery region. Hence,

the transformation function can then be decomposed. In the particular case of di↵erent depots, a

feature impact matrix F can be learned per city.

3. Learning the Transformation by Predictive Analytics

The objective of DD-TSP is to solve (4) optimally and thereby learn the ‘optimal’ feature impact

matrices Ff for f 2 F , which represents the preferences and the tacit information of the decision

makers. Learning these preferences from the data can be achieved using descriptive or predictive

methods. In this section, we focus our attention on predictive methods and present two methods

for learning preferences from the data. In a case study in Section 4, we also show an application

of learning by descriptive analytics. As discussed in Section 2.2, our framework assumes learning

features independently in a sequential manner. Therefore, the focus in this section is learning one

single feature only.

Recall that we assume no structure for the scoring function �. Therefore, we do not have access to

its gradient vector or its Hessian matrix. Within the realm of Derivative-Free Optimization (DFO),

there exists several approaches ranging from simple search methods such as the Nelder-Mead

Simplex Algorithm (Nelder and Mead 1965) to complex direct search methods such as Generalised

Pattern Search and Mesh Adaptive Direct Search (Audet and Hare 2017). These methods are not

8

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

scalable and are often used when optimizing approximately 50 or fewer variables (Audet and Hare

2017). Our preliminary experiments using DFO also confirmed this result. The size of a feature

impact matrix, on the other hand, may reach up to a million variables to learn, which is beyond the

size of the instances that can be handled using DFO algorithms. Our attempts to use metaheuristics

including the genetic algorithm, the simulated annealing and the tabu search did not also yield

any meaningful improvements in the overall score. We now present two algorithms that lead to

improvements in terms of learning preferences. The first one is inspired by a DFO algorithm, the

Coordinate Search, while the second one is inspired by supervised learning algorithms.

3.1. Score Guided Coordinate Search

Coordinate Search (CS) is an iterative algorithm that examines the coordinate directions (by

varying one variable at a time) at decreasing step sizes (Audet and Hare 2017). If an improvement

is detected, the incumbent is updated, and the search is terminated when certain conditions are met

(such as time limit or iteration count). When solving the DD-TSP using the basic implementation

of the CS algorithm, the matrix Ff is modified by changing one element at a time and all such

directions are explored to improve the score of the routes generated by optimization oracle ⌘(Ds).

Since no derivative information of the scoring function is available, the CS algorithm explores

all directions at the incumbent solution in order to determine an improving direction. This is

particularly very costly when the scoring function is computationally demanding. In this section,

we present the Score Guided Coordinate Search (SGCS), which we develop by extending the basic

CS algorithm. Instead of testing all coordinate directions, we guide the search by incorporating

score information about potentially ‘good’ directions. Such good directions are provided by a proxy

function as described in the next section.

3.1.1. A Proxy Gradient Function: Scoring function is used to evaluate the performance

of the routes generated using a transition weight matrix D
s, which is obtained by feature impact

matrices Ff for f 2F . Observe that some features are common among instances such as customer

zones and parcel sizes, whereas some are customer-specific such as the distances to the other nodes.

For feature f 2 F that is shared between instances, we define a weighted scoring matrix �
f to

measure the impact of every feature level. For f 2 F , let `
f
1 and `

f
2 be two feature levels, and

S
`f
1
`f
2

✓ S be the set of problem instances, in which particular transition from `
f
1 to `

f
2 is observed

in the executed route x̂s. We then define

�
f

`f
1
`f
2

=

X

s2S
`
f
1
`
f
2

�(⌘(Ds), x̂s)

|S
`f
1
`f
2

| (5)

9

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

to be the weighted score of the particular transition from a node with feature `
f
1 to another node

with feature `
f
2 if |S

`f
1
`f
2

| 6= 0, and �
f

`f
1
`f
2

= 0 otherwise. Observe that this value allows us to measure

the performance of a particular transition between features levels. It is the average score of those

routes in which transition from `
f
1 to `

f
2 is observed. This measure is particularly valuable in guiding

the CS algorithm. If this average value is poor, it indicates that the routes using this particular

transition obtained worse scores than other routes that did not use this transition. Even though

this is not the derivative of the scoring function �, it acts as a proxy to approximate the behavior of

the scoring function in a single coordinate direction. Observe that the dimensions of the weighted

scoring matrix �
f and the feature impact matrix Ff are the same, and we now have a performance

measure for each element in Ff matrix. Clearly, if a particular transition is observed more on

those routes with poor scores, then increasing the value of the corresponding element in Ff will

discourage this particular transition from appearing in the routes. This is the key idea of the SGCS

algorithm, which is presented next.

3.1.2. The SGCS Algorithm The SGCS algorithm explores the coordinate directions guided

by the weighted scoring matrix �
f to improve the performance of the poor-performing transitions.

Considering the proxy gradient function and its output �
f matrix, we increase the value of the

element in the feature impact matrix Ff that corresponds to poor-performing elements in the �
f

matrix. By penalizing the transitions observed in poorly scoring routes, we guide the solver to

explore alternative transitions. The algorithm is therefore guided to target the transitions which

are universally unfavourable across routes, and encourage preferable alternatives. Additionally,

this approach allows us to avoid exploring transitions that are unlikely to produce significant

improvements. The SGCS is presented in Algorithm 1.

For a given feature f̂ , the algorithm takes an initial estimate of the feature impact matrix F
input

f̂

as input and allocates it to a temporary working matrix �temp (line 1). It will initially calculate

the transition weight matrix D
s using �temp and use optimization oracle ⌘(·) to generate proposed

routes for all s 2 S (lines 2�4). The minimum loss (Min Loss) is calculated for these proposed

routes (line 5). The objective of the algorithm is to improve the Min Loss by modifying �temp.

Observe that di↵erent �temp matrices yield di↵erent D
s matrices for s 2 S, which in turn yield

di↵erent routes by the optimization oracle, and the score is accordingly impacted. The outer loop

(line 6) iterates itCount times and starts by calculating the weighted score matrix �
f̂ at the

current solution x
⇤
s. Recall that the dimensions of �

f̂ and �temp matrices are the same. In the

inner loop (line 8), we conduct trials with weight adjustments by modifying a batch of coordinates

at a time. In particular, the algorithm penalizes " percent of the worst-performing transitions

in �
f̂ at every iteration. The penalty is � in the first round when ` = 1, and it is equal to a

10

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Algorithm 1: Score Guided Coordinate Search

Inputs: Set of instances S, executed routes x̂s, feature f̂ , initial solution (F input

f̂
) for the

feature impact matrix, iteration count (itCount), maximum number of trials at

every iteration (�), number of unique elements changed ("), step size (�)

Functions: ⌘(·) is the optimization oracle and returns a route, �(·) is the scoring function

and returns a scalar, �(·) is the weighted scoring function and returns a

matrix, find element order(·) finds the ascending order of the value of an

element among all elements in a given matrix

Output: Ff̂

1 �temp F
input

f̂

2 for s2 S do

3 D
s {IsT�tempI

s}�
Q

f2F\f̂{Is
T
FfI

s}� /* Calculate the weight matrix */

4 x
⇤
s ⌘(Ds) /* Generate proposed routes using the D

s
matrix */

5 Min Loss
P

s2S
�(x⇤s ,x̂s)

|S|

6 for i = 1 to itCount do
7 Calculate �

f̂ using �(x⇤
s, x̂s) for s2 S /* Calculate the weighted score matrix */

8 for j = 1 to � do
9 for ` = 1 to 2 do

10 if `== 1 then penalty=�

11 else penalty= 1000

12 for every element � f̂
ij in �

f̂ matrix do

13 Hij =

(
penalty if 100"(j� 1) find element order(� f̂

ij)< 100"j

0 otherwise

14 M` �temp + H

15 for s2 S do

16 D
s
` {IsTM`I

s}�
Q

f2F\f̂{Is
T
FfI

s}�

17 x
⇤⇤
s ⌘(Ds

`)

18 if
P

s2S
�(x⇤⇤s ,x̂s)

|S| <Min Loss then
19 �temp M`

20 x
⇤
s x

⇤⇤
s

21 Min Loss �(x⇤⇤
s , x̂s))

22 break j loop

23 �temp M` /* Use the last tested M` matrix as the incumbent */

24 x
⇤
s x

⇤⇤
s

25 Ff̂ �temp

26 return Ff̂

11

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

large value, 1000, when ` = 2. At every inner iteration on j, the algorithm selects j
th

" percent

of the worst performing scores. For example, if " = 2, the algorithm first assigns a penalty for

2% of the worst performing transitions. In the second iteration on j, a penalty is assigned for

2�4% worst-performing transitions, and iterations continue until j = �. If at any iteration an

improvement on Min Loss is achieved, the incumbent solution is updated. If no improvement is

made in � iterations, the algorithm takes the last tested matrix M` as the incumbent (line 23),

which diversifies the search. In other words, the algorithm does a local search using coordinate

search, and if no improvement is found, the weighted score matrix is recalculated in the outer

loop using the new incumbent, and the search continues. The algorithm terminates when itCount

iterations are completed.

3.2. Label-guided Feature Impact Matrix

Inspired by supervised learning, we also develop a non-iterative training method as a closed-form

solution. Recall that we use the weighted scoring matrix �
f as a proxy to guide the search algorithm.

Each entry in this matrix represents how frequently a particular transition between feature levels

is observed. Observe that the executed routes can also be evaluated using the same function, which

expresses the transitions that are frequently seen in the testing dataset. For f 2 F , let `
f
i and `

f
j

be two feature levels of two nodes i and j, and L
f

`fi `
f
j

be the number of transitions from every node

i with a feature level `fi to every other node j with feature level `fj , which are observed in the

executed routes x̂s for s2 S. For f 2F , we have

F
ij
f =

8
>>><

>>>:

1 if Lf

`fi `
f
j

= 0

1

Lf

`
f
i `

f
j

if 1L
f

`fi `
f
j

 

1


otherwise

(i, j)2A, (6)

where  2 N represents the maximum number of transitions that can change the weight value.

We refer to this approach as Label-guided Feature Impact Matrix (LFIM), which bares the same

simplicity of RFIM, but takes a more granular approach making use of the data directly.

4. Description of the Case Study

We now present a real-world case study based on by Amazon Last-mile Routing Challenge 2021

competition (Amazon 2021). In this section, we first present the data and the competition in Section

4.1, and a scoring function in Section 4.2. We then extract and select features using descriptive

analytics of the data in Section 4.3. Using the results of the descriptive analysis, we present a

rule-based method to construct a feature impact matrix in Section 4.4. Finally, we combine the

ideas of the rule-based and label-guided methods to devise a combined method and present it in

Section 4.5.

12

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 2 Depot Information

Number of Routes by Quality
High Number of

Depot High-SV High-MV Medium Low Zones
DAU1 52 44 114 4 2786
DBO1 12 17 29 2 617
DBO2 67 48 178 3 2306
DBO3 73 89 403 8 3341
DCH1 30 81 85 0 1813
DCH2 18 48 88 0 1338
DCH3 78 18 167 8 1914
DCH4 72 36 269 4 2331
DLA3 30 128 89 7 1411
DLA4 19 59 116 3 1119
DLA5 28 22 103 2 1376
DLA7 164 283 673 13 4266
DLA8 53 227 156 12 3758
DLA9 185 195 301 20 4829
DSE2 24 74 26 1 563
DSE4 112 137 193 4 1809
DSE5 90 105 302 11 1255
Total 1107 1611 3292 102 35702

4.1. The Competition and the Data

This section briefly describes the dataset by Merchan et al. (2021), which includes 6112 routes

from five major locations and their surrounding cities: Los Angeles, Seattle, Chicago, Boston, and

Austin. These five major locations contain more than one servicing depot, and there are a total of

17 depots across all the cities. The number of routes per depot is presented in Table 2. The customer

regions that are serviced by depots are non-overlapping. The routes are classified by operational

experts into high, medium, and low qualities. Some high quality routes contain multiple visits to

the same drop-o↵ node due to failed a first attempt delivery and a subsequent re-attempt later

on on the same route. We therefore further break down high quality routes into high-single-visit

(High-SV) and high-multi-visit (High-MV) routes. Collectively, we refer to High-SV and High-MV

routes as High routes. The aim is to generate routes similar to High-SV ones. The dataset contains

the executed routes, and each route contains information on nodes that are visited and the visiting

order, along with information on the packages delivered to each node.

4.2. Comparing Similarity of Two Routes: the Scoring Function

The scoring function introduced in Section 2 measures the dissimilarity between two routes. Recall

that, in the DD-TSP, the objective is to imitate an experienced driver and to generate routes

similar to historically executed ones. This requires expressing the di↵erence between an estimated

route and an executed one. Observe that, even though the two routes may have the same duration

and length, they could still be significantly di↵erent in the order of customer visits, which would

imply dissimilarity between the two routes. A scoring metric is developed in the context of Amazon

13

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Last-mile Routing Challenge, which is a function of the sequence deviation and a variation of edit

distance (Ristad and Yianilos 1998). The sequence deviation measures how di↵erent two routes are,

and it captures di↵erences in the ordering of nodes (regardless of the physical distance between the

nodes). The edit distance, on the other hand, measures the number of single-element operations

(insertions, deletions, and substitutions) required to transform one route to the other. Operations

are also weighted by the physical distance of the nodes involved. More details about the scoring

metric is available by Mo et al. (2023). The score produces a value between 0 and a maximum

possible score (between 0.17 and 1.77, depending on the estimated route), which is determined

by the operational experts. A perfect estimation of a historic route will result in a score of 0

and a random ordering of the customer nodes visited will result in a poor score close to the

maximum possible score. In this case study, we adopt the scoring metric developed in this context;

nevertheless, the methods are also valid for any nonconvex and nonsmooth functions.

4.3. Descriptive Statistics and Feature Selection

Model features are the inputs that models use during training and generation of solutions. Descrip-

tive analyses of the data (presented in Appendix A) show that features that have a strong impact

of the routes are (1) the travel times, (2) the first and last nodes on the route, and (3) the zone

IDs of the customers. A zone ID, is formed of four tokens (such as A1.1A). In the executed routes

in the dataset, two consecutive nodes on the routes 85.2% of the times share the same zone ID,

that is, all 4 tokens are the same. If two consecutive nodes do not have the same zone IDs, the

transition to another zone is likely to share 3 tokens 11.9% of the time. In the context of this case

study, we mainly focus on the zone ID among the three features since it o↵ers the most potential

for performance improvements as also observed in di↵erent studies focusing the same case study

(Cook, Held, and Helsgaun 2024, Mo et al. 2023, Özarık, da Costa, and Florio 2024, Accorsi, Lodi,

and Vigo 2022). In the remainder of this paper, the goal is to learn the feature impact matrix of

zone ID feature.

4.4. Rule-based Feature Impact Matrix

Taking the travel times and the zone IDs of the nodes into account, we build a feature impact

matrix Ff in a rule-based fashion, which we refer to as rule-based feature impact matrix (RFIM).

Let x
k
ij = 1 if the kth token of the zone ID of nodes i and j are di↵erent, and 0 otherwise. The

14

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

RFIM constructs the feature impact matrix Ff as follows:

F
ij
f =

8
>>>>>>>>>>><

>>>>>>>>>>>:

b1 if i= 0

b2 if j = 0

a1 if i, j 6= 0, x1
ij = 1 and

k=4X

k=2

x
k
ij = 3

a2 if i, j 6= 0, x1
ij = 1 and

k=4X

k=2

x
k
ij = 2

a3 otherwise

(i, j)2A, (7)

where (b1, b2, a1, a2, a3) are ‘discouragement multipliers’ with a1 <a2 <a3. Hyperparameter a1 is for

the nodes in the same zone ID, which we set equal to 1. Hyperparameter a2 is the multiplier between

two nodes i and j whose zone IDs share three tokens including the first token. Hyperparameter a3

is the discouragement multiplier between all other node pairs when neither of the two nodes is the

depot. If the tail or head of the arc is the depot, the weight is b1 or b2, respectively. The RFIM

method can be considered as expert views on the route generation process, because it is based on

rules.

4.5. Combining the Label-guided and the Rule-based Feature Impact Matrices

The RFIM is general and can perform well on unforeseen data, for which the LFIM is limited. On

the other hand, RFIM is generic and does not capture the nuances between similar feature levels,

for which the LFIM performs well and captures the subtle di↵erences between feature levels. We

therefore propose a combined method, which we refer to as R+LFIM, by using the LFIM when

a particular transition is seen in the dataset, and using RFIM otherwise. It can also be viewed

as discarding any RFIM influence as long as the transition is seen in the training data for LFIM.

Note that the RFIM can broadly be considered a method built on expert views, constructed in a

rule-based fashion, while the LFIM is a data-driven method. The R+LFIM combines the best of

both methods, utilizing their respective strengths.

5. Results and Discussion

We now present the implementation details in Section 5.1 and compare the performances of the

methods in Section 5.2. We then test the performance of the best performing method under di↵erent

settings and demonstrate its generalizability in an out-of-sample dataset in Section 5.3.

5.1. Implementation Details

We implemented our algorithms using Python 3.9, and all the experiments were conducted on the

Cedar cluster of Compute Canada using single thread and 64GB of RAM on a Linux environment.

We have used the LKH 2.0.10 solver (Keld Helsgaun 2022) as the optimization oracle unless oth-

erwise stated. The time limit of LKH is set to 0.5 seconds. The learning is decomposed based on

15

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

depots (as described in Section 2.3). We use the distance, the first and the last node, and the zone

IDs as the features in the computational study in this paper, and focus on learning the feature

impact matrix of the zone ID feature.

5.2. Comparison of Algorithm Performances

We now present computational results of the RFIM (Section 4.4), SGCS (Section 3.1), LFIM

(Section 3.2) and R+LFIM (Section 4.5) methods. We use High-SV quality routes to compare the

performances.

5.2.1. RFIM Performance: We have tested RFIM performance using our baseline hyperpa-

rameter settings, (b1, b2, a1, a2, a3) = (1,0,1,10,100) and have obtained an average score of 0.0367.

We have also tested 494 randomly generated values for these hyperparameters, but none of these

implementations achieved a better score than the baseline hyperparameter settings (see Appendix

B.1 for details on tuning). We note that the RFIM method has achieved a third place in the Ama-

zon competition, and we take it as our baseline when presenting the performance of the two other

methods.

5.2.2. SGCS Performance The SGCS algorithm has four hyperparameters. We first tested a

variety of settings and determined the best setting as (itCount, �, ",�)= (10,5,0.05,50), as detailed

in Appendix B.2. Furthermore, the initial solution for the feature impact matrix (�initial) is taken

as the solution given by the RFIM. The experiments for the SGCS were carried out using High-SV

routes and an 80% training and 20% testing split. The average scores of the SGCS algorithm per

depot on training and testing datasets are presented in Table 3. The table also presents the results

of the RFIM and compares the performance of the two methods. The first column is the depot

name. The second and third columns report the average score per depot in training dataset for

the RFIM and the SGCS algorithms, respectively. The average score is improved from 0.0362 to

0.0332 in the training dataset, an average of 8.2% improvement. The average scores of the two

methods on the testing dataset are reported in the fourth and fifth columns, respectively. The

average scores are 0.0386, and 0.0393 for the RFIM and the SGCS, deteriorating 1.5%. The score

changes in percentage from the RFIM to the SGCS per depot on testing and training datasets are

reported in sixth and seventh columns, respectively. The SGCS algorithm improves the average

score on the training set, and we also observe improvements in the test data set for some depots

such as DCH3 at �10.5% and DCH4 at �8.1%. Nevertheless, it fails to improve the performance

of the RFIM method on the entire testing dataset and lacks the ability to generalise beyond seen

routes.

16

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 3 Performance of RFIM and SGCS algorithms per depot on High-SV routes an 80% training and 20%

testing split.

Depot RFIM
Training
score

SGCS
Training
score

RFIM
Testing
score

SGCS
Testing
score

Score
change (%)
on training
dataset

Score
change (%)
on testing
dataset

DAU1 0.0555 0.0521 0.0420 0.0611 �6.2 45.6
DBO1 0.0620 0.0454 0.0838 0.0838 �26.8 0.0
DBO2 0.0433 0.0405 0.0643 0.0646 �6.5 0.5
DBO3 0.0263 0.0246 0.0252 0.0241 �6.5 �4.2
DCH1 0.0532 0.0498 0.0446 0.0446 �6.4 0.0
DCH2 0.0744 0.0731 0.0611 0.0617 �1.7 1.0
DCH3 0.0342 0.0318 0.0434 0.0388 �7.1 �10.5
DCH4 0.0333 0.0300 0.0514 0.0472 �8.7 �8.1
DLA3 0.0291 0.0200 0.0278 0.0300 �31.2 7.8
DLA4 0.0369 0.0232 0.0155 0.0143 �37.2 �7.8
DLA5 0.0256 0.0224 0.0306 0.0338 �12.7 10.4
DLA7 0.0282 0.0249 0.0235 0.0221 �11.7 �5.9
DLA8 0.0345 0.0313 0.0402 0.0400 �9.3 �0.5
DLA9 0.0407 0.0401 0.0464 0.0455 �1.5 �1.8
DSE2 0.0612 0.0516 0.0658 0.0755 �15.7 14.7
DSE4 0.0259 0.0249 0.0218 0.0221 �3.7 1.1
DSE5 0.0327 0.0297 0.0377 0.0420 �9.4 11.5

Wt.Avg. 0.0362 0.0332 0.0386 0.0392 �8.2 1.5

5.2.3. LFIM Performance The only hyperparameter of the LFIM is the , which we set as

5 (see Annex B.3 for hyperparameter tuning details). The performance of the LFIM in comparison

to the RFIM per depot on High-SV routes with an 80% training and 20% testing split is reported

in Table 4. The column titles correspond to those in Table 3, indicating similar measures for

comparing the performances of the RFIM and the LFIM methods. The weighted average score of

the LFIM is 0.0374 and 0.0575 on training and testing datasets, respectively, which correspond to

3.4% and 48.8% deterioration with respect to the those of RFIM, respectively. Observe that the

RFIM is more generic and can be implemented to any unseen data, whereas the LFIM is more

dependent on the data seen in the training dataset. If a particular transition is never seen, no

information is transferred, which leads to poor performance with respect to the RFIM method.

5.2.4. R+LFIM Performance: Combining the strong sides of both RFIM and LFIM meth-

ods, R+LFIM method is developed in Section 4.5. The performance of the R+LFIM with respect

to the RFIM method is reported in Table 5 per depot on High-SV routes with an 80% training and

20% testing split. The column titles match those in Table 3, indicating similar measures for com-

paring the performances of the RFIM and the R+LFIM methods. The weighted average score of

the R+LFIM is 0.0108 and 0.0299 on training and testing datasets, respectively, which correspond

to 70.1% and 22.5% improvement with respect to the RFIM, respectively. This clear improvement

17

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 4 Performance of RFIM and LFIM algorithms per depot on High-SV routes with an 80% training and

20% testing split.

Depot RFIM
Training
score

LFIM
Training
score

RFIM
Testing
score

LFIM
Testing
score

Score
change (%)
on training
dataset

Score
change (%)
on testing
dataset

DAU1 0.0555 0.0666 0.0420 0.0708 19.9 68.7
DBO1 0.0620 0.0516 0.0838 0.1270 �16.8 51.6
DBO2 0.0433 0.0438 0.0643 0.0896 1.0 39.5
DBO3 0.0263 0.0284 0.0252 0.0440 8.0 74.6
DCH1 0.0532 0.0626 0.0446 0.0959 17.7 114.8
DCH2 0.0744 0.0892 0.0611 0.1295 19.9 112.0
DCH3 0.0342 0.0398 0.0434 0.0596 16.3 37.3
DCH4 0.0333 0.0342 0.0514 0.0678 2.8 32.1
DLA3 0.0291 0.0305 0.0278 0.0577 4.9 107.7
DLA4 0.0369 0.0476 0.0155 0.0188 28.9 21.2
DLA5 0.0256 0.0388 0.0306 0.0426 51.4 39.1
DLA7 0.0282 0.0235 0.0235 0.0370 �16.7 57.2
DLA8 0.0345 0.0462 0.0402 0.0731 34.0 81.9
DLA9 0.0407 0.0383 0.0464 0.0605 �6.0 30.3
DSE2 0.0612 0.0654 0.0658 0.0907 6.9 37.8
DSE4 0.0259 0.0251 0.0218 0.0330 �3.1 51.2
DSE5 0.0327 0.0289 0.0377 0.0465 �11.6 23.4

Wt.Avg. 0.0362 0.0374 0.0386 0.0575 3.4 48.8

is achieved by using the available data to the best extend possible by the LFIM, while consulting

to the RFIM for unforeseen data due to its performance on unforeseen data. Overall, the method

achieves the best result among all the other methods considered. We hereafter use the R+LFIM

as our best performing method and test it under di↵erent settings in the next section.

5.3. Performance of the Best Performing Algorithm under Di↵erent Settings

The R+LFIM is the computationally demonstrated to be the best performing algorithm in terms

of both the average score it achieves in testing dataset and its computational e�ciency due to not

requiring any iterations. We first test the impacts of the split ratio on the training and testing

performances in Section 5.3.1. We then test the R+LFIMmethod on High routes in Section 5.3.2, on

all routes in Section 5.3.3 and on an out-of-sample dataset, which was also used in the competition,

in Section 5.3.4. Lastly, we test an implementation which takes into account the customer time

windows in the optimization oracle in Section 5.3.5.

5.3.1. R+LFIM Performance on Various Training and Testing Splits The R+LFIM

method trains on the available data and the size of training data is therefore crucial for the ability

to generalize to unseen routes in the testing set. We now investigate the impacts of changing the

size of the training and testing datasets between 10% and 90% of the High-SV routes. The results

18

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 5 Performance of RFIM and R+LFIM algorithms per depot on High-SV routes with an 80% training

and 20% testing split.

Depot RFIM
Training
score

R+LFIM
Training
score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on training
dataset

Score
change (%)
on testing
dataset

DAU1 0.0555 0.0131 0.0420 0.0419 �76.3 �0.3
DBO1 0.0620 0.0188 0.0838 0.0838 �69.8 0.0
DBO2 0.0433 0.0111 0.0643 0.0516 �74.4 �19.6
DBO3 0.0263 0.0073 0.0252 0.0177 �72.1 �29.6
DCH1 0.0532 0.0181 0.0446 0.0550 �65.9 23.2
DCH2 0.0744 0.0259 0.0611 0.0621 �65.2 1.6
DCH3 0.0342 0.0112 0.0434 0.0318 �67.3 �26.8
DCH4 0.0333 0.0067 0.0514 0.0411 �79.8 �20.0
DLA3 0.0291 0.0071 0.0278 0.0279 �75.7 0.4
DLA4 0.0369 0.0122 0.0155 0.0138 �67.1 �11.2
DLA5 0.0256 0.0061 0.0306 0.0275 �76.2 �10.4
DLA7 0.0282 0.0084 0.0235 0.0161 �70.4 �31.7
DLA8 0.0345 0.0107 0.0402 0.0359 �68.9 �10.8
DLA9 0.0407 0.0108 0.0464 0.0357 �73.5 �23.1
DSE2 0.0612 0.0261 0.0658 0.0452 �57.4 �31.4
DSE4 0.0259 0.0107 0.0218 0.0149 �58.9 �31.6
DSE5 0.0327 0.0119 0.0377 0.0149 �63.5 �60.6

Wt.Avg. 0.0362 0.0108 0.0387 0.0299 �70.1 �22.5

are presented in Table 6. The first column shows the size of the training data as percentage of

the High-SV routes, and the remaining routes are used for testing. A value of 10 implies that the

training dataset contains 10% of the routes, and the remaining 90% of the routes are for used for

testing. The following four columns in the table report the average training and testing scores for

the RFIM and the R+LFIM methods. The improvements achieved by the R+LFIM over the RFIM

are reported in the rightmost two columns.

The average training score has a direct relationship with the training split while the testing

score has an inverse relationship. At 10%, the training score of the R+LFIM method is as low as

0.0081, while it increases to 0.0119 when the split is 100%. The reason is that less data is easier

to learn, but the performance on the training set does not generalize well, as seen in the testing

results. Note that the best performing algorithm in the training dataset reported so far is by Cook,

Held, and Helsgaun (2024) and is equal to 0.01978. With our R+LFIM method, we achieved a

score of 0.0119 on the complete dataset, which improves over the best known performance by

40.1%. The average score of R+LFIM improves from 0.0349 to 0.0298 in testing dataset as the split

proportion increases from 10% to 90%. An average score of 0.0296 at an 90% training data split

implies approximately 23.6% improvement over the RFIM results, which achieved a third place

19

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 6 R+LFIM performance with respect to RFIM on High-SV routes for varying training split proportions

Training
split (%)†

RFIM
Training
score

R+LFIM
Training
score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on training
dataset

Score
change (%)
on testing
dataset

10 0.0399 0.0081 0.0363 0.0349 �79.5 �3.9
20 0.0393 0.0090 0.0360 0.0338 �77.0 �6.2
30 0.0377 0.0089 0.0362 0.0329 �76.4 �9.0
40 0.0369 0.0096 0.0364 0.0320 �73.9 �12.2
50 0.0368 0.0099 0.0364 0.0306 �73.1 �16.1
60 0.0364 0.0101 0.0371 0.0304 �72.2 �18.1
70 0.0362 0.0106 0.0378 0.0306 �70.6 �19.0
80 0.0362 0.0108 0.0387 0.0299 �70.1 �22.5
90 0.0364 0.0113 0.0389 0.0296 �69.0 �23.6
100 0.0366 0.0119 - - �67.5 -

† The remaining data is used for testing.

in the Amazon competition. As we will demonstrate in Section 5.3.4, the method also achieves a

23.1% improvement on an out-of-sample dataset, which was used in the competition.

Figure 2 displays the score change reported in the rightmost two columns in Table 6. As more data

is available, the testing performance increases while training performance decreases. Availability

of more data clearly allows to generalize better. The figure additionally reports the improvements

that the algorithm achieves on High routes, details of which are presented in the next section.

5.3.2. R+LFIM Performance on High Routes: We next conduct experiments using all

2718 High quality routes (including High-SV and High-MV). The results are reported in Table 7.

The R+LFIM achieves a better average score of 0.0282 on High routes than on the High-SV routes.

Observe that reattempted deliveries found in High-MV routes imply additional node visits unknown

a priori to the route generation. These reattempts may lead the driver to take undesired transitions,

which may eventually misguide the R+LFIM method. Despite this, the results continued to improve

when new routes were added. This demonstrates the value of including additional data, which

o↵sets any drawbacks from incorporating the High-MV routes into the learning process. Note that

the new score achieved by the algorithm yields a 29.9% improvement with respect to RFIM baseline

score. The score change with respect to varying training splits is also plotted in Figure 2. The

R+LFIM performs better in every setting when new data is introduced to train.

5.3.3. R+LFIM Performance on All Routes: We have computationally demonstrated in

the previous section that including greater number of High quality routes in testing data helped

improve the results. This naturally raises the question whether medium and low quality routes

would also lead to similar results. We now incorporate all 6112 routes including the medium and

low quality ones. We use a training split of 0.5 on the High-SV routes, and use the other half for

20

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�80

�60

�40

�20

0

Training split

R
+
L
F
IM

sc
or
e
ch
an

ge
(%

)
w
it
h
re
sp
ec
t
to

R
F
IM

Training on High-SV routes

Testing on High-SV routes

Training on High routes

Testing on High routes

Figure 2 R+LFIM Scores with respect to RFIM on High-SV and High routes for di↵erent training and testing

split ratios. Negative numbers on the vertical axis indicate the scale of improvement over RFIM.

Table 7 R+LFIM performance with respect to RFIM on High routes for varying training split proportions

Training
split (%)†

RFIM
Training
score

R+LFIM
Training
score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on training
dataset

Score
change (%)
on training
dataset

10 0.0393 0.0121 0.0403 0.0373 �69.3 �7.5
20 0.0402 0.0118 0.0406 0.0353 �69.4 �13.1
30 0.0396 0.0129 0.0405 0.0337 �69.4 �16.8
40 0.0392 0.0140 0.0409 0.0331 �67.4 �18.9
50 0.0397 0.0148 0.0407 0.0323 �64.4 �20.8
60 0.0396 0.0150 0.0411 0.0319 �62.8 �22.2
70 0.0399 0.0157 0.0410 0.0312 �60.7 �23.7
80 0.0397 0.0159 0.0422 0.0310 �59.9 �26.6
90 0.0402 0.0164 0.0401 0.0282 �59.2 �29.9
100 0.0403 0.0168 - - �58.4 -

† The remaining data is used for testing.

our testing dataset. All the remaining routes also form part of the training dataset. The results

are presented in Table 8 by depot. The weighted average scores of the RFIM and the R+LFIM on

training dataset are 0.0427 and 0.198, respectively. Including the medium and low quality routes

increased the training score with respect to those of High routes. The weighted average score of the

RFIM and the R+LFIM on testing dataset are 0.0408 and 0.0283. We observe that the performance

21

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

of the method on all routes remain on par with the previously reported results, demonstrating the

robustness of the method.

Table 8 R+LFIM performance per depot with respect to RFIM on All routes

Depot RFIM
Training
score

R+LFIM
Training
score

RFIM
Testing score

R+LFIM
Testing score

Score change
(%) on
training
dataset

Score change
(%) on
testing
dataset

DAU1 0.0626 0.0245 0.0656 0.0578 �60.9 �11.8
DBO1 0.0661 0.0396 0.1033 0.0871 �40.1 �15.7
DBO2 0.0562 0.0307 0.0509 0.0392 �45.3 �23.0
DBO3 0.0309 0.0124 0.0266 0.0140 �60.0 �47.5
DCH1 0.0601 0.0276 0.0534 0.0504 �54.1 �5.6
DCH2 0.0731 0.0390 0.0571 0.0665 �46.6 16.5
DCH3 0.0466 0.0240 0.0413 0.0342 �48.5 �17.2
DCH4 0.0417 0.0213 0.0430 0.0262 �48.9 �38.9
DLA3 0.0401 0.0162 0.0367 0.0237 �59.6 �35.6
DLA4 0.0431 0.0217 0.0411 0.0283 �49.6 �31.2
DLA5 0.0362 0.0130 0.0323 0.0250 �64.2 �22.6
DLA7 0.0362 0.0162 0.0335 0.0191 �55.3 �42.8
DLA8 0.0425 0.0186 0.0383 0.0302 �56.4 �21.2
DLA9 0.0467 0.0191 0.0444 0.0290 �59.2 �34.6
DSE2 0.0562 0.0362 0.0619 0.0489 �35.6 �20.9
DSE4 0.0329 0.0150 0.0283 0.0149 �54.5 �47.4
DSE5 0.0382 0.0193 0.0341 0.0158 �49.4 �53.6

Wt.Avg. 0.0427 0.0198 0.0408 0.0283 �53.6 �30.8

5.3.4. R+LFIM Performance on Out-of-sample Routes: In the Amazon competition,

the algorithms were tested in an out-of-sample dataset, and the performance of the top three teams

were 0.0248, 0.0353 and 0.0391, respectively. The first place winners, Cook, Held, and Helsgaun

(2024), implemented a local search for learned constraints. Second place winners, Mo et al. (2023),

implemented a hierarchical TSP solution with a custom cost matrix. Additional details for both

approaches can be found in Winkenbach, Parks, and Noszek (2021). Lastly our initial RFIM method

achieved a third place with a score of 0.0391. Our focus on a↵ecting the distances between nodes

based on zone di↵erences is echoed in all of the top three performing methods, albeit utilized in

di↵erent ways. We consider our method the most direct and the least complicated, as it does not

include any modifications to a TSP solver directly and returns comparative results.

Table 9 presents the computational results. The RFIM score presented here achieves a score of

0.0382 whereas the same method achieved 0.0391 in the competition. The di↵erence is considered

to be due to random noise in the heuristics to generate routes. We then trained R+LFIM using all

routes and tested on the out-of-sample dataset. The new method improved the testing score from

0.0382 to 0.294, an improvement of approximately 23.1%.

22

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 9 R+LFIM performance per depot with respect to RFIM on Out of Sample Dataset

Depot Number of
Routes

RFIM
Training score

R+LFIM
Training score

RFIM Testing
score

R+LFIM
Testing score

Score change
(%) on testing

dataset
DAU1 121 0.0629 0.0293 0.0508 0.0410 �14.82
DBO1 59 0.0744 0.0375 0.0606 0.0562 �9.43
DBO2 152 0.0548 0.0310 0.0438 0.0374 �6.89
DBO3 202 0.0303 0.0123 0.0268 0.0126 �41.97
DCH1 123 0.0573 0.0307 0.0614 0.0522 �12.24
DCH2 71 0.0701 0.0420 0.0516 0.0492 �0.20
DCH3 161 0.0465 0.0242 0.0393 0.0314 �11.02
DCH4 113 0.0426 0.0215 0.0336 0.0273 �9.36
DLA3 129 0.0389 0.0170 0.0342 0.0271 �17.80
DLA4 157 0.0425 0.0233 0.0391 0.0336 �7.08
DLA5 94 0.0359 0.0136 0.0312 0.0310 5.04
DLA7 397 0.0360 0.0161 0.0324 0.0199 �32.25
DLA8 353 0.0414 0.0185 0.0370 0.0303 �16.61
DLA9 496 0.0460 0.0206 0.0385 0.0325 �11.52
DSE2 114 0.0596 0.0368 0.0513 0.0313 �39.14
DSE4 166 0.0315 0.0154 0.0258 0.0143 �39.88
DSE5 143 0.0373 0.0183 0.0335 0.0190 �30.30
DBO6 1 � � 0.0752 0.0752 0.0

Wt.Avg. 0.0422 0.0204 0.0382 0.0294 �23.1

5.3.5. Optimization Oracle With or Without Time Windows: We have used the LKH-2

solver (Keld Helsgaun 2022) in all the computational tests conducted so far even if some customers

have time windows in the dataset. This naturally raises the question of whether respecting the time

windows could potentially improve the results. We then used LKH 3.0.9 (Helsgaun 2017), which

supports modeling time windows when solving the TSP. Here we trained on the High routes, with

an 80% training and 20% testing data split using R+LFIM. The results are presented in Table

10. The performance is insignificantly impacted when the optimization oracle respects the time

windows on the available data.

6. Discussion on E↵ectiveness, Interpretability and Flexibility of the
Methods

We have had three modeling strategies that governed the choice of methods. All our solution

techniques presented in this paper are interpretable, flexible and they e↵ectively capture su�cient

information for competitive performances.

E↵ectiveness: The RFIM method provides a baseline score of 0.0367 on the High-SV dataset.

Given the fact it is based on expertly engineered rules filtered through descriptive analytics, there

was no training procedure. Our second algorithm is the SGCS, which have attained scores of 0.0332

and 0.0393 on training and testing datasets, respectively. Lastly, the training and testing scores

of R+LFIM, using only a portion of the High-SV routes for testing and all the remaining routes

as testing, yields a training score of 0.0198 and testing score of 0.0283. It also achieves a score of

23

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 10 Comparing the impacts of optimization oracle with and without time windows on R+LFIM

performance on High routes

Depot Without TW
Training
Score

With TW
Training
Score

Without TW
Testing Score

With TW
Testing Score

Score change
(%) on
training
dataset

Score change
(%) on
testing
dataset

DAU1 0.0243 0.0240 0.0741 0.0669 �1.47 �9.8
DBO1 0.0444 0.0483 0.0353 0.0339 8.73 �4.0
DBO2 0.0190 0.0191 0.0471 0.0468 0.22 �0.7
DBO3 0.0096 0.0099 0.0164 0.0162 3.47 �0.9
DCH1 0.0240 0.0239 0.0497 0.0513 �0.37 3.3
DCH2 0.0247 0.0252 0.0686 0.0689 2.24 0.4
DCH3 0.0136 0.0141 0.0286 0.0288 4.02 0.7
DCH4 0.0087 0.0083 0.0344 0.0327 �4.36 �4.8
DLA3 0.0147 0.0146 0.0265 0.0266 �0.94 0.2
DLA4 0.0190 0.0191 0.0401 0.0403 0.83 0.4
DLA5 0.0086 0.0085 0.0300 0.0325 �0.90 8.4
DLA7 0.0122 0.0125 0.0177 0.0184 2.48 4.3
DLA8 0.0140 0.0142 0.0392 0.0398 0.96 1.4
DLA9 0.0169 0.0168 0.0328 0.0338 �0.70 3.1
DSE2 0.0313 0.0320 0.0447 0.0449 1.96 0.5
DSE4 0.0143 0.0143 0.0151 0.0151 �0.13 0.1
DSE5 0.0140 0.0140 0.0169 0.0165 �0.46 �2.3

Wt.Avg. 0.0155 0.0156 0.0305 0.0304 0.68 �0.17

0.0294 on an out-of-sample dataset. The key feature of the R+LFIM is that it does not require any

iterative learning aspect, but it is a data transformation that can be executed in seconds. It works

immediately in conjunction with established industrial solvers to provide e↵ective and competitive

results.

Interpretability:Our best performing method, the R+LFIM, solves a TSP on a modified graph,

which has a low complexity in terms of interpretability. Our framing of the problem keeps the gran-

ularity to the features, which is easily interpretable, and intuitively understandable, because they

represent the transition likelihood between the nodes. The penalty factors used in the transition

matrix can even be changed manually to encourage or discourage particular visiting orders.

Flexibility: Our best performing method, the R+LFIM, is flexible due to ease of incorporating

unseen data, and this requires no new training e↵orts. New nodes (customers), new features, or

new feature levels for existing features can seamlessly be incorporated by explicitly interpreting

their impacts. The RFIM method allows us to have an initial baseline of relations directly without

any training. The R+LFIM benefits from the flexibility of the RFIM and additionally improves its

performance.

24

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

7. Conclusion

We have built an e↵ective, interpretable, and flexible framework for learning the experiences of the

drivers. To this end, we have introduced, modeled and solved the Data-driven Traveling Salesman

Problem (DD-TSP), which involves minimizing a potentially nonlinear and nonsmooth function.

The aim of the first of the two stages is to modify the input weight matrix for the TSP, which

corresponds to the transition discouragement levels according to driver experiences. In the context

of our paper, we refer to this matrix as the transition weight matrix, which is then given to a TSP

solver in the second stage to generate routes that are similar to the executed routes. We assume

that this matrix is factorizable; that is, it can be expressed as an element-wise multiplication of

di↵erent matrices that represent features. Each such factor matrix captures the impacts of a feature

on the routes, and we leverage the side information in the data to learn about these matrices.

We have developed three methods for learning the transition weight matrix. The first one, Score

Guided Coordinate Search (SGCS), is an extension of the coordinate search algorithm in derivative-

free optimization. The second method is for learning the transitions directly from the data, which

we have referred to as the Label-guided Feature Impact Matrix. The third method combines the

benefits of a rule-based method with the data-driven approach, which is referred to as Rule-based

Label-guided Feature Impact Matrix. We have tested the e�ciency of these methods using a case

study based on Amazon Last-Mile Routing Challenge. Results have shown that we have improved

on our previous results, which achieved a third place in the competition, by 23.1% in an out-of-

sample dataset. Furthermore, our best performing algorithm has improved the best score in the

literature achieved on the available training dataset by 40.1%.

Acknowledgments
The authors gratefully acknowledge funding provided by the Natural Sciences and Engineering Research

Council of Canada under grant RGPIN-2022-04979.

25

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Appendix A: Descriptive Analytics

We now present a descriptive analysis of the data. We explore the travel times, the customer zones, and the

first and last nodes on the routes in Sections A.1, A.2 and A.3, respectively, in order to extract and select

important features.

A.1. Travel times

When the objective is defined as the minimization of the tour duration, the problem is a classical TSP. Using

only the travel times, solving the corresponding TSP for every route and evaluating them in the scoring

function presented in Section 4.2 gives a competitive score of 0.0795. Note that this score achieves the 16th

best score among 45 finalist teams in the Amazon challenge studied in the case study. This brief analysis

demonstrates that the drivers prefer shorter route durations, and that the travel time is an important measure

in route selection.

A.2. Zones

Zoning is a critical factor in delivery operations. The service region is usually partitioned into several zones

considering multiple factors such as the geographical and structural di↵erences between locations. In the

6112 routes in the case study, there are an average of 21.04 di↵erent zones visited per route including the

depot. The average number of times that the drivers change zones between two consecutive customer visits

is only 23.61. In other words, the drivers generally visit the nodes in the same zone before switching to

another one. In the actual routes, the zone IDs of two consecutive nodes are the same 85.2% of the times.

A sample route is plotted in Figure 3. The pattern of visiting customers in the same zone before switching

to the next one can clearly be observed in this example. The observation that the drivers generally visit

the customers in the same zone before going into another one is an important observation. But the zone ID

property contains more information. In particular, the more similar two zone names are, the closer they are

geographically to each other, similar to Universal Transverse Mercator (UTM) grid reference system (Stott

1977). In the dataset, the ‘zone ID ’ property of a node is of the following format: L-M.PR, where L and R

are letters and M and P are numbers. We refer to each of these four entries as a token. Each token breaks

the service region into sub regions. Let xk
ij = 1 if the kth token of the zone ID of nodes i and j are di↵erent,

and 0 otherwise.

Definition 2. Given two nodes i, j 2N , we define ⌘ij =
Pk=4

k=1
x
k
ij to be the ‘token di↵erence of nodes i

and j’, which is a parameter to measure the dissimilarity between the zone IDs of the two given nodes.

Having ⌘ij = 0 implies that nodes i and j share the same zone ID. Table 11 shows the average number of

times that a token di↵erence is observed on all 6112 routes. Two consecutively visited nodes are in the same

region 124.38 times, on average. This corresponds to 85.2% of the average number of nodes. Note that the

drivers very rarely change zones with ⌘ij � 2. Majority of these zone changes are between zones with a token

di↵erence of 1. For example, the vehicle visits a node in zone A-1.2A and continues with another node in

zone A-1.3A. In other words, the consecutive visited zones share 3 tokens 17.38 times on average, which

corresponds to 11.9% of the average number of nodes. This case is particularly important and we now further

investigate such zone changes.

26

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Figure 3 Map of actual route ‘RouteID 62955f5e-57a2-4425-bfe6-6989d8dae565’. Nodes are marked by their

zone IDs and the route is shown in blue line. Note that only the last two tokens of zone IDs are plotted

on the map for ease of display. The depot is not shown on this map. Google Map data ©2021

Table 11 Average number of times that a token di↵erence appears between two consecutive nodes on actual

routes

Token di↵erence (⌘ij) Average number of times per route

0 124.38
1 17.38
2 1.88
3 0.34
4† 2.02

Total† 145.99
† Excluding the arcs from the depot

When the token di↵erence equals 1 in Table 11, the two zone IDs are di↵erent only in i
th token for

i= 1, . . . ,4. Table 12 shows the average number of times that ith token is di↵erent in consecutive nodes of the

actual routes, for i= 1, . . . ,4. Among the 17.38 zone changes with single token di↵erence, the vehicle visits

11.33 times another zone that changes only in the 3rd token (Table 12). For example, the vehicle goes from

zone A1.1A to A1.2A. They go to another zone that changes only in the 4th token 5.22 times. Therefore, in

the actual routes, the zone IDs of two consecutive nodes change only in the 3rd or 4th token 11.3% of the

times.

27

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Table 12 Average number of times that two zone IDs are di↵erent only in ith token for i= 1, . . . ,4 (when the

token di↵erence equals 1 in Table 11).

Token # Average number

1st 0.02
2nd 0.81
3rd 11.33
4th 5.22

Total 17.38

[0
, 1
0)

[1
0,
20
)

[2
0,
30
)

[3
0,
40
)

[4
0,
50
)

[5
0,
60
)

[6
0,
70
)

[7
0,
80
)

[8
0,
90
)

[9
0,
10
0]

5

10

15

20

25

30

35

Rankings with respect to distance from the depot

P
er
ce
nt

of
oc
cu
rr
en
ce

(%
)

First node
Last node

Figure 4 The first node and the last nodes on the actual routes are not always the nearest two nodes to the

depot. This plot shows the ranking distribution of the first and last nodes in terms of distance from

the depot.

A.3. The first and the last nodes on the routes

The average travel time from the depot to the first node is 1811.4 seconds, the travel time from the last node

to the depot is 1857.7 seconds and the travel time travel time spent between customers is 8972.8 seconds.

Therefore, 29% of the route time, the driver is enroute from and to the depot, which signifies the importance

of these two trips. We therefore further investigate the first and the last nodes on the route from the depot.

In particular, we sort the nodes with respect to their distance from the depot, and plot the distribution of

the ranks of first and the last nodes in Figure 4. The first node on the route is in top 10% ranking in travel

time from the depot in 35% of the routes. Similarly, the last node on the route is in top 10% ranking in

travel time from the depot in 23% of the routes. As shown in the graph, there is a high probability that

those nodes that are farther away from the depot can be selected as the first and the last nodes. Therefore,

we conclude that, in the actual routes, the first and the last nodes are not necessarily close to the depot.

28

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

Appendix B: Tuning the Algorithm Hyperparameters

In this section, we present details on tuning the hyperparameters of the RFIM, SGCS and LFIM

methods.

B.1. Tuning hyperparameters for RFIM

We randomly generated 494 (a1, a2, and a3 values respecting a1 < a2 < 10a1 and a2 < a3 < 10a2

conditions and tested our algorithm. None of these implementations performed better than the

baseline settings with (a1, a2, a3) = (1,10,100), in which we achieve a score of 0.0367. The average

score of these 494 experiments is 0.0396 and the maximum score is 0.0543, demonstrating the

robustness of RFIM method for di↵erent hyperparameter settings. The b1 and b2 hyperparameters,

on the other hand, determine the importance of the trips from and to the depot. We tested (0,0),

(1,0), (0,1), (1,1) and (0.5,0) settings with (a1, a2, a3) = (1,10,100). The average scores are 0.0381,

0.0367, 0.0378, 0.0374 and 0.0371, respectively. Therefore, we set (b1, b2) = (1,0) as in the baseline

settings.

B.2. Tuning hyperparameters for SGCS

The hyperparameters for SGCS algorithm are the iteration count (itCount), the maximum number

of trials at every iteration (�), the number of unique elements changed ("), and the step size (�).

We conducted experiments using depot DLA9, which is the largest depot in terms of the High-

SV routes. The experimental design included all combinations of itCount 2 {5,10}, � 2 {3,5,10},

" 2 {0.01,0.05,0.10} and � 2 {10,50,100}. The setting that performed the best is itCount= 10,

� = 5, " = 0.05, and � = 50 with a 1.52% improvement on the training dataset and a 1.84%

improvement on the testing dataset. This setting is implemented in the reported results in this

paper.

B.3. Tuning hyperparameters for R+LFIM

Recall that, when building the LFIM,  2 N in equation 6 represents the maximum number of

transitions that can change the weight value. We have tested 2 {2, . . . ,10} on the entire dataset.

The impact on the score changes minimally between di↵erent  values. We have selected and used

= 5 for all the experiments carried out in this paper, which gave an overall score of 0.0403 on the

training routes, and 0.0382 on the testing routes.

29

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

References

Accorsi L, Lodi A, Vigo D, 2022 Guidelines for the computational testing of machine learning approaches to

vehicle routing problems. Operations Research Letters 50(2):229–234.

Amazon, 2021 Amazon Last Mile Routing Research Challenge (Supported by the MIT Center for Transporta-

tion & Logistics). URL https://routingchallenge.mit.edu, last accessed on Jun 18, 2021.

Applegate DL, Bixby RE, Chvátal V, Cook WJ, 2011 The traveling salesman problem (Princeton university

press, New Jersey).

Arslan O, Abay R, 2021 Data-driven Vehicle Routing in Last Mile Delivery (Report CIRRELT-2021-30,

Université de Montreal).

Audet C, Hare W, 2017 Derivative-Free and Blackbox Optimization (Springer Cham, Switzerland).

Bello I, Pham H, Le QV, Norouzi M, Bengio S, 2016 Neural combinatorial optimization with reinforcement

learning. arXiv preprint arXiv:1611.09940 .

Bresson X, Laurent T, 2021 The transformer network for the traveling salesman problem. arXiv preprint

arXiv:2103.03012 .

Canoy R, Bucarey V, Mandi J, Guns T, 2023 Learn and route: learning implicit preferences for vehicle

routing. Constraints 28(3):363–396.

Canoy R, Bucarey V, Mandi J, Mulamba M, Molenbruch Y, Guns T, 2024 Probability estimation and

structured output prediction for learning preferences in last mile delivery. Computers & Industrial Engi-

neering 189:109932.

Carrabs F, Cordeau JF, Laporte G, 2007 Variable neighborhood search for the pickup and delivery traveling

salesman problem with lifo loading. INFORMS Journal on Computing 19(4):618–632.

Cook W, Held S, Helsgaun K, 2024 Constrained local search for last-mile routing. Transportation Science

58(1):12–26.

Delarue A, Anderson R, Tjandraatmadja C, 2020 Reinforcement learning with combinatorial actions: An

application to vehicle routing. Advances in Neural Information Processing Systems 33:609–620.

Deudon M, Cournut P, Lacoste A, Adulyasak Y, Rousseau LM, 2018 Learning heuristics for the TSP by policy

gradient. International conference on the integration of constraint programming, artificial intelligence,

and operations research, 170–181 (Springer).

Ghosh M, Kuiper A, Mahes R, Maragno D, 2023 Learn global and optimize local: A data-driven methodology

for last-mile routing. Computers & Operations Research 159:106312.

Google, 2022 Or-tools. https://github.com/google/or-tools.

Helsgaun K, 2000 An e↵ective implementation of the Lin–Kernighan traveling salesman heuristic. European

Journal of Operational Research 126(1):106–130.

30

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

https://routingchallenge.mit.edu
https://github.com/google/or-tools

Helsgaun K, 2017 An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman

and vehicle routing problems. Roskilde: Roskilde University 12:966–980.

Hore S, Chatterjee A, Dewanji A, 2018 Improving variable neighborhood search to solve the traveling salesman

problem. Applied Soft Computing 68:83–91.

Hudson B, Li Q, Malencia M, Prorok A, 2021 Graph neural network guided local search for the traveling

salesperson problem. arXiv preprint arXiv:2110.05291 .

Junior Mele U, Maria Gambardella L, Montemanni R, 2021 Machine learning approaches for the traveling

salesman problem: A survey. 2021 The 8th International Conference on Industrial Engineering and

Applications (Europe), 182–186.

Keld Helsgaun, 2022 LKH solver. http://webhotel4.ruc.dk/~keld/research/LKH/.

Knox J, 1994 Tabu search performance on the symmetric traveling salesman problem. Computers & Opera-

tions Research 21(8):867–876.

Kottho↵ L, Kerschke P, Hoos H, Trautmann H, 2015 Improving the state of the art in inexact tsp solving using

per-instance algorithm selection. Dhaenens C, Jourdan L, Marmion ME, eds., Learning and Intelligent

Optimization, 202–217 (Springer Cham, Heidelberg).

Laporte G, 1992 The traveling salesman problem: An overview of exact and approximate algorithms. European

Journal of Operational Research 59(2):231–247.

Lin S, Kernighan BW, 1973 An e↵ective heuristic algorithm for the traveling-salesman problem. Operations

Research 21(2):498–516.

Merchan D, Pachon J, Arora J, Konduri K, Winkenbach M, Parks S, Noszek J, 2021 Amazon last mile routing

research challenge dataset. URL https://registry.opendata.aws/amazon-last-mile-challenges,

accessed January 6, 2022.

Miki S, Yamamoto D, Ebara H, 2018 Applying deep learning and reinforcement learning to traveling sales-

man problem. 2018 international conference on computing, electronics & communications engineering

(ICCECE), 65–70 (IEEE).

Mo B, Wang Q, Guo X, Winkenbach M, Zhao J, 2023 Predicting drivers’ route trajectories in last-mile

delivery using a pair-wise attention-based pointer neural network. Transportation Research Part E:

Logistics and Transportation Review 175:103168.

Montgomery DC, Peck EA, Vining GG, 2021 Introduction to linear regression analysis (John Wiley & Sons,

Hoboken, USA).

Nagata Y, Kobayashi S, 2013 A powerful genetic algorithm using edge assembly crossover for the traveling

salesman problem. INFORMS Journal on Computing 25(2):346–363.

Nazari M, Oroojlooy A, Snyder L, Takác M, 2018 Reinforcement learning for solving the vehicle routing

problem. Advances in neural information processing systems 31.

31

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

http://webhotel4.ruc.dk/~keld/research/LKH/
https://registry.opendata.aws/amazon-last-mile-challenges

Nelder JA, Mead R, 1965 A Simplex Method for Function Minimization. The Computer Journal 7(4):308–

313.

Özarık SS, da Costa P, Florio AM, 2024 Machine learning for data-driven last-mile delivery optimization.

Transportation Science 58(1):27–44.

Parmentier A, 2022 Learning to approximate industrial problems by operations research classic problems.

Operations Research 70(1):606–623.

Pepper JW, Golden BL, Wasil EA, 2002 Solving the traveling salesman problem with annealing-based heuris-

tics: a computational study. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans 32(1):72–77.

Potvin JY, 1996 Genetic algorithms for the traveling salesman problem. Annals of Operations Research

63(3):337–370.

Ristad ES, Yianilos PN, 1998 Learning string-edit distance. IEEE Transactions on Pattern Analysis and

Machine Intelligence 20(5):522–532.

Sadana U, Chenreddy A, Delage E, Forel A, Frejinger E, Vidal T, 2024 A survey of contextual optimization

methods for decision-making under uncertainty. European Journal of Operational Research .

Scroccaro PZ, van Beek P, Esfahani PM, Atasoy B, 2023 Inverse optimization for routing problems. arXiv

preprint arXiv:2307.07357 .

Stott PH, 1977 The utm grid reference system. IA. The Journal of the Society for Industrial Archeology

1–14.

Sultana N, Chan J, Sarwar T, Abbasi B, Qin A, 2021 Learning enhanced optimisation for routing problems.

arXiv preprint arXiv:2109.08345 .

Varol T, Özener OÖ, Albey E, 2024 Neural network estimators for optimal tour lengths of traveling sales-

person problem instances with arbitrary node distributions. Transportation Science 58(1):45–66.

Wall ME, Rechtsteiner A, Rocha LM, 2003 Singular value decomposition and principal component analysis.

A practical approach to microarray data analysis, 91–109 (Springer, Boston).

Wang Z, Geng X, Shao Z, 2009 An e↵ective simulated annealing algorithm for solving the traveling salesman

problem. Journal of Computational and Theoretical Nanoscience 6(7):1680–1686.

Winkenbach M, Parks S, Noszek J, 2021 Technical proceedings of the Amazon last mile routing research

challenge URL https://hdl.handle.net/1721.1/131235.

Xin L, Song W, Cao Z, Zhang J, 2021 NeuroLKH: Combining deep learning model with Lin-Kernighan-

Helsgaun heuristic for solving the traveling salesman problem. Advances in Neural Information Pro-

cessing Systems 34.

Zheng J, He K, Zhou J, Jin Y, Li CM, 2021 Combining reinforcement learning with Lin-Kernighan-Helsgaun

algorithm for the traveling salesman problem. Proceedings of the AAAI conference on artificial intelli-

gence, volume 35, 12445–12452.

32

A Contextual Framework for Learning Routing Experiences in Last-mile Delivery

CIRRELT-2024-16

https://hdl.handle.net/1721.1/131235

	Introduction
	Literature Review
	Contributions and Organization of the Paper
	Problem Definition and Methodological Framework
	Problem Definition
	Factorization of the Transition Weight Matrix
	Decomposition of the Transition Weight Matrix
	Learning the Transformation by Predictive Analytics
	Score Guided Coordinate Search
	A Proxy Gradient Function:
	The SGCS Algorithm

	Label-guided Feature Impact Matrix

	Description of the Case Study
	The Competition and the Data
	Comparing Similarity of Two Routes: the Scoring Function
	Descriptive Statistics and Feature Selection
	Rule-based Feature Impact Matrix
	Combining the Label-guided and the Rule-based Feature Impact Matrices

	Results and Discussion
	Implementation Details
	Comparison of Algorithm Performances
	RFIM Performance:
	SGCS Performance
	LFIM Performance
	R+LFIM Performance:

	Performance of the Best Performing Algorithm under Different Settings
	R+LFIM Performance on Various Training and Testing Splits
	R+LFIM Performance on High Routes:
	R+LFIM Performance on All Routes:
	R+LFIM Performance on Out-of-sample Routes:
	Optimization Oracle With or Without Time Windows:

	Discussion on Effectiveness, Interpretability and Flexibility of the Methods
	Conclusion

	Descriptive Analytics
	Travel times
	Zones
	The first and the last nodes on the routes
	Tuning the Algorithm Hyperparameters
	Tuning hyperparameters for RFIM
	Tuning hyperparameters for SGCS
	Tuning hyperparameters for R+LFIM

	CIRRELT-2024-16-abstract.pdf
	Bibliothèque et Archives Canada, 2024

