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Abstract. Evacuations occur when human safety is compromised by disasters, 

such as floods. Shelters play a crucial role in providing protection for individuals 

who have been displaced or have lost their housing, emphasizing the 

requirement for secure accessibility. This paper introduces an systematic 

optimization tool, utilizing mathematical programming, to assist decision-

makers in designing effective shelter networks. We propose a risk-based 

approach, wherein the inherent risks of the shelter network (i.e., population, 

shelter, and evacuation risks) have been thoroughly assessed and measured to 

consider the impacts of floods based on empirical research outputs. To formulate 

a well-parameterized and valid problem, extensive data collection and 

processing, incorporating the use of geographic information systems for data 

management, have been conducted. In collaboration with the World Bank, this 

project contributes to a development initiative focused on strengthening 

disaster response capacity and infrastructure for Haiti, experiencing recurrent 

devastating floods and in need of enhancing its existing shelter network. 

Detailed computational results highlight the value of our risk-based 

methodology compared to more common approaches, emphasizing 

contributions to addressing real humanitarian problems. 
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1 Introduction

The frequency of disasters has seen a significant increase over the past decades. Before 1960, there

were typically fewer than 50 reported disasters worldwide per year. Since 2000, the number has consis-

tently exceeded 335 natural disasters annually, except in 2023, when there were 239 events (EM-DAT,

2021). Floods have been the most frequently recorded disaster since 1995, with an average of 156

occurrences and a peak of 226 in 2021 (EM-DAT, 2021). Since 1980, flooding has caused more than

one trillion dollars in losses worldwide, and the number of victims is estimated to double globally by

2030 (WRI, 2020). The risk of flooding is growing worldwide due to increased rainfall and storms

caused by the effects of climate change, socioeconomic factors such as population growth, develop-

ments near rivers, and land subsidence caused by excessive extraction of groundwater (WRI, 2020).

These trends have considerable impacts on low-income populations, particularly those in vulnerable

areas with low-density road networks, where populations tend to live in informal settlements highly

exposed to the effects of flood disasters (Chang and Liao, 2015). In fact, floods pose a significantthreat

to people’s livelihoods, with approximately 23% of the world’s population (1.8 billion people) exposed

to this hazard, negatively affecting global development (Rentschler et al., 2022).

A crucial decision revolves around whether to initiate an evacuation when human safety is at risk,

aiming to protect people from the impacts of disasters such as floods. This measure safeguards lives

by relocating individuals to secure locations and providing necessary support. To ensure effective

evacuations, it is imperative to establish potential shelter locations since they are vital for people who

cannot evacuate to other safe places (Amideo et al., 2019). Beyond survival, shelters are a funda-

mental contributor to security, safety, climate protection, and resistance to diseases for disaster-prone

populations (Saunders, 2013). Recognizing the importance of ensuring the protection of people af-

fected by disasters, it is acknowledged that shelter network design problems are fundamental facility

location issues related to disaster operations management (Ozbay et al., 2019). Shelter network de-

sign problems often represent decisions made in the preparedness phase of disaster management as

part of evacuation planning, which in turn depend on the characteristics of the modeled systems.

Anticipating the state of the network post-disaster and its contingent risks is challenging but must be

considered to efficiently determine shelter locations.

The Sphere Handbook (Sphere Association, 2018), which sets post-disaster sheltering standards, em-

phasizes that service points should be established where they are safe and most convenient for the

beneficiaries, not solely based on logistic convenience for the providing agency. Damages to infras-

tructure and people’s vulnerability can also negatively affect accessibility and hamper evacuation to

shelters. Therefore, when developing methodologies to design and optimize shelter networks, consider-

ing both network features and the people who will evacuate is essential. Moreover, embedding response

considerations (e.g., risk encountered in reaching a shelter in a flooded area) in preparedness deci-

sions (e.g., shelter locations) leads to more effective disaster management (Van Wassenhove, 2006).

To address the lack of realistic assumptions in shelter location and evacuation planning, problems

should be more application-oriented rather than theoretical or model-driven, as noted by (Amideo

et al., 2019). Understanding the context, evaluating the key considerations and particularities, and

defining constraints and objectives of the stakeholders are crucial aspects of such problem formulation.

While ensuring that shelters are located in safe places to cover the most vulnerable population, it is
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also essential to understand how people evacuate from their households to shelters and the level of

risk they face on their path when planning for and modeling effective evacuation (Lim et al., 2016).

Pedestrian-based evacuations, where people walk to secure zones or shelters, are common due to lim-

ited access to personal vehicles, a lack of public evacuation transport, road congestion, and damages

(Lim et al., 2016; Wood et al., 2018). This is especially prevalent in developing countries, although

it also occurs in developed countries. For instance, Bangladesh, which faces threats from severe

storms exacerbated by climate change, continually experiences devastating floods (with an average of

21% of the country being flooded every year), and people often have to evacuate by walking through

water to reach shelters. Similar events also occur in the Philippines, Haiti, Japan, and other countries.

The aim of this paper is to introduce a systematic optimization tool, utilizing mathematical pro-

gramming, to assist decision-makers in designing effective shelter networks. We propose a risk-based

approach, thoroughly assessing and measuring the inherent risks of the shelter network (population,

shelter, and evacuation risks). This assessment considers vulnerability and the impacts of floods,

with risks measured based on previous empirical research outputs. To ensure relevance, validity, and

practical applicability throughout the development of this decision support tool, we collaborated with

the World Bank as part of an initiative focused on strengthening disaster response capacity and im-

proving infrastructure in Haiti – specifically, the Haiti- Strengthening Disaster Risk Management and

Climate Resilience Project (H-SDRMCRP) (World Bank, 2019a). We now describe in more detail

the problem and contributions of this study.

1.1 Problem description and context of this study

Several developing countries, like Haiti, struggle with insufficient capacities and inadequate local shel-

ter networks. While communities often turn to public infrastructures such as schools, churches, and

municipal halls for sheltering needs, these facilities may lack the necessary conditions, such as proper

sanitation and cooking facilities, to offer suitable shelter for an extended duration. As these facil-

ities, intended for short-term shelter, are often used for longer periods, additional challenges arise.

Moreover, they may not adequately cover those facing the most risk or vulnerability, and people may

encounter significant risks when trying to reach them, especially when they have to walk long dis-

tances through water.

The Risk-Based Shelter Location Problem (RB-SLP) addressed in this paper involves deciding where

to construct new shelters (i.e., shelter-location decisions) with the aim of maximizing the population

enfold risk and minimizing the shelter and network risk under coverage, budget, and capacity con-

straints. It also involves determining to which shelter the covered population should evacuate to (i.e.,

population-shelter assignment decisions). More precisely, the three main components of the objective

include: 1) maximizing the population risk covered by the shelter network, 2) minimizing the risk

associated with new shelter locations, and 3) minimizing the evacuation risk encountered by the pop-

ulation when they reach their assigned shelter. Overall, population and shelter risk factors include

exposure to flood hazards, the potential sheltering coverage provided by existing infrastructure, and

vulnerability (measured by a series of indices accounting for wealth and the quality of infrastructure).

Concurrently, evacuation risk considers the challenges associated with walking through water. Further

details on the measurement of each risk are provided in Sections 4 and 5.
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Fig. 1: Map of the Nippes Department of Haiti

The RB-SLP is formulated on a graph with population points and potential locations for new shelters.

Each population point is associated with an estimated number of people in need of sheltering services

(i.e., the demand), determined by the population and a percentage of sheltering need. Potential new

shelter locations must meet specific criteria, including low flood risk and road accessibility. Shelters,

in accordance with humanitarian or national standards, should cover a population within a designated

radius to limit walking distances and adhere to capacity limits based on the maximum required square

footage per person. The construction of new shelters incurs costs, including building expenses and

others dependent on factors like ownership, terrain type, and infrastructure availability (e.g., electric-

ity, water, sanitation, landscaping). Decisions are made under budget constraints and predetermined

financing limits for shelter network improvement. In this paper, we assume the entire investment is

allocated to new constructions, but in practice, planners might leverage parts of the existing infras-

tructure that remain functional and enhance them. Although our methodology is developed to solve

the RB-SLP focusing on new constructions, it can easily adapt to cases involving partial network

reconstruction and improvement. The proposed solution aims to support governmental entities and

other decision makers involved in supporting local authorities to optimize the value provided by their

investments and design efficient shelter network and evacuation plans.

For this study, we parameterized and tested RB-SLP to enhance the shelter network in the Nippes

Department of Haiti (Figure 1). Haiti, ranking third among countries most affected by weather-

related disasters (Eckstein et al., 2019), is one of the world’s poorest nations (World Bank, 2022).

The country faces multiple hazards, with over 96% of the population exposed to two or more, includ-

ing floods, hurricanes, earthquakes, and landslides (Llopis Abella et al., 2020). The severe human

and economic impact of disasters is exacerbated by Haiti’s hazard exposure and infrastructure vul-

nerability (Llopis Abella et al., 2020). Despite some progress, Haiti still lacks adequate preparedness

and resilience-building mechanisms, especially considering the expected increase in the frequency, in-

tensity, and impacts of extreme weather events due to climate change (World Bank, 2022). After a

flood, the affected population finds temporary housing in shelters. Existing buildings, such as schools,

auditoriums, churches, and other public structures, can serve as shelters (referred to as existing shel-

ters). However, using these buildings for an extended period poses challenges. Firstly, it disrupts

their primary activities, and secondly, they often lack essential amenities and may not comply with

building codes, making them unsafe due to potential safety or flooding issues – many are situated in

high flood-prone areas.
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Haiti faces insufficient shelter capacity, necessitating the expansion and enhancement of its network

(World Bank, 2019a). Given the high flood hazard in the Nippes Department of Haiti, it serves as a

crucial case for testing and validating our methodological approach. Throughout the development of

our risk-based approach, our aim has been to support the government of Haiti and the World Bank,

which is committed to addressing the sheltering issue through their financed project, H-SDRMCRP.

1.2 Challenges, contributions, and organization of this paper

In this section, we synthesize the contributions and related challenges of this study, as well as present

the general organization of this paper. The contribution of our study is threefold: firstly, proposing

a new optimization model; secondly, innovating data gathering and processing methods; and thirdly,

conducting thorough analysis and facilitating the transfer of knowledge and recommendations to prac-

titioners.

To the best of our knowledge, our proposed methodology is the first attempt toward shelter network

optimization in the context of pedestrian-based evacuation in flood-prone areas, where risk accounting

for hazard, exposure, and vulnerability is considered for all the network components: shelters (i.e.,

supply), populations (i.e., demand), and the evacuation paths (i.e., network edges). We proposed

a novel and practical optimization model that takes into account several significant factors driving

needs and risks (e.g., flood hazards, population density, vulnerability, current shelter capacities, road

accessibility, etc.) to offer efficient holistic solutions for designing or strengthening shelter networks.

We also propose innovative approaches to model flood-related risk for each network component by

integrating the outputs of data science methods from various disciplines, including hydrology, socio-

demographic analysis, Geographic Information Science (GIScience), and mathematical programming.

As opposed to studies that proposed optimization models for disaster preparedness in general cases

(Sabbaghtorkan et al., 2020), we specifically focus on floods, which are frequent and have high impacts

every year. This allows to fully grasp their characteristics and incorporate the driving factors of their

impacts on shelter networks into our decision support tool.

It is recognized that data collection and accessibility pose significant challenges in the humanitarian

sector, lacking formal digital processes and often involving scattered data across multiple stakeholders

(Besiou et al., 2018; Gupta et al., 2019; Kovacs et al., 2019; Kunz et al., 2017; Lukosch and Comes,

2019; Pedraza-Martinez et al., 2013; Van Wassenhove, 2006). Difficulties also arise in understanding

contexts and defining problems in developing countries (Rancourt et al., 2015). Collaborative studies

with field practitioners in humanitarian operations management are crucial to overcoming these issues

(Pedraza-Martinez and Van Wassenhove, 2016). For this project, our collaboration with the World

Bank and the Government of Haiti allowed the formulation of a well-defined and realistic problem,

adequately parameterized using unstructured information from discussions with partners and data ex-

tracted from formal tools such as Geographical Information System (GIS). In order to measure risk in

a disaggregated and small geographical scale – from almost household level to precise potential shelter

locations like public schools – extensive data processing and analysis were required. We processed and

integrated various geospatial data sources, including information extracted from high-resolution flood

hazard maps, OpenStreetMap, vulnerability indices, demographic data, etc., mostly using a GIS to

construct and parameterize the underlying network in our region of interest, specifically the Nippes
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Department of Haiti. This approach enabled us to consider several pertinent factors related to hazard,

exposure, and vulnerability, thus facilitating risk estimation for the network. These estimations were

further refined by incorporating contextual knowledge from our partners and findings from empirical

studies, such as those examining the influence of water depth on human walking speed (Bernardini

et al., 2020). This process resulted in the development of a novel and practical model for shelter

network design, which underwent comprehensive testing and validation.

While our methodological contribution is generally applicable and replicable for countries addressing

flood-related challenges and aiming to enhance their sheltering capacity, we consider our collaboration

as an essential component of this research project, grounded in a real-life application. Extensive com-

putational analyses were conducted to ensure robustness and correctness, while demonstrating the

efficacy of our risk-based methodology compared to more conventional approaches. Sensitivity analy-

ses were also performed to assess the impact of costs and budget constraints on network effectiveness.

These allowed to perform analyses and consider several factors and scenarios which were not possi-

ble by means of more traditional approaches implemented by our partners. The solution approach

was validated by the H-SDRMCRP technical team, and our method have been extended to make

recommendations on possible shelter locations in another department of Haiti, namely Nord-Ouest

Department, which have been used for further field investigation by the Government. This highlights

our scientific and practical contributions in addressing a crucial decision-making and design problem

within the humanitarian and public safety sectors, leveraging data-science methodologies. We bridge

the gap between practice and academia for shelter network design and evacuation planning in devel-

oping countries, offering implementable solutions within a real-life setting.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. In Sec-

tion 3, we introduce the proposed risk-based model along with the associated mathematical notation.

Section 4 outlines our risk assessment methodology, providing an overview of how risk is defined in the

literature and detailing the adaptation of each risk element to the three proposed risk measures. In

Section 5, we present the specific case of Haiti, detailing the data collection, processing, and analysis

procedures. Detailed computational results are reported in Section 6 to assess the performance of our

risk-based approach compared with standard approaches, including a comparison with our partners’

solution. We further conduct sensitivity analyses on key parameters. Conclusions are then provided

in Section 7.

2 Literature review

Responding to a disaster requires the management of complex supply chains, which is essential to

meet the objectives of humanitarian aid. In particular, humanitarian logistics can play a crucial

role in the mitigation, preparation, response, and recovery of sudden-onset disasters (Behl and Dutta,

2019; Besiou and Van Wassenhove, 2020; Çelik et al., 2012; De Vries and Van Wassenhove, 2020; Kara

and Savaşer, 2017; Kovacs and Moshtari, 2019). While there has been growth in humanitarian relief

literature, the majority of the studies are of qualitative nature, leaving a gap in quantitative research

methods (Chiappetta Jabbour et al., 2019). The recent surge in natural disasters has, however, in-

creased interest in quantitative methods for humanitarian logistics. To this aim, operations research

methodologies can make significant contributions to adapt supply chain practices to humanitarian

logistics (Altay and Green III, 2006; Laporte, 2023), especially in developing countries (White et al.,
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2011).

Evacuation is one the most important steps during the response phase, serving as the primary strategy

to protect people from potential disaster impacts (Bayram, 2016). Location problems are often solved

during the mitigation and preparedness phases (Paul and Wang, 2019; Arslan et al., 2021), while

evacuation operations happen during the response phase (Amideo et al., 2019). Influenced by factors

such as nature of the disaster (e.g., flood, hurricane, earthquake) and transportation mode (e.g., foot,

car, bus, train, boat, and helicopter), three types of evacuation can occur: (i) self-evacuation, which

includes evacuees who move towards shelters autonomously without any assistance from emergency

services; (ii) assisted evacuation, which involves individuals who can arrange their own evacuation

towards shelters but need some advice and guidance (e.g., directions) from authorities; and (iii) sup-

ported evacuation, which might be designed for special-needs populations (e.g., elderly, disabled) who

require support from public authorities to reach designated shelter facilities (Amideo et al., 2019).

In the event of an evacuation, shelters are fundamental contributors to security and safety, climate

protection, and resistance to diseases for affected communities (Amideo et al., 2019). Poorly located

shelters can increase the risks faced by individuals and enhance exposure to hazards (Saunders, 2013).

Shelter site location and evacuation planning, i.e., the process of relocating individuals from their res-

idences to predetermined safety zones, are therefore pivotal components of effective disaster response.

Nonetheless, the majority of research has tended to analyze these two related problems separately,

potentially leading to inefficient solutions (Amideo et al., 2019). Few studies have considered the

interdependencies between shelter location and evacuation planning, considering how each influences

the other.

This section examines the literature pertinent to shelter site location. We first review two distinct

categories of reseach: (i) studies under deterministic setting, where all data is assumed to be known

in advance; (ii) studies under stochastic setting, where the data is subjected to different sources of

uncertainty. Then, we discuss studies that specifically focused on flood disasters, including the ones

related to evacuation planning. Finally, we position our contributions within the existing literature.

We refer the reader to Farahani et al. (2020) and Sabbaghtorkan et al. (2020) for comprehensive

reviews on location decisions in humanitarian supply chains.

2.1 Deterministic shelter location studies

Deterministic studies assume that all parameters of the underlying problem, e.g., the number of in-

dividuals in need of shelter, are known with certainty. In this setting, many authors relied on a

multi-objective approach to capture the various dimensions of shelter location problem. Following

this approach, Alçada-Almeida et al. (2009) developed a multi-objective model to locate temporary

shelters and identify primary evacuation routes in the context of wildfire. The model aims to mini-

mize travel distance and fire risk associated with travelling on evacuation paths or staying in shelters

using a predetermined “Fire Risk Index Method.” Coutinho-Rodrigues et al. (2012) extended the

work of Alçada-Almeida et al. (2009) by adding objectives to minimize the number of open shelters

and travel distance on a secondary evacuation path, which is used if the primary path is impassable.

Doerner et al. (2009) also relied on a multi-objective model to locate shelters in the southern Sri

Lanka, a tsunami-prone area, considering public facilities (e.g., schools) as candidate locations. The

objectives include maximizing coverage, minimizing cost, and minimizing risk of inundation at new
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shelters based on the probability of future tsunami occurrence. To find optimal location for temporary

shelters during a flood disaster, Chanta and Sangsawang (2012) developed a bi-objective model to

maximize the coverage and minimize the weighted travel distance. Kılcı et al. (2015) proposed a model

to determine the location of temporary shelter sites, assign population points to the closest shelters,

and control utilization rate of open shelters with the goal of improving the Turkish Red Crescent

operations. Each candidate shelter location was scored with respect to ten different criteria (e.g.,

transportation of relief items, road connections, healthcare providers), with the objective to maximize

the minimum score of open shelters. Finally, Hallak et al. (2019) developed a multi-objective model

to optimize shelter locations and assignments. The objectives balance multiple factors, includingcov-

ering basic and special needs, future expandability of shelters, employment opportunities at shelters,

and cost-efficiency.

While the location of shelters is critical, additional facilities such as medical centers may be needed to

meet evacuees’ needs and contribute to relief effort. Some authors have therefore developed models

that extend beyond shelter locations to incorporate more explicitly various components of disaster

response. Following this approach, Sheu and Pan (2014) proposed a centralized emergency supply

network to identify not only the locations of shelters, but also the location of medical and distribution

centers. The model minimizes operational costs and travel distance as well as psychological costs

experienced by affected individuals. Similarly, Rodŕıguez-Esṕındola and Gaytán (2015) developed a

bi-objective optimization model to determine the locations of shelters and distribution centers that

minimize cost and travel distance. Finally, a comprehensive multi-objective model to guide decision-

making in disaster preparedness was elaborated by Rodŕıguez-Esṕındola et al. (2018). This model

still identifies facility locations (i.e., shelters and distribution centers), but also include stock prepo-

sitioning, resource allocation, and relief distribution with the aim of minimizing the total cost.

Disasters are inherently time-dependent, with their impact and required response evolving over time.

This dynamic nature underscores the necessity to capture the temporal aspects of disasters in the

modeling process, ensuring solutions are both effective and adaptable to changing conditions. Some

studies explore this avenue and incorporate time-dependent aspects into shelter location problem. This

is the case of the multi-period optimization model proposed by Gama et al. (2016). The latter seeks to

determine the opening times and locations of shelters, timings for evacuation order dissemination, and

shelter assignment while minimizing the total travel time. Chen et al. (2013) introduced a three-level

hierarchical shelter location model that accounts for evacuee’s evolving needs over time, considering

three types of shelters to serve immediate, short-term, and long-term needs. Pérez-Galarce et al.

(2017) also rely on a hierarchical shelter location model to optimize shelter locations. In their study,

two types of shelters with successively inclusive levels are considered, namely basic service shelters and

medical/psychological service shelters. The model aims to minimize travel distance while considering

shelter capacities and utilization rates.

2.2 Stochastic shelter location studies

Reviews highlight the importance of capturing uncertainty in disaster operations (Dönmez et al.,

2021; Hoyos et al., 2015; Liberatore et al., 2013). In shelter location problem, dealing with uncer-

tainty is difficult due to the chaotic circumstances associated with the post-disaster phase as well

as multiple stakeholder structure. While different paradigms (e.g., stochastic programming, chance-
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constrained programming) have been used in the literature to capture the uncertainty in shelter

location problem, stochastic programming has emerged as the most popular modeling framework.

Li et al. (2011) introduced a two-stage stochastic programming model that accounts for uncertain

demand and transportation cost. The model aims to determine shelter locations and their capacities,

while also allocating evacuees and commodities to these shelters, with the ultimate objective of min-

imizing the total cost. Li et al. (2012) rather proposed a scenario-based bi-level programming model

to analyze how shelter location decisions affect drivers’ route choices in possible hurricane scenar-

ios. This model considers uncertainties in demand, shelter disruptions, and road accessibility. In the

upper-level, a two-stage stochastic process identifies shelter locations pre-disaster and decides on shel-

ter openings and evacuee allocations post-disaster. The lower-level models drivers’ route choices using

a user equilibrium approach. Bayram and Yaman (2018) proposed a two-stage stochastic model that

accounts for uncertainty in evacuation demand, road network conditions, and disruption in shelters.

The model aims to identify location of shelters and allocation of evacuees to shelters and routes while

minimizing the expected total evacuation time. Ozbay et al. (2019) considered secondary disaster

following the main disaster and proposed a three-stage stochastic programming model with uncer-

tainty in demand. Temporary shelters for the main and secondary disasters are located in the first

and second stages, and affected population are allocated to the nearest shelters, in the second and

third stages. The objective is to minimize the expected number of open shelters while maximizing

their weights. A chance-constrained model was introduced by Kınay et al. (2018) by considering

uncertainty in demand with two types of probabilistic constraints: one concerning the utilization rate

of shelters and the other concerning their capacity. The authors considered the deterministic model

proposed by Kılcı et al. (2015) as starting point and proposed a probabilistic programming model to

maximize the minimum score of open shelters. Kınay et al. (2019) extends the work of Kınay et al.

(2018) following a multi-criteria framework. In addition to the original objective, two more objectives

are added: maximizing the average score of selected shelters and minimizing the average distance

traveled by evacuees. Dalal and Üster (2018) developed a combined stochastic-robust optimization

model to optimize the location of shelters and distribution centers as well as assignments and flows.

The model aims to minimize the weighted sum of average and worst-case transportation costs across

all scenarios while considering demand uncertainty. The model can function as either a two-stage

stochastic program, a robust optimization approach, or a mixed robust-stochastic setting, depending

on the objective considered. Finally, Song et al. (2019) proposed a multi-criteria decision-making

method to rank potential shelter locations considering environmental conservation, transportation ac-

cessibility, and social sustainability. They employed interval rough number transformation to address

uncertainty, subjectivity, and ambiguity in the shelter-site evaluation process.

2.3 Specific applications to flood disaster

Different disasters necessitate different evacuation plans and may utilize diverse transportation modes.

Previous studies, such as Haynes et al. (2009), cautioned against generalizing evacuation strategies

across different types of natural hazards. Baker (1991) also warned researchers against extrapolating

findings from one hazard to another. Therefore, a hazard-specific approach to evacuation is necessary,

as strategies effective for one type of hazard may not be safe or suitable for others (Scanlon, 1992).

To our knowledge, few studies have developed evacuation plans and shelter location models specif-

ically for flood-prone areas, as we have in our work. In fact, only Chanta and Sangsawang (2012),

Rodŕıguez-Esṕındola and Gaytán (2015), Rodŕıguez-Esṕındola et al. (2018), and Gama et al. (2016)

9

Risk-Based Shelter Network Design in Flood-Prone Areas: An Application to Haiti

CIRRELT-2024-08



have proposed shelter location models in the specific context of floods (see Section 2.1 for details).

However, these studies tend to overlook some important concerns related to flood evacuations, such

as the mode of transportation, limited access to certain areas, and safety concerns. Under flood cir-

cumstances, evacuation may be carried out using a combination of land (e.g., walking (Eom et al.,

2022), personal vehicle (Kongsomsaksakul et al., 2005), bus (Insani et al., 2022)), water (e.g., boat),

and air (e.g., helicopter (Khalilpourazari and Pasandideh, 2021)) transportation.

In developed countries, where most research has been conducted, individuals typically evacuate us-

ing personal vehicles or public transportation. Consequently, a substantial portion of the literature

concentrates on large-scale emergency evacuation planning, without specific shelter location consid-

erations (Bayram, 2016). In developing countries, which warrant further research, due to the limited

access to personal vehicles and the lack of public transportation systems often leave walking as the

only viable option (Lim et al., 2016). Even in developed countries, pedestrian evacuation becomes

increasingly important when roads are congested or rendered impassable by disasters (Wood et al.,

2018). For additional examples of pedestrian evacuation in disaster contexts, refer to (Barnes et al.,

2021; Bernardini et al., 2021; Eom et al., 2022; Ercolano, 2008; Faucher et al., 2020; Jin et al., 2021;

Nakanishi et al., 2019; Wood et al., 2016, 2018). Therefore, recognizing pedestrian evacuation as an

essential response mechanism in flood scenarios is crucial, as it could yield solutions that are not only

specific to flood conditions but also sensitive to the reality of vulnerable populations.

2.4 Positioning of our study among the related literature

This paper aims to tackle the shelter location problem and evacuation planning in flood-prone re-

gions. As opposed to many studies in the literature that focus on locating temporary shelters, e.g.

tents or mobile units at the tactical decision level, we seek to strategically locate permanent relief

shelter infrastructures, i.e., dispensing points where individuals receive various forms of service and

humanitarian aid (Kara and Rancourt, 2019), as a means of providing protection, safety, security,

and privacy to people who have left or lost their housing as a result of a disaster. Indeed, after a

disaster, shelters may be needed for several months or even years until displaced people can be housed

in their restored dwellings or new homes. In addition, through our literature review, we observe that

disaster-specific optimization tool on shelter location and evacuation planning is rather limited. Most

papers in OR/MS literature of shelter location problem consider preparation for “general” type of

disasters, and primarily rely on data from developed countries. This has motivated us to investigate

the shelter location and evacuation planning problem within a developing country through the use of a

mathematical programming based methodology and by collaborating with the World Bank to gather

contextual information and data, an approach not commonly used (Amideo et al., 2019; De Vries and

Van Wassenhove, 2020) although its relevance.

Another distinctive aspect of our study lies in the unique integration of shelter location and evacuation

operations, setting it apart from the existing body of literature. Combined shelter location and evac-

uation planning problems have typically focused on evacuation using private vehicles (i.e., car-based)

or mass-transit systems (i.e., bus-based), as noted by Amideo et al. (2019). We aim to contribute

to this area of literature by proposing a model focusing on “shelter location and pedestrian-based

evacuation”. We focus on flood-prone areas in developing countries to fully grasp the characteristics

of pedestrian evacuation and effectively incorporate their impacts in our decision support tool. Our
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study uniquely integrates the impact of bodies of water on walking speed, an important consideration

often overlooked in existing models.

The most distinct part of our study is how we process data to conceptualize and address uncertainty in

shelter location problem. Papers in this streams of literature mostly rely on scenario-based stochastic

models. However, the scarcity of past disasters and limited historical data can lead to inaccurate pre-

dictions if too much reliance is placed on using this historical information (Arnette and Zobel, 2019).

Galindo and Batta (2013) stated two main drawbacks of scenario-based approach: (i) scenarios do

not cover all the possible outcomes, and (ii) the set of scenarios is often considered as given input,

without an efficient, systematic, and reliable method to define them. The authors argued that a more

appropriate approach would involve conducting a thorough probabilistic analysis of the potential out-

comes of a disaster. Risk-based approach is a deterministic alternative to scenario-based stochastic

models when uncertainty is difficult to model due to lack of disaster-related data (Dönmez et al., 2021).

Only few studies proposed risk-based approach in disaster preparedness and response. Akgün et al.

(2015) examined the risk associated with a demand point and applied fault tree analysis to compute

the vulnerability of a demand point (i.e., the probability that it is not supported by the facilities).

The risk of a demand point is calculated by the multiplication of probability of threat, vulnerability of

demand point, and consequences at the demand point (value or possible loss at the demand point due

to threat). A risk-based approach was also proposed by Arnette and Zobel (2019) for prepositioning

relief items in the pre-disaster phase. The treatment of risk in Arnette and Zobel (2019) is similar to

the work of Akgün et al. (2015). It encompasses three different components (i.e., product of hazard,

exposure, and vulnerability) and focuses on the risk to the population. Although the risk-based

method has been investigated, there are still research spaces for new attempts to extend this method

in a facility location decision environment. Based on a review by Boonmee et al. (2017), risk is among

the major criteria in emergency humanitarian logistics problems and new objectives focused on risk

should be developed. To the best of our knowledge, there is no study that uses risk measures to cope

with uncertainty in a shelter location problem as we do. Similar to the work of Akgün et al. (2015)

and Arnette and Zobel (2019), in our approach, risk will be reflected through the product of hazard,

exposure, and vulnerability. However, we develop risk measures not only for the demand, but also for

the supply and edges of the network, processing socioeconomic and geological data using GIS.

3 Mathematical formulation

The RB-SLP is defined on an undirected graph G = (V,E), where V is the set of vertices and E the set

of edges. V = I∪J∪J ′ comprises the set of population points I, the set of potential shelter locations J ,

and the set of existing shelters J ′. Each population point i ∈ I is associated with a population in need

of shelter pi and a normalized population risk r̃pi . Each shelter j ∈ J ∪J ′ is associated with a capacity

qj representing the maximal number of people that can be assigned to that shelter, and with its nor-

malized shelter risk r̃sj . In addition, each potential shelter j ∈ J has a cost cj ≥ 0, representing the cost

of locating (building) a shelter in location j. Each edge (i, j) ∈ E, i ∈ I, j ∈ J ∪ J ′ is associated with

its travel distance dij and its normalized evacuation risk r̃eij . Each shelter can cover population points

within a maximal coverage radius r. Therefore, we define Wj(r) ⊆ I as the set of population points

located within a coverage radius r from shelter location j, i.e., Wj(r) = {i ∈ I|dij ≤ r}, j ∈ J ∪ J ′.

We also define Vi(r) ⊆ J ∪ J ′ as the set of shelters located within a coverage radius of r from popula-
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tion point i, i.e., Vi(r) = {j ∈ J∪J ′|dij ≤ r}. The maximal budget to locate (build) new shelters is B.

In the RB-SLP, the decisions consist of opening new shelters and determining which population points

to assign to each of these new shelters. Therefore, we define two sets of decision variables. First, yj is

a binary variable equal to one if and only if a new shelter is located (built) at vertex j ∈ J , and zero

otherwise. Second, xij is a continuous variable representing the proportion of population from i ∈ I

assigned to shelter j ∈ J . The RB-SLP can be formulated as follows:

Model 1 min θ1
∑
j∈J

∑
i∈Wj(r)

−r̃pi pixij + θ2
∑
j∈J

r̃sjqjyj + θ3
∑
j∈J

∑
i∈Wj(r)

r̃eijpixij (1a)

s.t.
∑

i∈Wj(r)

pixij ≤ qjyj , j ∈ J (1b)

∑
j∈Vi(r)∩J

xij ≤ 1, i ∈ I (1c)

∑
j∈J

cjyj ≤ B (1d)

xij ≥ 0, i ∈ I, j ∈ J (1e)

yj ∈ {0, 1}, j ∈ J. (1f)

The objective (1a) consists of minimizing the total risk consisting of the population risk (first term),

the shelter risk (second term), and the evacuation risk (third term). θ1, θ2, and θ3 represent the weights

associated with each term. Constraints (1b) impose the maximal shelter capacity. Constraints (1c)

ensure that the number of people assigned from population point i does not exceed its population in

need of shelter, i.e., the proportion is at most one. Constraint (1d) impose the maximal budget B to

locate new shelters. Constraints (1e) and (1f) define the variable domain.

4 Risk identification and assessment

Uncertainty refers to situations involving imperfect or unknown information and is typically quan-

tified using probability functions (Dönmez et al., 2021). Disasters are characterized by multiple

uncertainties, which encompass not only their sources but also their highly erratic potential impacts

over time. Neglecting to account for uncertainty in decision-making can lead to inefficient solutions.

However, when predicting disasters that have not yet occurred, especially those with low-probability

high-consequence outcomes, there is no historical distribution of previous events from which to ex-

trapolate. Even for more frequently occurring disasters in some areas, including floods, it is essential

to assess whether the background conditions under which past events were recorded have remained

stable or changed, possibly due to climate or socio-economic changes. In such circumstances, proba-

bilities cannot be precisely calculated but have to be estimated (Eiser et al., 2012). While stochastic

programming offers an efficient framework for optimizing problems involving uncertainty (Birge and

Louveaux, 2011), it assumes a priori knowledge of the probability distributions of uncertain param-

eters, often represented by discrete realizations as approximations to real probability distributions.

This representation of uncertainty may not be suitable for shelter network design in flood-prone areas

in developing countries with limited historical data. One potential solution for addressing disaster-

related uncertainty is to incorporate risk measures into the parameterization of an optimization model.
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This implies that risk must be assessed and measured for the elements of the graph representing the

network to be optimized (e.g., population points, shelter locations and infrastructure, as well as evac-

uation paths).

Risk assessments span a wide and multidisciplinary research field with different views on how to

systematically address risk (INFORM, 2016). In the literature, frameworks and analytical models

of varying complexity have been proposed at different levels (Cardona et al., 2012), for example,

indicator-based global assessments, such as the INFORM Risk Index (INFORM, 2016), and quali-

tative participatory approaches at the local level, such as a risk reporting process conducted in an

enterprise (e.g., Walmart’s risk management program). Risk assessment is a process that aims to

systematically identify, analyze, and evaluate potential threats that could have adverse consequences

on an entity to enable effective management of uncertainty and inform decision-making. It relies on a

rigorous understanding of the determinants of risk and the appropriate measurement of these deter-

minants. This section aims to provide such an understanding by discussing the important elements to

take into consideration when evaluating these determinants used to measure the risk associated with

shelter networks in flood-prone areas.

The importance of considering risks in disaster management is acknowledged in the literature (Heck-

mann et al., 2015; Steelman and McCaffrey, 2013). Risk analysis allows for the identification of the

locations and population most likely to be affected by potential disasters, thereby assisting in man-

aging preparedness and response to humanitarian crises (Marin-Ferrer et al., 2017). While there is

no universally accepted definition of risk (Thompson et al., 2016), disaster risk is widely understood

as the result of the interaction between a hazard and the characteristics that make some locations

vulnerable and exposed (McGlade et al., 2019). In the literature, many authors (Arnette and Zobel,

2019; Cardona, 2004; Heckmann et al., 2015; Merz et al., 2013) defined risk as:

Risk = Hazard× V ulnerability × Exposure,

where hazard, vulnerability, and exposure are the main determinants of risk (United Nations, 2016).

These determinants are defined and discussed below. The advantage of such formulation is to incor-

porate not only the likelihood and severity of a disaster, but also the characteristics of the affected

population, buildings, and infrastructures that could be impacted by such an event.

Hazard The United Nations define hazard as “a process, phenomenon or human activity that may

cause loss of life, injury or other health impacts, property damage, social and economic disruption or

environmental degradation” (United Nations, 2016). Similar definitions are also generally used in the

scientific literature (Arnette and Zobel, 2019; Akgün et al., 2015; Cardona, 2004; Thompson et al.,

2016). In the context of floods, the probability of occurrence of flood (see Arnette and Zobel, 2019)

and the flood water level (see Tran et al., 2009) have been used as estimates of hazard. Therefore,

water depth in the event of a flood (referred to as flood depth) is an appropriate predictor of hazard

in a specific location. However, estimating flood depth is not trivial and requires processing a large

amount of data, including rainfall, water levels, water quantity, terrain elevation, and flood occur-

rences. Various estimates have been proposed (see Cohen et al., 2019; FEMA, 2023; Teng et al., 2022,

for examples), and high-resolution flood hazard maps, obtained using the outputs of complex flood

models, provide valuable flood hazard estimates. In the case of Haiti, we benefit from such a high-
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resolution map that allowed the extraction of geolocalized flood depth indicators obtained through a

reliable flood model (namely, HEC-RAS) and inputs (Heimhuber et al., 2015; World Bank, 2023).

Vulnerability The United Nations define vulnerability as “the conditions determined by physical,

social, economic and environmental factors or processes which increase the susceptibility of an indi-

vidual, a community, assets or systems to the impacts of hazards” (United Nations, 2016). It can

be seen as an internal risk factor and expressed by how the system will be affected by the hazard

(Cardona, 2004; Heckmann et al., 2015; Thompson et al., 2016). Within the context of disaster risk

management, vulnerability indices have been used to measure the vulnerability of the different com-

ponents of the system. These indices consider factors that determine the ability to resist and recover

from the impacts of a disaster. One of the most common indices is related to social vulnerability

which usually considers demographic and socioeconomic characteristics, health, coping capacity (e.g.,

housing conditions), and environmental factors (Alem et al., 2021; Arnette and Zobel, 2019; Rufat

et al., 2015; Tran et al., 2009). Vulnerability indices for buildings usually include its ability to resist

and recover from the impacts of a disaster. A few measures have been proposed for specific disasters

such as earthquakes (Kassem et al., 2019) and wildfires (Papathoma-Köhle et al., 2022), and for spe-

cific regions such as the European Alps (Papathoma-Köhle et al., 2019). In the context of flood-prone

areas, it is important to estimate the vulnerability of the population as well as the infrastructure

(e.g., shelters). In the case of Haiti, we benefit from a Wealth Index that accounts for several social

vulnerability drivers derived by the World Bank in Haiti as well as a vulnerability index for shelter

that accounts for their year of construction also provided by the World Bank.

Exposure The United Nations define exposure as “the situation of people, infrastructure, housing,

production capacities and other tangible human assets located in hazard-prone areas” (United Na-

tions, 2016). The exposure does not depend on the vulnerability and susceptibility to the potential

damages of a disaster (Bhamra et al., 2011; Johnston et al., 2020; Miller and Ager, 2012; Turner

et al., 2003), but rather on the degree, duration or extension of the system’s contact with the hazard

(Akgün et al., 2015; Arnette and Zobel, 2019; Thompson et al., 2016; Tran et al., 2009). Therefore,

the exposure of a system to a flood can be estimated by determining the extent to which the compo-

nents of this system are susceptible to being submerged by water. For example, for buildings such as

shelters, two important elements to consider are the size of the building and whether it is located in

a flood-prone area. A larger shelter will be more exposed to the same flood as a smaller shelter due

to its size (area in contact with the flood). The flood area, measured in square meters, can be used

as an indicator of exposure, and an area will be considered as flooded if its flood depth is larger than

zero. In the case of Haiti, as for hazard, we benefit from the outputs of flood maps to estimate such

exposure drivers in our area of interest, and this is done at a small aggregation level.

Defining risk as a function of these determinants (i.e., hazard, vulnerability, and exposure) allows

to distinguish the external risk factors that are not really influenceable (e.g., natural hazards) from

internal risk factors that can be somewhat controlled (e.g., limiting the impacts of a natural hazard

through robust infrastructure) (Birkmann, 2006). Hence, risk arises from the interplay of uncontrol-

lable external factors and the intrinsic characteristics of the system (Heckmann et al., 2015). Hazard,

vulnerability, and exposure mutually influence risk, and none of these elements can be considered in

isolation. In the absence of a hazard, defining vulnerability to potential damages becomes meaning-

less. Similarly, a situation cannot be classified as a hazard for a system if it lacks both exposure and
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vulnerability to a potential event (Cardona et al., 2012; Kron, 2005).

In Section 5, we provide a detailed description of how we overcame the challenges related to data

availability to measure risk in the case of Haiti, utilizing different data sources at a small level of

geolocalized aggregation.

5 Data collection, processing and description in Haiti

The main goal of this study is to improve the shelter location process by providing a systematic tool

that considers risk to guide the Government of Haiti as well as its funding partner, i.e., the World

Bank. In existing work on facility location under uncertainty focusing on humanitarian settings, the

main sources of uncertainty can be categorized under the three following components of a network:

demand (i.e., the needs and locations of people affected), supply (i.e., availabilities at facilities in-

volved in offered relief services), and network connectivity (i.e., conditions of the transportation links)

(Dönmez et al., 2021). In our context, this categorization can be translated into risk experienced at

three components of a shelter network: population (demand), shelter (supply), and evacuation path

(network). For each of these components, we have clarified the main goals, and identified operational

constraints and standards in coverage of vulnerable populations.

Most of the data needed to capture the main elements of the problem under study have a spatial

component, which represents an opportunity to use GIS (Mansourian et al., 2006; Nedović-Budić and

Pinto, 1999). In fact, we have seen a significant increase in the application of GIS for modelling hu-

manitarian logistics in recent years. Some studies related to OR/MS approaches that specifically dealt

with the shelter location problem have incorporated their models with GIS. These applications range

from using GIS databases for numerical analysis (Alçada-Almeida et al., 2009; Dalal and Üster, 2018;

Kongsomsaksakul et al., 2005), to visualizing solutions via color-coded GIS maps (Chen et al., 2013;

Coutinho-Rodrigues et al., 2012; Kılcı et al., 2015), identifying candidate shelter locations (Chanta and

Sangsawang, 2012), obtaining road network distances, generating matrices of accessibility, and per-

forming network analyses (Coutinho-Rodrigues et al., 2012; Hallak et al., 2019; Rodŕıguez-Esṕındola

and Gaytán, 2015). In the specific context of flood disaster, Chang et al. (2007) used GIS to estimate

the location of demand points and the quantities of required rescue equipment under different rain-

fall situations. Rodŕıguez-Esṕındola and Gaytán (2015) employed raster GIS, which divides a study

area into a regular grid of cells, each containing a single value, to create flood scenarios and identify

water level in each scenario. Rodŕıguez-Esṕındola et al. (2016) extended the procedure described by

Rodŕıguez-Esṕındola and Gaytán (2015) and introduced a method as a combination of raster and

vector GIS. As opposed to raster GIS, vector GIS uses discrete line segments and points to represent

locations, and can represent points, lines, and areas (Church, 2002). In Rodŕıguez-Esṕındola et al.

(2016), vector GIS was used for data pre-processing and post-analysis, and raster GIS for analyzing

potential flooding scenarios. Building upon Rodŕıguez-Esṕındola and Gaytán (2015), Rodŕıguez-

Esṕındola et al. (2018) used vector GIS to locate suitable facilities and perform network analysis and

raster GIS to consider different scenarios, discard facilities prone to flooding, and identify road failures.

In this study, we have collected reliable data such as geospatial information, high-resolution flood haz-

ard maps, and socio-demographic information in order to properly parametrize the RB-SLP. These

data included publicly available data from the World Bank and OpenStreetMap, as well as data ob-
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Fig. 2: Satellite image divided into 500 m × 500 m grids

tained through extensive discussions and interviews with different experts from the World Bank and

the Government of Haiti. More precisely, we obtained GIS data from the World Bank which contained

four layers: a flood layer, a population layer, an existing shelter layer, and a new potential shelter layer.

The first layer is raster GIS, while the other three layers are vector GIS. Because raster GIS divides

the study area into a regular grid of cells, with each cell (or pixel) containing a single value, while

vector GIS uses polygons, discrete line segments, and points to represent locations (Church, 2002),

the data were overlapped to conduct “zonal statistics”, thereby requiring extensive data processing.

Note that we refer to a pixel in the GIS layer as a surface of 10m × 10m and a grid as a surface of

500m × 500m. The satellite image of the Nippes is shown in Fig. 2 along with the grid used to divide

the region. In order to make network design, we discretize the continuous space of the Nippes and

aggregate data using grids.

In the following, we describe the data collected as well as the data processing. We first describe the

flood layer, i.e., a flood hazard map. Then, we discuss the data related to the three components of a

shelter network: population, shelters, and evacuation paths. For each, we also propose a risk measure.

Each risk measure has also been normalized by using standard methods considering the interquartile

range (IQR) and winsorizing to handle outlier values and then scaled to a [0,1] range (see Appendix B

for detailed information). While our methodology is developed and tested using data from the Nippes

Department of Haiti, it can also be implemented for any other flood-prone areas in the world.

5.1 Flood hazard map

A flood hazard map, referred to as the flood layer, was modelled by the World Bank team using the

Hydrologic Engineering Center’s River Analysis System (HEC-RAS) V5.0.6 (World Bank, 2019b).

HEC-RAS allows to perform one-dimensional steady flow, one- and two-dimensional unsteady flow

calculations, sediment transport or mobile bed computations, as well as water temperature and water

quality modeling (U.S. Army Corps of Engineers Hydrologic Engineering Center, 2023). In this layer,

the flood depth (in meters) is available for each pixel. If the flood depth takes a positive value,

then that pixel is said to be flooded. Figure 3 presents a map of the flood depth and flood area for

the Nippes Department of Haiti, where the flood depth is measured in meters and the flood area is

measured as the percentage of flooded pixels. For readability purposes, the data are aggregated in

grids which are classified in four categories based on the classification used by the World Bank: i)

safe zones with a flood area of at most 20% and flood depth of at most 2 meters; ii) low hazard zones

with a flood area of at most 20% and flood depth of more than 2 meters; iii) medium hazard zones
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Fig. 3: Classification of flood hazard zone in Nippes

Fig. 4: Population of grids (population points) in Nippes

with flood area of more than 20% and flood depth of at most 2 meters; and iv) high hazard zones

with a flood area of more than 20% and flood depth of more than 2 meters.

5.2 Population data and risk assessment

In the following, we provide information about the specific population data provided by the World

Bank, referred to as the population layer. Then, using that data, we detail how we have obtained the

specific population parameters that are found in our mathematical formulation, that is, the population

in need of shelter (pi) according to the population data. Finally, using the population layer and the

flood layer, we explain how risk is assessed and measured for every population point (rpi ).

Population layer (vector GIS). Specific data about population points, including the population

and the wealth index of the population, were provided by the World Bank in the population layer

(vector GIS). This layer was discretized in grids, for a total of 5,331 grids. Each grid was then

associated with exactly one population point (i.e., |I| = 5, 331), and each population point i is located

in the centroid of its associated grid. The data (population and wealth index) was then aggregated for

each grid. The total population of Nippes is 347,461 people, and Figure 4 presents the grids (i.e., one

grid is one population point) classified according to their population. The wealth index was specifically

developed by the World Bank team for Haiti and considers three elements: (i) the physical assets

(i.e., ownership of motorized means of transportation, durable goods, productive goods, and housing

conditions); (ii) the human capital (i.e., education and health); and (iii) the financial assets (i.e.,

having a bank account). Figure 5 classifies the grids based on the wealth index, with higher values

indicating greater wealth. This classification reveals that the western part of the Nippes Department

has the lowest household wealth.
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Fig. 5: Wealth index of grids (population points) in Nippes

Population in need of shelter (pi, i ∈ I). To determine the population in need of shelter, we

conducted discussions with the H-SDRMCRP team who confirmed that only a small percentage of

affected people evacuate toward shelters while others seek refuge in different places. This is common

in case of emergency where there are usually three groups (Cova et al., 2011): (i) those who leave

early and travel to a location outside the danger zone; (ii) those who decide to shelter in refuge within

the danger zone; and (iii) those who decide to stay at their houses (i.e., shelter-in-place). Therefore,

the population in need of shelter, differed from the total population and had to be estimated. While

there is no specific data for this in Haiti, different values have been used in the literature to determine

the percentage of people which will evacuate toward shelters, e.g. Arnette and Zobel (2019) proposed

a range between 2% and 50% and a fixed value of 14.7%, while Kılcı et al. (2015) used a fixed value

of 12.5%. Mileti et al. (1992) found that when expert opinion is unavailable and there is insufficient

historical data, then the constant sheltering need of 14.7% across all locations still provide a reasonable

outcome. Therefore, in this paper, we consider a constant sheltering need of 14.7% in all grids, i.e.,

pi = 0.147× p′i, ∀i ∈ I, where p′i is the total population of i.

Population risk assessment (rpi , i ∈ I). In accordance with the definitions of hazard, vulnera-

bility, and exposure provided in Section 4, the population risk rpi of each population point i ∈ I is

computed as

rpi = (fd
i )× (vpi )× (fa

i × (1− p̃i/pi)), (2)

where fd
i , the flood depth of population point i, represents hazard; vpi , the social vulnerability index

of population point i, represents vulnerability; and fa
i , the flood area of population point i, multiplied

by (1 − p̃i/pi), the percentage of uncovered people from population point i with existing shelters,

represents exposure.

To determine the flood depth and flood area of each population point, we conducted “zonal statistics”

by overlapping the flood layer with the population layer. We then obtained, for each grid, its average

flood depth as well as the number of flooded pixels. Therefore, the flood depth of population point i

(fd
i ) is set to the flood depth of its associated grid, and the flooded area of population point i (fa

i )

is calculated by multiplying the percentage of flooded pixels in its corresponding grid by the grid’s

area, which is 500m x 500m.

To determine a social vulnerability index, we determined that the inverse of the wealth index is a good

estimate for the social vulnerability index because it includes the key factors of social vulnerability,
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that is, (i) demographic characteristics, (ii) socioeconomic status, (iii) health, (iv) coping capacity,

and (v) environmental factors (see Rufat et al., 2015). Therefore, the social vulnerability index of

each population point is computed as

vpi =
1

wi
,

where wi represents the wealth index of population point i.

To determine the percentage of uncovered people with existing shelters, the value of p̃i was deter-

mined by solving a mathematical model (Model 3) that assigns the population in need of shelter to

existing shelters (J ′) by minimizing the total risk. Appendix A presents additional details including

this mathematical model.

Table 1 summarizes the data for the population points. The data related to the population points

has a high variability, especially for the population, the flood area and the population risk.

Table 1 Summary of the population data (i ∈ I)

Data Notation Average Std. Dev.
Population in need of shelter pi 10.1 11.3
Flood depth (m) fd

i 1.9 0.8
Flooded area (m2) fa

i 45,314.7 55,480.2
Social vulnerability index vpi 1.4 1.4
Percentage of uncovered people in the existing network 1− p̃i/pi 87.1 33.4
Population risk rpi 59,452.5 62,848.4
Normalized population risk r̃pi 0.3 0.3

5.3 Shelter data and risk assessment

In the following, we provide information about the specific shelter data provided by the World Bank,

referred to as the existing shelter layer and the new potential shelter layer. Then, using that data,

we detail how we have obtained the specific shelter parameters that are found in our mathematical

formulation, that is, the maximal shelter capacity (qj), the cost of locating a shelter (cj), the maximal

coverage radius (r), and the maximal budget (B). Finally, using the existing shelter layer, the new

potential shelter layer and the flood layer, we explain how risk is assessed and measured for every

shelter (rsj ).

Existing shelter layer and new potential shelter layer (vector GIS). The specific data

related to the shelters were provided by the World Bank and contained two layers (vector GIS): the

existing shelter layer and the new potential shelter layer. The existing shelter layer contains data about

the size and location of the existing shelters J ′. The existing shelters comprise public buildings such

as schools, auditoriums, and churches, which are primarily used for purposes other than sheltering.

These buildings, not constructed according to current building codes, are more vulnerable to disasters

and lack necessary sheltering infrastructure, such as appropriate utility spaces including kitchens and

toilets. In addition, using these buildings for medium or long-term sheltering is not ideal, as it would

require stopping their primary activities While we refer to these building as existing shelters for

readability purposes, it would be more appropriate to refer to them as “potential existing shelters”

or as “public buildings”. The new potential shelter layer contains data about the location of new
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Fig. 6: Set of potential shelter locations J and existing shelters J ′ in Nippes

potential shelters J . The Government of Haiti in partnership with the World Bank decided to locate

new potential shelters in the premises of existing public schools with road accessibility within 150

meters. Figure 6 shows the location of the 349 potential shelter locations and 144 existing shelters

in Nippes Department. The map shows that many existing shelters, being inaccessible by road, are

effectively unusable for sheltering needs.

Shelter capacity (qj , j ∈ J ∪ J ′). To determine the capacity of new potential shelters qj , j ∈ J ,

government standards are used. The government imposes an area (living space) of 300 square meters

per shelter, and we denote by sj the size (living space in square meters) of the shelter, i.e., sj =

300, j ∈ J . In addition, these standards also impose a living area of 3 square meters per person

which limit the capacity of each new potential shelter to 100 people (qj = 100, j ∈ J). For existing

shelters, as previously explained, their size sj , j ∈ J ′ is available in the existing shelter layer data.

Using the same government standards for the living area, we set the capacity of existing shelters to

qj = ⌊sj/3⌋, j ∈ J ′.

Cost of locating a shelter (cj , j ∈ J). Our partners estimated that the cost of locating (building)

a new shelter is 560,000 US dollars (cj = 560,000, ∀j ∈ J). This cost represents the construction cost

of a shelter and includes a fixed construction cost, as well as variable costs for land ownership, type

of soil, and type of region.

Coverage radius (r). The maximal coverage radius needed to satisfy standards targeted by the

government. In addition, it needed to allow foot-based evacuations. Therefore, after discussions with

the H-SDRMCRP team, the maximal coverage radius of shelters was set to 3 km (r = 3), that is,

only population points within a Euclidean distance of 3 km can be covered from a given shelter.

Budget (B). Given the H-SDRMCRP project appraisal document’s budget (World Bank, 2019a),

i.e., 35 million US dollars equally divided by 5 departments, a budget of 7 million US dollars (B =

7,000,000) was defined to build shelters in Nippes Department. This is an upper bound as it excludes

unpredictable and fluctuating costs like training, field work, and logistics, which are inherent to the

project. Therefore, given the estimated construction cost (cj = 560, 000,∀j ∈ J), at most 12 new

shelters can be built in the department.
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Shelter risk assessment (rsj , j ∈ J ∪ J ′). According to the definitions of hazard, vulnerability,

and exposure provided in Section 4, the shelter risk rsj of each shelter j ∈ J ∪ J ′ was computed as

rsj = (fd
j )× (vsj )× (fa

j × sj). (3)

where fd
j , the flood depth of shelter j, represents hazard; vsj , the vulnerability index of shelter j,

represents vulnerability; and fa
j , the flooded area of shelter j multiplied by sj , the size of shelter j,

represents exposure.

To compute the flood depth and flooded area of each shelter, square buffers were defined in the exist-

ing shelter layer and the potential new shelter layer around each shelter in order to cover its entire

area. The length of the side of this square buffer was computed as the square root of the area of the

shelter and rounded up to its nearest integer, i.e.,
⌈√

sj
⌉
, j ∈ J ∪ J ′. By overlapping the flood layer

with both the existing shelter layer and the potential new shelter layer, we obtained, for each shelter’s

surrounding square buffer, the average flood depth as well as the number of flooded pixels which was

converted as a percentage of flooded pixels. Therefore, the flood depth of shelter j (fd
j ) was set as the

flood depth of its corresponding square buffer, and the flooded area of shelter j (fa
j ) was computed

by multiplying its corresponding buffer’s percentage of flooded pixels with the area of the buffer (i.e.,⌈√
sj
⌉2

, j ∈ J ∪ J ′).

To determine the vulnerability index of each shelter, many discussions were conducted with the H-

SDRMCRP team. The team confirmed that the new shelters will be constructed in compliance with

the current government standards and construction codes, significantly reducing their vulnerability

compared to existing shelters that do not meet these codes and are highly susceptible to various dis-

asters. Therefore, each new shelter j ∈ J was assigned a shelter vulnerability index of 0.1 (vsj := 0.1).

In the existing shelter layer data, the age of each shelter was documented, indicating whether it

was new or old. The H-SDRMCRP team determined that a building’s age (new or old) served as a

proxy for assessing the quality of its infrastructure and its vulnerability. Consequently, older existing

shelters are more vulnerable than newer existing shelters. Therefore, the shelter vulnerability index

(vsj , j ∈ J ′) are set to 1 for older existing shelters, and to 0.5 for newer existing shelters.

Table 2 summarizes the data for the potential shelter locations and the existing shelters. Note that

we present the flooded area as a percentage because the size of existing shelters vary, and it is easier

to understand which shelters are in higher flood-prone areas than others. We do not present the

shelter capacity and the vulnerability index for the potential shelter locations as all new shelters have

a capacity of 100 people and a vulnerability index of 0.1. In addition, many existing shelters do not

have road accessibility. The data shows a higher flood depth and flooded area for potential shelter

locations than for existing shelters, but the methodology allows to determine where to locate the new

shelters.

5.4 Evacuation path data and risk assessment

In the following, we provide information about how we have used OpenStreetMap (OSM) to obtain

a real-road network. Then, we detail how we have obtained the specific evacuation parameters that

are found in our mathematical formulation, that is, how the travel distance of each edge has been

computed (dij , (i, j) ∈ E). Finally, using the real-road network connected with our GIS data, we
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Table 2 Summary of the shelter data

Data Notation Average Std. Dev.
Potential shelter locations j ∈ J
Flood depth (m) fd

j 1.4 0.9
Flooded area (%) fa

j 26.7 36.7
Shelter risk rsj 23.4 32.9
Normalized shelter risk r̃sj 0.3 0.4

Existing shelters j ∈ J ′

Capacity (# people) qj 104.0 121.4
Flood depth (m) fd

j 0.2 0.5
Flooded area (%) fa

j 12.6 30.3
Vulnerability index vsj 0.7 0.3
Shelter risk rsj 21.9 80.4
Normalized shelter risk r̃sj 0.1 0.2

Fig. 7: OSM network G = (N ,A)

explain how risk is assessed and measured for each path of network (reij).

Real-road network data. To determine the real-road distances, OSM was used. OSM has been

shown to be a good tool in environments with limited data (see Sokat et al., 2018, for a framework on

data estimation). From OSM, a road-network consisting of single points and space, and road segments

was extracted. Figure 7 illustrates the road network of Nippes which consists of 6,359 nodes and 7,351

arcs. Note that this data was converted as GIS vector data, referred to as the OSM data. This data

was then connected with our network comprising population points and shelters to build a road layer.

This required extensive data processing (see Appendix C for details).

Travel distance (dij , (i, j) ∈ E). As detailed in Section 5.3, the H-SDRMCRP team determined

that shelters should cover population points within a radius of 3 km measured in Euclidean distance

(r = 3km), as it allowed to take into account that people could walk on roads as well as off-road to

reach a shelter. Therefore, to compute dij , (i, j) ∈ E, the latitude and longitude of each population

point (i.e., the centroid of its grid) and each shelter was extracted from the population layer, existing

shelter layer and new potential shelter layer. Recall that dij is only used to determine to sets of

population points that can be covered by shelters.

Evacuation risk assessment (reij , i ∈ I, j ∈ J ∪ J ′) Second, by using the concepts of hazard,

vulnerability, and exposure provided in Section 4, the evacuation risk represents the difficulty of

travelling from one location to another following a flood. More precisely, the evacuation risk between

22

Risk-Based Shelter Network Design in Flood-Prone Areas: An Application to Haiti

CIRRELT-2024-08



population point i ∈ I and shelter j ∈ J ∈ J ′ is computed as

reij = tij , (4)

where tij represents the time to travel (exposure and vulnerability) from population point i to shelter

j according to the flood water level (hazard) in the real-road network.

Determining the value of tij required extensive data processing. To determine the speed of walk-

ing in flooded areas, many laboratory experiments have been conducted in open channels (see e.g.,

Bernardini et al., 2020; Bernardini and Quagliarini, 2020) or pools (see e.g., Lee et al., 2019). On the

other hand, these studies focus on flood depths with a maximum of 70 cm. By analyzing the data

contained in the provided flood layer, we can see that many areas have a flood depth or more than

70 cm with a maximum flood depth of 2.5 meters (see Figure 3). Due to the dearth of studies with a

flood depth of more than 70 cm, we computed the evacuation speed based on the experimental study

of Bernardini et al. (2020). Given that evacuation speed, we can then compute the shortest-path in

terms of evacuation time, denoted by tij , between each population point i ∈ I and shelter j ∈ J∪J ′ in

the road layer. Appendix D presents more details on how the evacuation speed based on Bernardini

et al. (2020) was computed.

Table 3 summarizes the evacuation data. The data presents the number of accessible shelters (new

potential shelters and existing shelters) within the coverage radius (r=3km) of population points.

The data shows that that there are more potential new shelter locations within the coverage radius

of population points, than existing shelters. In addition, there is a higher evacuation risk to potential

new shelters compared with existing shelters which can be explained by the fact that the location of

the potential new shelters can be in higher flood-prone areas.

Table 3 Summary of the evacuation data

Data Notation Average Std. Dev.
# of accessible potential new shelter locations |Vi(r) ∩ J |, i ∈ I 6.5 4.5
# of accessible existing shelters |Vi(r) ∩ J ′|, i ∈ I 2.8 3.2
Evacuation risk to new potential shelters reij , i ∈ I, j ∈ Vi(r) ∩ J 1.7 1.3
Evacuation risk to existing shelters reij , i ∈ I, j ∈ Vi(r) ∩ J ′ 1.6 1.2
Normalized evacuation risk to new potential shelters r̃eij , i ∈ I, j ∈ Vi(r) ∩ J 0.4 0.3
Normalized evacuation risk to existing shelters r̃eij , i ∈ I, j ∈ Vi(r) ∩ J ′ 0.3 0.3

6 Computational results and analyses

In this section, we conduct thorough computational analyses to derive appropriate managerial insights.

Our model was coded in Python and solved with Gurobi 9.0.2. All the solutions were obtained within

five seconds of computational time. First, we solve our problem with different weight settings to

analyze their impacts on the solution. Second, using only the weight-vector setting where θ1 =

θ2 = θ3 = 0.33, we compare our solution with an alternative solution approach, which relies on a

typical shelter location problem where the objective function aims to maximize the number of covered

people. Third, we conduct sensitivity analysis on the shelter construction cost. Finally, we compare

our solution with the one provided by the H-SDRMCRP team and the Government of Haiti. Note that
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in all our tables, for a solution, we denote its average normalized population risk as PR, its average

normalized shelter risk with SR, and its average normalized evacuation risk with ER. In addition,

we denote the percentage of the covered population with new and existing shelters with % Pop. To

obtain this value, we first solve Model 1 which only considers the new potential shelters. Then, we

solve Model 3 which only considers the existing shelters, but this time only taking into account the

population that is not covered with the new shelters obtained by solving Model 1. Therefore, % Pop

corresponds to the sum of the covered population obtained in these two steps.

6.1 Analysis of the weights given to the population risk, shelter risk, and evacu-

ation risk

In this section, we present a detailed analysis on the impact of the weight-vector settings (θ1, θ2,

θ3) on the solution. While working on this project, the COVID-19 pandemic and the inflation it has

caused on construction costs have led to variation with respect to the cost of locating shelters (cj). In

our model, while the initial estimated shelter construction cost and budget (cj = 560, 000,∀j ∈ J and

B = 7, 000, 000) allowed for the building of 12 new shelters, our partners ended up recommending to

test the model with 6 new shelters due to an increase in costs. Therefore, in this section, we discuss the

impacts of the weight-vector settings according to different number of new shelters. Our methodology

was tested using different values between 6 and 12 new shelters, and our results remained consistent,

i.e., the choice of weight-vector was consistent to the number of shelters. For conciseness reasons, we

only present the results with 6 and 12 new shelters. The weight-vector settings are classified in two cat-

egories: i) extreme weight-vector settings where at least one weight is equal to 0; and ii) non-extreme

weight-vector settings where all weights are greater than 0. Note than when setting θ1 = 0, constraints

1b and 1d are modified to impose equality as otherwise no population points are assigned. In Table 4,

we first report the tested weight-vector settings (θ1, θ2, θ3). Then, we present the PR, SR, ER, % Pop.

On the one hand, the results indicate that regardless of the weight-vector setting, the percentage of

the population in need of shelter covered by new shelters consistently stands at 1.1% with 6 new

shelters and 2.2% with 12 new shelters. This is due to the maximal shelter capacity (i.e., 100 people

per shelter), which is always reached. On the other hand, % Pop varies because the percentage of

the covered population with existing shelters does. In fact, when solving the risk-based model using

existing shelters (Model 3), putting more weight on population risk results in the selection of riskier

shelters, consequently covering a higher percentage of the population. Therefore, while the existing

shelter capacity could cover 14,439 people, the average is 10,351 people. Note that a large portion

of the population in need of shelter (more than 70%) remains uncovered, as many grids either lack a

public school with road accessibility or have no existing shelters within a 3 km radius. This does not

imply that people could not walk more than 3 km in practice to reach a shelter. Instead, it indicates

that in our shelter network design, people are considered covered only if there is a shelter located

within a 3 km radius.

Second, by analyzing the three risk measures obtained with the different weight-vector settings, their

performance is less variable for the non-extreme weight-vector settings. With 12 shelters, the popu-

lation, shelter and evacuation risks have an average of 0.99, 0.01, and 0.07 with a standard deviation

of 0.01. On the contrary, when considering extreme weight-vector settings with 6 shelters, then the

solutions can have higher values of risk which can reach 0.19, 0.44, and 0.30 for the population, shelter
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Table 4 Average normalized values with different weight-vector settings with 6 and 12 shelters

Weight-vector setting 6 shelters 12 shelters

(θ1, θ2, θ3) PR SR ER % Pop PR SR ER % Pop

Non-extreme weight-vector settings

(0.15, 0.15, 0.70) 0.98 0.05 0.04 11.4 0.97 0.03 0.05 12.5
(0.15, 0.30, 0.55) 0.98 0.00 0.06 12.4 0.98 0.02 0.06 13.5
(0.15, 0.45, 0.40) 0.98 0.00 0.06 13.3 0.98 0.00 0.07 14.4
(0.30, 0.60, 0.10) 0.99 0.00 0.07 18.3 0.99 0.00 0.09 19.4
(0.33, 0.33, 0.33) 0.99 0.00 0.06 16.0 1.00 0.00 0.07 16.5
(0.45, 0.25, 0.30) 1.00 0.00 0.07 19.5 0.99 0.02 0.07 24.0
(0.45, 0.30, 0.25) 1.00 0.00 0.07 19.7 0.99 0.00 0.08 20.7
(0.50, 0.10, 0.40) 1.00 0.03 0.05 24.0 0.99 0.03 0.06 25.1
(0.50, 0.25, 0.25) 1.00 0.00 0.07 21.1 0.99 0.01 0.07 21.9
(0.50, 0.40, 0.10) 1.00 0.00 0.07 20.7 0.99 0.00 0.09 21.7
(0.60, 0.10, 0.30) 1.00 0.03 0.05 26.3 0.99 0.03 0.06 27.0
(0.60, 0.25, 0.15) 1.00 0.00 0.07 23.0 0.99 0.00 0.09 24.2
(0.75, 0.10, 0.15) 1.00 0.00 0.07 27.4 0.99 0.02 0.07 28.4
(0.75, 0.15, 0.10) 1.00 0.00 0.07 27.6 1.00 0.00 0.09 28.7
(0.90, 0.05, 0.05) 1.00 0.00 0.07 27.8 1.00 0.01 0.08 28.9

Average 0.99 0.01 0.06 20.6 0.99 0.01 0.07 21.8
Std. Dev. 0.01 0.02 0.01 5.5 0.01 0.01 0.01 5.6

Extreme weight-vector settings

(0.30, 0.00, 0.70) 0.99 0.43 0.03 21.4 0.99 0.28 0.05 22.5
(0.30, 0.70, 0.00) 1.00 0.00 0.30 19.4 1.00 0.00 0.25 20.5
(0.45, 0.00, 0.55) 1.00 0.44 0.03 23.6 0.99 0.28 0.04 24.5
(0.60, 0.40, 0.00) 1.00 0.00 0.23 22.0 1.00 0.00 0.23 23.0
(0.75, 0.00, 0.25) 1.00 0.44 0.03 26.8 0.99 0.28 0.05 27.8
(0.90, 0.00, 0.10) 1.00 0.44 0.03 27.7 1.00 0.32 0.05 28.7
(0.90, 0.10, 0.00) 1.00 0.00 0.30 28.1 1.00 0.00 0.25 29.2

(1.00, 0.00, 0.00) 1.00 0.42 0.29 28.1 1.00 0.30 0.18 29.2
(0.00, 1.00, 0.00) 0.54 0.00 0.26 1.1 0.35 0.00 0.18 2.2
(0.00, 0.00, 1.00) 0.23 0.19 0.00 1.1 0.22 0.17 0.01 2.2

Average 0.88 0.24 0.15 19.9 0.85 0.16 0.13 21.0
Std. Dev. 0.27 0.22 0.13 10.4 0.30 0.15 0.10 10.4

Average all 0.95 0.10 0.10 20.3 0.93 0.07 0.10 21.5
Std. Dev. all 0.18 0.18 0.09 7.6 0.20 0.12 0.07 7.7

and evacuation risks. There is also more variability in the results, i.e., with 12 shelters, the popula-

tion, shelter and evacuation risks have an average of 0.85, 0.16, and 0.13 with a standard deviation of

0.30, 0.15, and 0.10. Therefore, the risk measures obtained with non-extreme weight-vector settings

are more consistent.
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6.2 Comparison with a standard objective function

One of the most common objective functions considered in humanitarian logistics is to maximize

coverage (Gutjahr and Nolz, 2016). This objective is also common in shelter location problem (see

Chanta and Sangsawang, 2012; Doerner et al., 2009; Hallak et al., 2019; Salman and Yücel, 2015;

Trivedi and Singh, 2020, for a few examples). In our context, this would correspond to maximizing

the covered population in need of shelter, and can be modeled as follows:

Model 2 max
∑
j∈J

∑
i∈Wj(r)

pixij (5a)

s.t. (1b)− (1f). (5b)

In order to assess the value of considering a risk-based model, this section compares our solutions with

the corresponding population, shelter, and population risks resulting from solving Model 2. Given

the preference of our partners and the results obtained with non-extreme weight vectors, we then

compare the results obtained with the weight-vector (0.33, 0.33, 0.33) which was selected for our

proposed objective function (1a).

Table 5 Performance of the solutions obtained with 12 shelters and (θ1, θ2, θ3) = (0.33, 0.33, 0.33)

Performance indicator Model 1 Model 2

PR 0.99 0.39
SR 0.01 0.20
ER 0.07 0.17
% Pop 16.5 29.2

Table 5 reports the value of PR, SR, ER, % Pop. Note that when using the objective function (5a),

multiple solutions have the same optimal value. However, the results of some analyses showed that the

initial solutions obtained by means of Gurobi are similar to the other optimal solutions. Therefore,

for conciseness reasons, we only report that solution.

By comparing our risk-based objective function with a traditional covering objective function (Model

2), we observe that the obtained solution allows to greatly reduce all three measures of risk. In fact,

with the objective function (5a), we have population, shelter and evacuation risks of 0.39, 0.20, and

0.17 compared with 0.99, 0.01, and 0.07 with our more complex objective function. When analyzing

the covered population in need of shelter within 3 km, we cover more people when considering the

objective function (5a) (29.2% compared with 16.5%). In addition, for both objective functions, new

shelters always cover 2.2% of the population implying that 27.0% of the population is covered with

existing shelters using objective function (5a). This can be explained by the fact that upon solving

the risk-based model, it is sometimes better not to assign population points to shelters which would

be too risky. This issue could be solved by imposing equality in constraints (1b). We can conclude

that considering a risk-based objective function is important as it helps to find solutions with a very

low risk for each risk measure, compared with a more general approach which does not consider risk

at all.
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6.3 Impact of the number of shelters

In this section, we analyze the impact on the number of shelters on the three risk measures as well

as the percentage of the population covered by new and existing shelters. This analysis is important,

because in practice, two things could happen: i) the cost of the shelters cj might be higher (or lower)

than expected; and ii) the available budget B might be higher or lower than expected.

Table 6 Impact of the number of shelters on the average normalized risks obtained with (θ1, θ2, θ3) = (0.33, 0.33, 0.33)

# Shelters PR SR ER % Pop

4 0.99 0.00 0.05 15.6
5 0.99 0.00 0.06 15.8
6 0.99 0.00 0.06 16.0
7 0.99 0.00 0.07 16.2
8 1.00 0.00 0.07 16.4
9 1.00 0.00 0.07 16.6

10 1.00 0.00 0.07 16.8
11 1.00 0.00 0.07 17.0
12 1.00 0.00 0.07 17.1
13 1.00 0.00 0.07 17.3
14 1.00 0.01 0.07 17.5
15 1.00 0.01 0.07 17.7
16 1.00 0.02 0.08 17.9
17 1.00 0.02 0.08 18.1
18 1.00 0.02 0.08 18.3
19 1.00 0.03 0.08 18.4
20 1.00 0.03 0.08 18.6

By modifying constraint (1d) and with (θ1, θ2, θ3) = (0.33, 0.33, 0.33), Table 6 reports for each number

of shelters (# Shelters) its resulting PR, SR, ER, and %Pop. While one could expect a risk-decrease

upon increasing the number of shelters, our results show the opposite. In fact, the trend shows that

when increasing the number of new shelters, riskier population is covered, and there is an increase

in the shelter and evacuation risks. In particular, by going from 4 to 20 shelters, the population,

shelter and evacuation risks go from 0.99 to 1.00, from 0.00 to 0.03, and from 0.05 to 0.08. This is

due to two important elements. First, when more shelters are available, a higher population in need

of shelter can be covered which results in covering riskier population points. Second, when locating a

few number of shelters (e.g., 4), these shelters tend to be located in less risky area and to cover less

risky population points thus resulting in a lower shelter and evacuation risks. In general, for all three

risk-measures, our solution approach is robust to an increase (or a decrease) on the number of shelters

which could be due to a decrease (or an increase) on the construction costs or to an increase (or a

decrease) on the available budget. Finally, when increasing the number of new shelters, we increase

the population covered by the new shelters and always use the total capacity of these shelters.

6.4 Comparison with our partners’ solution

During our work on this project, there was some uncertainty on the final shelter construction cost cj .

Therefore, the H-SDRMCRP team decided to be conservative and select 6 new shelter locations and

gave its recommendation to the Government of Haiti. To identify these shelters, the H-SDRMCRP

team started spatial assessments in 2019 which were conducted as follows. First, public schools with

land availability and road accessibility within 150 meters were identified. Second, for each of these
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Fig. 8: The H-SDRMCRP team’s solution versus the risk-based model’s solution with (0.33,0.33,0.33)

public schools, the number of existing shelters in a 150-meter radius, the number of people in a 3-km

radius, and the number of people living in flood-prone areas in a 3-km radius have been computed.

Third, final field visits were conducted to gather more information, and recommendations have been

made in order to determine where to locate these new shelters. With these recommendations, the

Government of Haiti can analyze the possibility of building the shelters in the selected areas. There-

fore, in this section, we compare the solution recommended by our optimization approach (i.e., solving

the RB-SLP) with the solution provided by the H-SDRMCRP team. This allows us to determine the

importance of developing a sophisticated mathematical model that can consider risk in the objective

function in a more holistic way and evaluate all possible alternative as opposed to a more manual

process.

Table 7 Performance comparison of our partners’ solution and our approach with 6 shelters (θ1, θ2, θ3) = (0.33, 0.33,
0.33)

Performance indicator Partners Our

PR 0.64 0.99
SR 0.03 0.00
ER 0.24 0.06
% Pop 28.0 16.0

The solution provided by the H-SDRMCRP team along with our risk-based model’s solution obtained

with the weight-vector setting (0.33, 0.33, 0.33) are depicted in Figure 8. Table 7 reports the value

of PR, SR, ER, % Pop for these two solutions. In both solutions, the maximum number of people is

covered with new shelters, representing 1.1% of the covered population in need of shelter. In addition,

our results show that for all risk measures, our solution approach outperforms the solution provided

by our partners. This is the most important for the population risk which goes from 0.64 to 0.99,

which implies that our solution approach allows to select the population points with the higher risk

and assigned them to shelters. The shelter risk also decreases from 0.03 to 0 which implies that

less risky shelters are selected. Finally, the evacuation decreases from 0.24 to 0.06 which allows the

population to evacuate using safer paths. This shows the effectiveness of our approach.
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7 Conclusions

Lack of access to shelters is one of the most important humanitarian and development problems in

remote areas of developing countries. Addressing shelter needs during and after a disaster remains a

serious challenge for governments and humanitarian agencies. In this paper, we have solved a shelter

network design problem motivated by the need to reconstruct the shelter network of flood-prone re-

gions in Haiti. We have proposed a risk-based approach to assess and measure the inherent risks of

the shelter network. In particular, three risk measures (population risk, shelter risk, and evacuation

risk) have been defined to represent the uncertain nature of demand, supply, and network. As a first

attempt to study pedestrian-based evacuation in an optimization model, we have developed a new

methodology inspired from empirical research to estimate the risk of evacuation in flood water.

Despite the scarcity of data in the humanitarian sector, we succeeded in gathering data from various

sources (e.g., geospatial information, high-resolution flooding maps, socio-demographic data, road

network). In particular, our collaboration with the World Bank and the Government of Haiti allowed

the formulation of a well-defined and realistic problem, adequately parameterized using real data.

This collaboration also allowed us to fully understand the context and determine the decisions, con-

straints, objectives, and particularities of stakeholders (e.g., Haitian Government) to define and solve

the problem.

We have conducted extensive numerical analyses to ensure robustness and correctness, while demon-

strating the efficacy of our risk-based methodology. We also proposed different performance indicators

adapted for this context that allows to evaluate the solutions on several dimensions. Our results showed

that while different solutions are obtained according to the weight given to each risk measure, if we do

not use extreme values, our model is robust in terms of solution quality. In addition, by comparing our

methodology to a standard methodology where we maximize the covered population in need of shel-

ter and with the current solution of the H-SDRMCRP team, we showed the need for risk-based models.

The solution approach was validated by our partners and our method have been extended to make

recommendations on possible shelter locations in another department of Haiti, namely Nord-Ouest

Department, which have been used for further field investigation by the Government. This collabora-

tion proved advantageous for our partners as they recognized the approach as an innovative tool that

can be applied to different departments and different fields of investment. While we have focused on

a particular district of Haiti, the proposed methodology is of general applicability and can be adapted

to other regions of the world. This study contributes to the advancement of the UN Sustainable

Development Goals 11, 13, and 17, which focus on sustainable cities and communities, climate action,

and partnerships for goals.
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M. Papathoma-Köhle, M. Schlögl, C. Garlichs, M. Diakakis, S. Mavroulis, and S. Fuchs. A wildfire vulnerability index

for buildings. Scientific Reports, 12(1):6378, 2022.

J. A. Paul and X. J. Wang. Robust location-allocation network design for earthquake preparedness. Transportation

Research Part B: Methodological, 119:139–155, 2019.

A. J. Pedraza-Martinez and L. N. Van Wassenhove. Empirically grounded research in humanitarian operations manage-

ment: The way forward. Journal of Operations Management, 45(1):1–10, 2016.

A. J. Pedraza-Martinez, O. Stapleton, and L. N. Van Wassenhove. On the use of evidence in humanitarian logistics

research. Disasters, 37:S51–S67, 2013.
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O. Rodŕıguez-Esṕındola, P. Albores, and C. Brewster. GIS and optimisation: Potential benefits for emergency facility

location in humanitarian logistics. Geosciences, 6(2):18, 2016.

O. Rodŕıguez-Esṕındola, P. Albores, and C. Brewster. Disaster preparedness in humanitarian logistics: A collaborative

approach for resource management in floods. European Journal of Operational Research, 264(3):978–993, 2018.

S. Rufat, E. Tate, C. G. Burton, and A. S. Maroof. Social vulnerability to floods: Review of case studies and implications

for measurement. International Journal of Disaster Risk Reduction, 14:470–486, 2015.

M. Sabbaghtorkan, R. Batta, and Q. He. Prepositioning of assets and supplies in disaster operations management:

Review and research gap identification. European Journal of Operational Research, 284(1):1–19, 2020.
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A Computing the percentage of uncovered people in the existing

network

In order to compute the percentage of uncovered people in the existing network, we need to determine

how many people are covered with the set of existing shelters denoted by J ′, J ′ ∩ J = ∅. If there are

no existing shelters (J ′ = ∅), then the percentage of uncovered people is 100%. Otherwise, we need to

solve a mathematical model. In the following, we detail how to compute the percentage of uncovered

people when J ′ ̸= ∅.

When J ′ ̸= ∅, we solve the following model to determine the percentage of uncovered people with the

existing network:

Model 3 min θ1
∑
j∈J ′

∑
i∈Wj(r)

−r̃pi pixij + θ2
∑
j∈J ′

r̃sjqjyj + θ3
∑
j∈J ′

∑
i∈Wj(r)

r̃eijpixij (6a)

s.t.
∑

i∈Wj(r)

pixij ≤ qjyj , j ∈ J ′ (6b)

∑
j∈Vi(r)∩J ′

xij ≤ 1, i ∈ I (6c)

xij ≥ 0, i ∈ I, j ∈ J ′ (6d)

yj ∈ {0, 1}, j ∈ J ′. (6e)

This model is similar to Model 1 but has not budget constraints. In addition, for the set J ′, the

normalized population risk is measured by assuming that the percentage of uncovered people is 100%.

In our set of experiments, we restrict ourselves to the weights θ1 = θ2 = θ3 = 0.33 when solving Model

2. Using the optimal solution of Model 2, the number of covered people in the existing network is

computed as p̃i =
∑

j∈J ′
∑

i∈Wj(r)
pix̃

(2)
ij , where x̃

(2)
ij represents the values of the x-variables in the

optimal solution of Model 2. Then, for each population point, we compute the percentage of uncovered

people in the existing network as (1− p̃i/pi).

B Normalization of the risk measures

In this section, we explain how the population risk, the shelter risk and the evacuation risk have been

normalized. The data was normalized by using standard methods considering the interquartile range

(IQR) and winsorizing for outlier values. Using the concept of IQR, and defining Q1 and Q3 as the

first and third quartile, all values that are below Q1 - 1.5 IQR, and all values that are above Q3 +

1.5 IQR are considered as outliers, i.e., lower outliers and upper outliers. Winsorizing is then used by

setting all values below Q1 - 1.5 IQR to Q1 - 1.5 IQR, and all values above Q3 + 1.5 IQR to Q3 +

1.5 IQR. Using the resulting data, it is then scaled to a [0, 1]-range. In the following, we provide the

detailed notation to explain how each risk measure has been normalized.

The normalized population risk, r̃pi , i ∈ I, is computed as follows. As previously explained, all values

in r̃pi , i ∈ I are winsorized using 1.5 IQR, and the resulting risk is denoted by “rpi . Then, the normalized
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value is obtained by dividing the resulting risk by its risk interval, that is,

r̃pi =
“rpi −mini∈I

“rpi
maxi∈I

“rpi −mini∈I
“rpi , ∀i ∈ I. (7)

The normalized shelter risk, r̃sj , j ∈ J ∪ J ′, is computed for 1) the normalized shelter risk for new

potential shelters and 2) the normalized shelter risk for existing shelters. For the normalized shelter

risk for new potential shelters, all values in rsj , j ∈ J are winsorized using 1.5 IQR, and the resulting

risk is denoted by “rsj . Similarly, for the normalized shelter risk for existing shelters, all values in

rsj , j ∈ J ′ are winsorized using 1.5 IQR, and the resulting risk is denoted by “rsj . Then, the normalized

value is obtained by dividing the resulting risk by its risk interval, that is,

r̃sj =
“rsj −minj∈J “rsj

maxj∈J “rsj −minj∈J “rsj ,∀j ∈ J, (8)

and

r̃sj =
“rsj −minj∈J ′ “rsj

maxj∈J ′ “rsj −minj∈J ′ “rsj , ∀j ∈ J ′. (9)

The normalized evacuation risk is computed for all pairs of population points i and shelters j within

the maximal coverage radius r, that is, r̃eij , i ∈ I, j ∈ Vi(r). Similarly to the normalized shelter risk

it is computed for 1) the evacuation towards new potential shelters and 2) the evacuation towards

existing shelters. For the normalized evacuation risk towards new potential shelters, all values in

reij , i ∈ I, j ∈ Vi(r)∩J are winsorized using 1.5 IQR, and the resulting risk is denoted by r̂eij . Similarly,

for the normalized evacuation risk towards existing shelters, all values in reij , i ∈ I, j ∈ Vi(r) ∩ J ′ are

winsorized using 1.5 IQR, and the resulting risk is denoted by r̂eij . Then, the normalized value is

obtained by dividing the resulting risk by its risk interval, that is,

r̃eij =
r̂eij −mini∈I,j∈Vi(r)∩J r̂

e
ij

maxi∈I,j∈Vi(r)∩J r̂
e
ij −mini∈I,j∈Vi(r)∩J r̂

e
ij

,∀i ∈ I, j ∈ Vi(r) ∩ J, (10)

and

r̃eij =
r̂eij −mini∈I,j∈Vi(r)∩J ′ r̂eij

maxi∈I,j∈Vi(r)∩J ′ r̂eij −mini∈I,j∈Vi(r)∩J ′ r̂eij
,∀i ∈ I, j ∈ Vi(r) ∩ J ′. (11)

C Building the road layer

In the following, we first describe the data extracted from OpenStreetMap. Then, we explain how this

data was connected with our shelter network (population points and shelters) to create the road layer.

First, from OpenStreetMap, we extracted a network G = (N ,A), where N represents a set of single

points in space (referred to as the set of nodes) and A represents the set of road segments (referred
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to as the set of arcs). Each node n ∈ N is associated with a latitude and a longitude. Each arc

(k, n) ∈ A is associated with a source node k ∈ N , a destination node n ∈ N , and a distance d̃kn (in

km). In the case of pedestrian-based evacuation, we assume that a road can be used in any direction.

Therefore, if there exists two arcs between the same pair of nodes, that is (k, n), (n, k) ∈ A, k, n ∈ N ,

then we set the distance of arcs (k, n) and (n, k) as (d̃kn + d̃nk)/2.

Second, we had to connect the OSM data with our set of population points I and shelters J ∪ J ′.

Therefore, using the population layer, existing shelter layer, potential new shelter layer, and OSM

layer, we created an additional layer referred to as the road layer. This road layer is represented by

the network G = (N′,A′). The set of increased nodes comprises the original set of nodes N as well

as all the population and shelter vertices, that is, N′ = N ∪ I ∪ J ∪ J ′. Because vertices V are not in

the OSM layer, they had to be connected to the road network. Therefore, the set of increased arcs

is defined as A′ = A ∪ {(i, n) : i ∈ I, n ∈ N , din ≤ r1} ∪ {(n, j) : n ∈ N , j ∈ J ∪ J ′, dnj ≤ r2} as the

original set of arcs as well as arcs between the population points and nodes within a radius r1, and

arcs between nodes and shelters within a radius r2. Note that the distances din, i ∈ I, n ∈ N and

dnj , n ∈ N , j ∈ J ∪ J ′ are computed as an Euclidean distance. In addition, after discussions with the

H-SDRMCRP team, the values of r1 and r2 were set to 3 and 0.25 km.

D Determining the travel time from i ∈ I to j ∈ J ∪ J ′

In this section, we explain how the travel time from i ∈ I to j ∈ J ∪ J ′ has been estimated. First, we

provide an estimate for the evacuation travel time of each arc in A′. Second, because multiple paths

can exist from i ∈ I to j ∈ J ∪ J ′, a Dijkstra shortest-path algorithm is used to compute the short-

est path (using the evacuation travel time) between each population point i ∈ I and shelter j ∈ J ∪J ′.

First, to determine the travel time of each arc A′, we have to determine the evacuation speed which

represents the walking speed according to the flood depth. Note that the evacuation speed is measured

in kilometer per hour (km/h). Using the “Mean” values from Table 3 in Bernardini et al. (2020) (by

converting the flood depth in meters and the walking speed in km/h), we conducted a linear regression

to determine the evacuation speed. Figure 9 presents the converted “Mean” values from Table 3 (the

speed in km/h according to the flood depth in meters) with our linear regression. This linear regression

led us to compute the evacuation speed of each node of the increased network, i.e., n ∈ N′, as

ϕk = max{0,−1.2446fd
k + 3.3861} (12)

where fd
k is flood depth of node k in meters. For population points (i ∈ I), this value is set as fd

i

as defined in Section 5.2. For shelters (j ∈ J ∪ J ′), this value is set as fd
j as defined in Section 5.3.

For all other nodes (n ∈ N ), we defined a square buffer of 5m x 5m around each node n ∈ N and

conducted “zonal statistics” by overlapping the flood layer with the road layer. We then obtained

for each buffer around a node its average flood depth which was defined as fd
n, n ∈ N . For each arc

(n, k) ∈ A′, if ϕn + ϕk > 0, its evacuation travel time is then computed as

d̃nk
(ϕn + ϕk)/2

, (13)

otherwise, if ϕn + ϕk = 0, then its evacuation time is 0.
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Fig. 9: Linear regression with the mean values reported in Table 3 of Bernardini et al. (2020)

Second, in graph G = (N′,A′), there might exist multiple paths between a given population point

i ∈ I and a given shelter j ∈ J ∪ J ′. Therefore, a Dijkstra shortest-path algorithm (Dijkstra, 1959)

is used to determine the shortest evacuation travel time (as computed in Equation 13) from each

population point i ∈ I to each shelter location j. This shortest evacuation travel time corresponds to

tij , (i, j) ∈ E.
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