
CIRRELT-2024-07

A Mathheuristic Approach for the
Vehicle Routing Problem with
Queuing Considerations

Ala-Eddine Yahiaoui
Mikael Rönnqvist
Jean-François Audy

March 2024

A Mathheuristic Approach for the Vehicle Routing Problem with
Queuing Considerations

Ala-Eddine Yahiaoui1,2,*, Mikael Rönnqvist1,2, Jean-François Audy1,3

1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
(CIRRELT) and FORAC Research Consortium, Université Laval

2. Department of Mechanical Engineering, Université Laval
3. Département de management, Université du Québec à Trois-Rivières

Abstract. Queuing in vehicle routing problems happens when a given node

requires to be visited by several vehicles, whereas only a limited number of

vehicles can perform the service simultaneously. Hence, some vehicles must wait

until the node is available. We present in this paper a mathheuristic approach to

solve the problem. This approach incorporates two phases. The first phase

executes a rolling horizon heuristic multiple times to generate an initial set of

solutions. Those generated solutions are used to initialize a pool of routes. In the

second phase, a column generation based procedure is used to generate new

routes. We implemented a set partitioning model that allocates pre-determined

slots of time to service operations of vehicles. We proposed fast pricing heuristics

to generate new routes with negative reduced costs. The new routes are

generated based on existing ones, keeping the same physical description but

the starting times of service operations are modified to better fit the queuing

aspects. Performance evaluation has been conducted using instances derived

from data provided by forest companies. Experiments proved the effectiveness

of the proposed approach, by recording low route duration and achieving almost

zero queuing times compared to the initial pool of solutions.

Keywords: Vehicle routing problem, queuing, mathheuristic, column

generation, time slots, timber transportation

Acknowledgements. The authors would like to thank the FORAC research

consortium (Université Laval) for funding this research.

Results and views expressed in this publication are the sole responsibility of the authors and do
not necessarily reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la
position du CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: ala-eddine.yahiaoui.1@ulaval.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2024

© Yahiaoui, Rönnqvist, Audy and CIRRELT, 2024

1 Introduction

Queuing in Vehicle Routing Problems (VRP) appears when a given node requires to
be visited several times during the day, and where only a limited number of vehicles
can perform their services at a given time and a given site, mainly due to limited
resources on-site. Transportation of logs from harvest areas to mills in forestry is a
relevant application of such VRP variant, where a set of loads must be transported
between each pair of harvest areas and mills using a fleet of trucks. To load and unload
logs, specific equipment called loaders are necessary. When the number of trucks that
arrives during the same time and at the same location exceeds the available number
of loaders, queuing times are incurred for some trucks. A good coordination between
trucks arrivals and availability of loaders is necessary to avoid bottlenecks and to
minimize queuing times. We call this problem as the Timber Transport Vehicle Routing
Problem with Queuing considerations (TTVRPQ). In addition to pick-up and delivery
and queuing attributes, the TTVRPQ is also characterized by additional attributes
such as multiple visits and multi-depots.

Several papers have been proposed to solve the variant of VRP similar to TTVRP
generalization in the forestry context. Malladi and Sowlati (2017) [11] provided a
detailed literature on log-truck scheduling problems and their applications in timber
and biomass transportation, whereas Audy et al. (2022) [1] presented a detailed survey
on the characteristics and attributes of TTVRP and their solution methods, along with
their deployment in decision support systems. Weintraub et al. (1996) [15] proposed
a fast heuristic embedded in a computerized system called ASICAM. This heuristic
uses several rules and a rolling horizon-based simulation to construct truck routes for
a whole day-horizon, while reducing queuing times and congestion levels at harvest
areas and mills. ASICAM is widely adopted by forest companies in several countries,
mainly due to its efficiency. However, since ASICAM is a rolling horizon heuristic,
early in the planning horizon the routes may be very efficient with low queuing, but
towards the end of the planning horizon the quality can decrease considerably with
increased queuing. Moreover, it lacks a back-track mechanism, which would allow the
heuristic to further improve the obtained solutions.

Several approaches have been proposed to solve the TTVRP based on Integer
Programming (IP). Bordòn et al. (2020) [3] proposed another approach to minimize
duration and queuing times at harvest areas and mills. This approach consists in
splitting the planning horizon into equal time intervals, called time slots, corresponding
to loading/unloading times. Slot-based MIP formulation facilitates the modeling of the
queuing operations by simply solving the problem of time slots allocation at harvest
areas and mills to trucks. Additional constraints are then added to link the time slots
with the arrival of trucks at mills and harvest areas. The route of each truck is modeled
as a sequence of trips, each trip represents either an empty-loaded travel from the mill
or base garage to a harvest area, then a loaded travel from the harvest area to a mill.
Having a limited number of trucks and a limited number of trips performed by each
truck allows to easily represent the problem using an arc-based MIP formulation by
adding truck and trip indices to each decision variable. However, a limitation on the
number of trips that can be performed by each route is imposed a priori to prevent
combinatorial explosion.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 1

Another way to tackle the TTVRP is the consideration of a network flow-based
model. Additional nodes are added to the initial network graph to represent each type
of activity, such as loading, unloading, loaded trips, unloaded trips and queuing times.
El Hachemi et al. (2015) [5] present a decomposition approach for a weekly tactical
log truck scheduling problem. The problem is described as the routing of trucks that
pick-up logs from forest areas and deliver them to mills during a planning horizon of
several days (a week) while considering the inventory stock limit and the production
planning at each mill. The authors solve the problem in two phases. The first phase of
the solution method consists of a mathematical formulation used to solve the tactical
transportation and allocation problem of truckloads from the harvest areas to mills.
The second phase consists in solving the daily routing and scheduling of truck routes
while minimizing the empty-loaded travel times and queuing times for service. A
mathematical formulation is proposed based on an enriched space-time network model.
Moreover, the planning horizon is discretized into equal time slots corresponding to
the loading and unloading times, assumed to be similar, and the arcs corresponding
to loading and unloading activities are duplicated as many as the number of slots
in each day. Subsequently, the restriction of a single loading/unloading operation per
time slot is automatically enforced by the flow conservation constraints and the unit
capacity on the loading/unloading arcs.

Palmgren et al. (2004) [12] tackled a log-truck routing problem with transportation
allocation and proposed a near-exact method based on column generation to solve a
similar problem as in [4]. New columns are generated using a k-shortest path algo-
rithm applied on an extended network, where most of the complicating constraints
are astutely embedded, such as supply and demand levels and transported quantities.
After solving the column generation at the root node to optimality, the integer ver-
sion of the master problem is solved after including all the new generated columns.
Rix et al. (2015) [14] also used a column generation approach to solve a tactical wood
flow problem. The authors presented a MIP model and solved it using column gen-
eration. The pricing problem in the column generation phase is solved as a resource
constrained shortest path problem (RCSPP). Rey et al. (2009) [13] proposed a sim-
ilar approach and used a dynamic programming approach to solve the shortest path
problem. Although the efficiency of the column generation approaches, solving RCSPP
constitutes a substantial computational burden. Moreover, solving the pricing prob-
lem optimally improves the linear relaxation but not necessarily the optimal solution,
which minimizes the outcome of such complex pricing approach.

Constraint programming (CP) is a practical approach, thanks to the ease of
synchronization modeling and loaders and the optimization of the queuing times.
Moreover, in contrast to IP, CP is able to find feasible solutions close to the optimal
since early stages of the search. CP represents loading and unloading times as domain
variables and by propagating the synchronization constraints only when needed, it
allows an efficient implementation of those constraints. Audy et al. (2011) [2] propose
a three-phase heuristic for an operational weekly log-transportation problem. A large
set of feasible routes are generated by simple enumeration following a set of rules.
Then, the construction of the set of circuits that satisfy all the demand and supply
constraints is performed using a set covering formulation. The objective function in

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

2 CIRRELT-2024-07

the first two phases is the minimization of transportation costs. The final phase of the
heuristic consists of a CP model that aims at the construction of a sequence of non-
overlapping trips for each truck and the scheduling of loading and unloading activities
at the harvest areas and mills by fixing their start and end times. The objective func-
tion in this phase is the minimization of queuing times of trucks which mainly depend
on the availability of resources (loaders) that were relaxed in the previous models.
El Hachemi et al. (2013) [7] present a decomposition approach for the same problem
tackled in [5]. The authors solve the problem in two phases. The first phase consists
in solving a MIP for the tactical inventory problem for the whole planning horizon.
The second phase is a CP-based hybrid Iterated Local Search that tackles the rout-
ing of trucks and scheduling of loading/unloading activities where the CP part of the
algorithm performs the synchronization of trucks and loaders as well as the optimiza-
tion of queuing times. El Hachemi et al. (2011) [6] tackled a daily log-truck scheduling
problem. In this problem, a fixed set of transportation requests is considered. The
requests are supposed to be derived from decisions made at the weekly planning level.
The objective function express a combination of empty driven routing costs, queuing
times at harvest areas and mills, and also the queuing times of log-loaders in forest
areas. The authors propose a two-phase hybrid method where the first phase is an IP
that models the routes of trucks between harvests and mills as a network flow prob-
lem. This model optimizes the empty driven distance, whereas in the second phase
the queuing times of trucks and log-loaders are optimized through a CP model.

We have clearly noticed the lack of methods that efficiently can solve large scale
TTVRP with queuing considerations, and very often, the destination is done on
a tactical level without considering queuing. We present a hybrid method to solve
the TTVRPQ. The solution approach is based on the discretization of the planning
horizon into small intervals called time slots, which allows easy management of load-
ing/unloading capacities. The hybrid method incorporates two phases. The first phase
is based on a rolling horizon heuristic used to generated an initial set of solutions for
the problem. Those generated solutions are then used to initialize a pool of routes
which are provided to the second phase, consisting of a column-generation based pro-
cedure used to generated new routes. We use in the master problem a set partitioning
formulation with side constraints that allocates time slots required by loading and
unloading operations of trucks, in addition to the assignment of routes to trucks. The
key feature of this procedure is the use of pricing heuristics to construct new routes
with negative costs in order to improve the best solution found so far. Moreover, The
key idea of those heuristics is to astutely generate new columns based on the existing
ones, by astutely modifying the time intervals of loading and unloading operations,
without modifying the physical structure of the basis columns or re-arranging the
sequence of visits. One motivation is that there are relatively small number of trips
in a full route so it is likely that the optimal physical representation are already gen-
erated in the initial pool. Our approach is highly flexible with no limitations on the
number of requests per route, obtained good solutions relatively faster, succeeded to
solve instances with more that 250 requests and 120 trucks, and capable of dealing
with fine-grained discretization of the planning horizon, allowing the minimization of
idle times. Performance evaluation of the proposed approach has been conducted using
benchmark instances derived from real-life data.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 3

The remainder of this paper is as follows. Problem description and the mathemat-
ical formulation is provided in Section 2. Solution approach is described in Section
3. Experimentation tests and performance evaluation of the proposed approach are
presented in Section 4. Finally, discussion of the results, conclusions and research
perspectives are provided in Section 5.

2 Problem description and mathematical
formulation

A major issue when solving the TTVRPQ are the constraints on loading and unloading
capacities at, respectively, harvest areas and mills. To handle those constraints, we
need first to record at every moment, and at every location the number of trucks being
loaded or unloaded. Hence, we partition the planning horizon into a set of intervals of
equal length called time slots. The width of time slots is generally chosen such that the
durations of loading and unloading operations are easily expressed by a predetermined
number of time slots. Before a truck can be loaded or unloaded, it should first find
available time slots, during which the operation is going to be performed. The initial
number of available time slots at a given site and at every moment is equal to its
loading/unloading capacity.

We present in the following some necessary notation. A problem instance of the
TTVRPQ can be modeled using a direct graph G = (N,A) where N is the set of
vertices associated with locations and A is the set of arcs. The set N incorporates a
set of home depots B, a set of harvest areas H and a set of mills M . Each harvest area
h ∈ H has loading capacity lh and each mill m ∈ M has an unloading capacity lm.
The set of arcs is A = {(i, j)|(i, j) ∈ (B,H)∪ (M,H)∪ (H,M)∪ (M,B)}, where each
arc (i, j) ∈ A is associated with a travel time t(i, j). We consider in the TTVRPQ a set
of trucks V , each truck has a home depot bv ∈ B, from which it starts and finishes its
journey, an earliest departure time ev and a latest end time fv. Let us also consider the
set of requests R, each request should be transported from its corresponding harvest
area hr ∈ H and delivered to the associated mill mr ∈ M . We also partition R into
subsets Rhm|(h,m) ∈ (H,M), where each subset Rhm includes the set of requests in R
having as an origin h ∈ H and a destination m ∈M . The planning horizon is denoted
by Z, which is divided into small intervals of equal width called time slots. The set
of time slots is denoted by I, where each time slot i ∈ I has a starting time ei and
an ending time fi. The width of the time slots is denoted by δ, whereas duration of
loading/unloading operations is expressed by the number of time slots µ.

Figure 1 shows an example of a TTVRPQ solution composed of two routes. Figure
1a shows the topological distribution of the solution whereas Figure 1b shows the
scheduling of loading and unloading operations, where queuing times are represented
by black boxes. We assume a single loading/unloading capacity for all mills and harvest
areas. The arrival of trucks V1 and V2 at the same time at harvest area f2 forces truck
V1 to wait until the loading operation of truck V2 is finished. The reader may notice
the use of yellow boxes to represent the time between the truck arrival and the starting
time of the next time slot. These residual time slots are called idle times, which are
not included in queuing times. When the width of time slots is small enough, arrivals

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

4 CIRRELT-2024-07

(a) Topological representation of
TTVRPQ solution

(b) Scheduling of loading and unloading operations

Fig. 1: Example of a TTVRPQ solution

within time slots do not incur longer times of inactivity. However, computational time
when solving the problem may substantially grow. The best configuration would allow
the best trade-offs between accuracy and computational times.

A solution S of the TTVRPQ is composed of a list of routes TS , where each route
t ∈ TS is associated with a truck vt ∈ V . Each route t ∈ TS is composed of a sequence
of requests. A request r ∈ R can be seen as a sequence of two operations, a loading
operation olr and an unloading operation our . Moreover, for each truck v ∈ V , we
associate two dummy operations oev and ofv to represent the departure and the arrival
of the truck at the associated home depot. Each operation o is associated with a node
no ∈ N and eventually a request ro ∈ R if no ∈ H ∪M , and has an arrival time aro,
an arrival time slot ao calculated as ao = ⌈aroδ ⌉ if no ∈ H ∪M , and calculated as
ao = ⌊aroδ ⌋ if no ∈ B. The time slot where the operation o starts is denoted by so,
with so ≥ ao.

Hence, a route t ∈ TS can be defined as a sequence of operations σ =
{σ1, σ2, . . . , σ|σ|}. The truck associated with σ is denoted by vσ ∈ V . A queuing time
at an arbitrary operation σi is computed as WTσ

i = sσi
−aσi

. The accumulated queu-

ing times between positions i and j in σ is computed as : TWTσ
ij =

∑j
k=i+1 WTσ

k .
The accumulated queuing times of σ is denoted by TWTσ = TWTσ

1|σ|.
The objective function also integrates queuing times so that they are minimized

together with duration. The cost of a route is computed as :

cσ = (sσ|σ| − sσ1
+ ρ× TWTσ) (1)

Here ρ is a unit cost associated with queuing times.
We propose in the following a mathematical formulation of the TTVRPQ based

on a set partitioning model. Let us first consider the set of all feasible routes Ω,
each route is associated with a truck and starts from the corresponding home depot,
performs a sequence of requests and returns back to the home depot. Time slots at the
harvest areas and mills are allocated to loading and unloading operations performed
by the truck routes. We define a three-index binary constant atmi to indicate whether
a unloading operation is performed at mill m ∈ M by truck route t ∈ Ω during
time slot i ∈ I. Similarly, we define the three-index binary constant bthi to indicate
whether a loading operation is performed at harvest area h ∈ H by the truck route

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 5

t ∈ Ω during time slot i ∈ I. We define a two-index boolean coefficient utr indicating
whether request in r ∈ R is fulfilled by route t ∈ Ω. We note that the set of routes Ω
is partitioned into |V | subsets Ωv, each corresponding to a specific truck v ∈ V . We
need also to define a decision variable yt ∈ {0, 1} that indicates whether route t ∈ Ω
is selected in the optimal solution.

Hence, the mathematical formulation for the set partitioning problem, denoted by
SPP1, is as follows :

MIN
∑
t∈Ω

ctyt (2)

∑
t∈Ωv

yt = 1 ∀v ∈ V (3)

∑
t∈Ω

bthiyt ≤ lh h ∈ H, i ∈ I (4)

∑
t∈Ω

atmiyt ≤ ls m ∈M, i ∈ I (5)

∑
t∈Ω

utryt = 1 ∀r ∈ R (6)

yr ∈ {0, 1} r ∈ Ω (7)

The objective function aims at the minimization of the sum of the route costs (2).
The route costs include travel times, queuing times and loading/unloading times, and
they are assumed to be known for each route. Constraints (3) guarantee that each
truck can perform at most one route. Constraints (4) limit the number of trucks to
be loaded during each time slot at each harvest area. Similarly, constraints (5) ensure
the respect of unloading capacity at each mill during every time slot. Constraints (6)
guarantee that each request r ∈ R is fulfilled exactly once by a single route t ∈ Ω.
Constraints (7) are domains definition.

We suggest in the following an alternative formulation to SPP1. It can be seen as
a compact formulation, where instead of considering each request r ∈ R separately in
constraints (6), subsets of requests Rhm ⊂ R related to each pair of harvest area and
mill (h,m) ∈ (H,M) are grouped together into a single constraint. Let wthm be an
integer coefficient indicating the number of requests in Rhm fulfilled by route t ∈ Ω.
Hence, the extended formulation SPP2 for the set partitioning problem is a follows.

(2), (3), (4), (5), (7)∑
t∈Ω

wthmyt = |Rhm| ∀(h,m) ∈ (H,M) (8)

3 Column generation based approach

SPP1 is called the master problem. Solving the SPP1 on Ω using existing commercial
solvers is not practically possible, since Ω grows exponentially with the size of the
problem (number of requests |R|). Instead, in the column generation approach, the

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

6 CIRRELT-2024-07

basic idea is to solve the SPP1 while only considering a subset of routes and to
generate new columns only if they can improve the linear relaxation of the SPP1. The
objective is to find a set of routes Ω′ that provides the same optimal solutions as the
master problem when applied on Ω. The restricted version of the column generation
form is called the restricted master problem (RMP). An initial subset Ω′ of routes can
be generated either heuristically or randomly.

Technically, the column generation process to solve VRP is carried out as follows.
Once the linear relaxation of the RMP is solved, the optimal values of the dual variables
are extracted and provided to the pricing problem. Those dual costs are used to
compute to the reduced cost of the columns. The aim of the pricing problem then is
to find the column with the minimum reduced cost, and if it has a negative value,
it is added to Ω′. The augmented RMP is again solved and the new values of the
dual variables are considered. This process is iterated until no columns with negative
reduced costs are found [8].

In our case, let us first define dual variables αv, βsi, λhi and γr to be respectively
the optimal values of the dual variables for constraints (3), (4), (5) and (6) of the
primal problem.

The dual problem of the linear relaxation of the set partitioning formulation is as
follows:

MAX
∑
v∈V

αv +
∑
m∈M

∑
i∈I

lmβmi +
∑
h∈H

∑
i∈I

lhλhi +
∑
r∈R

γr (9)

αv +
∑
m∈M

∑
i∈I

atmiβmi +
∑
h∈H

∑
i∈I

bthiλhi +
∑
r∈R

wtrγr ≤ ct ∀v ∈ V,∀t ∈ Ωv (10)

αv ≤ 0 v ∈ V (11)

βmi ≤ 0 m ∈M, i ∈ I (12)

λhi ≤ 0 h ∈ H, i ∈ I (13)

γr ∈ R r ∈ R (14)

It is noteworthy to mention that in our case, since we have a heterogeneous fleet,
we consider solving |V | separated pricing problems at each iteration.

For the calculation of the reduced cost of a route t ∈ Ωv, we proceed as follows :

Ct = ct − αv −
∑
m∈M

∑
i∈I

atmiβmi −
∑
h∈H

∑
i∈I

athiλhi −
∑
r∈R

wtrγr (15)

3.1 Pricing problem

The basic idea of our approach is to generate new columns with negative reduced costs
by simply modifying the existing columns in Ω′. Instead of generating new columns by
solving a resource constrained shortest path problem (RCSPP), the columns selected

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 7

in the basis of the LP relaxation of SPP1 are used to generate new columns. The
generation of new columns does not incur any alteration of the physical structure of
the routes, that is, the subset of requests visited by the truck routes as well as the
order in which the requests are carried out. Instead, we focus on the re-assignment
of time slots to loading and unloading operations, while maintaining the feasibility of
the routes.

For this purpose, we suggest the following useful definitions. Given a sequence
of operations σ, Kindervater and Savelsbergh (2018) [10] proposed to compute the
Forward Time Slack FTSi at σi, indicating how much forward delay is possible at the
ith operation without exceeding the planning horizon by the subsequent operations
including operation σi. FTSi is computed as : FTSσ

i = min
i≤k≤|σ|

{TWTσ
ik+sσk

−WTσ
k }.

For convenience, we denote FTSσ
0 as FTSσ.

We also define the Allowed Backward Shift of a given sequence σi as the maximum
gain in duration at the final operation yielded by shifting in the backward direction
the service starting of operation σi, assuming of course that the service can start in
an earlier date without violating time constraints. The Allowed Backward Shift at σi

is denoted by ABSσ
i and it is computed as follows: ABSσ

i = min{sσi
−aσi

, ABSσ
i+1}.

For convenience, we denote ABS0 of σ by ABSσ.
Adding new routes with negative reduced costs to the RMP has two benefits. The

first benefit is the improvement of the objective value of the relaxation (since they
have negative reduced costs). Moreover, delaying some operations may allow non-basic
but promising columns to enter to the basis.

3.1.1 Forward shift operator

The heuristic looks for operations having a strict positive value of the dual variable
associated with their time slots (β or λ) and perform as many shifts as possible.
The forward shift is then propagated to the predecessors until the dummy operation
associated with the arrival at the home depot. Every elementary movement, if feasible,
can give rise to a new column. A forward shift of the operation σi by k time slots is
feasible if : k ≤ FTSσ

i . If the modified column scores a negative reduced cost, a new
route is then created and added to the pool.

3.1.2 Backward shift operator

The heuristic looks for operations having a strict positive value of the dual variable
associated with their time slots (β or λ) and performs as many shifts as possible. Every
elementary backward shift may give rise to a new column. Every backward shift is
systematically propagated to the predecessors until the dummy operation associated
with the departure. A backward shift of the operation σi by k time slots is feasible
if : k ≤ ABSσ

i . If any of the modified columns scores a negative reduced cost, a new
route is then created and added to the pool.

3.2 pricing procedure

We propose in the following the full procedure used to generate new columns with
negative reduced costs. The procedure iteratively applies the above pricing heuristics

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

8 CIRRELT-2024-07

on every route in different sequences of movements and on different operations, cov-
ering thereby a large combination of elementary moves. Hence, a single column can
yield to the creation of several new columns with different reduced costs while keeping
the same basic structure of the initial route.

Algorithm 1 describes the pricing procedure. It starts from an initial set of columns
Ωinit provided as an input. Then it starts an iterative process of generating new
columns. At each iteration, columns are retrieved one by one from the current pool
of columns Ωcurr (line 7), which is initialized in the beginning by Ωinit (line 3), then
sequentially applies the pricing heuristics to generate new set of columns with negative
reduced costs (lines 8,9). At the end of each iteration, the new generated columns
in Ωtmp are grouped in a set Ωnew and the current set of columns Ωcurr (line 11)
is updated using the new set of columns Ωtmp (line 12). A hash function is used to
discard duplicates every time a generated column is added to Ωnew.

Algorithm 1: Pricing procedure

input : Initial set of columns Ωinit

output: Set of new columns Ωnew

1 Ωnew ← ∅
2 improve← True
3 Ωcurr ← Ωinit

4 while (improve) do
5 improve← False
6 Ωtmp ← ∅
7 foreach C ∈ Ωcurr do
8 improve← forwardShift(C,Ωtmp) || improve
9 improve← backwardShift(C,Ωtmp) || improve

10 if (Improve) then
11 Ωnew ← Ωnew ∪ Ωtmp

12 Ωcurr ← Ωtmp

13 end

14 end

15 end
16 return Ωnew

3.3 Creation of initial pool of columns

We present in the following a fast heuristic to generate an initial pool of routes to pop-
ulate Ωinit. The proposed approach is inspired by a rolling horizon heuristic embedded
in a well-known decision support system called ASICAM [15]. The basic idea of the
heuristic is to sequentially construct a set of truck routes while performing an allo-
cation of loads from harvest areas to mills such that supply and demand constraints
are respected. In our case, since the requests are already predetermined, the aim is

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 9

to minimize route duration, with particular interest to the minimization of queuing
times.

Fig. 2 presents a flowchart for the rolling horizon heuristic.

The algorithm receives in its input a solution composed of a set of |V | empty routes.
Also, for each pair of harvest area and mill (h,m) ∈ (H,M), the algorithm receives in
its input the set of requests Rhm. The set of the unsatisfied requests is denoted by ∆,
and it is initialized by the set of requests R.

The algorithm starts by the initialization of a roll-out T by the starting time. The
list of trucks free to satisfy new requests at instant T + δ ∗ µ, VT , is computed, then
for each subset of requests Rhm|(h,m) ∈ (H,M), the truck yielding the best insertion
according to a criterion cr1, is selected. The goal of criterion cr1 is to favor insertions
that minimizes the total duration and queuing times. It is computed as follows. Let o
be the last operation performed by truck v ∈ VT , which can be an unloading operation
or dummy departure operation, and let s′olr

and s′our be the earliest time slots going to

be assigned, respectively, to the loading and unloading operations of the corresponding
request r, let ar′

old
and ar′oud be the arrival times at loading and unloading locations of

r. cr1(v, r) is computed as follows:

cr1(v, r) =
WTvr + δ × µ

Z
× t(no, hr)

Tmax
(16)

where Tmax = max{t(i, j)|(i, j) ∈ (M,H)} denotes the duration of the longest
unloaded trip, whereas WTvr is the queuing time incurred by the the current insertion
and it is computed as:

WTvr = (es′
our

− ar′olr) + (es′
our

− ar′our) (17)

If no feasible insertion is found for all subsets Rhm|(h,m) ∈ (H,M), the algorithm
checks whether all requests in ∆ are inserted (∆ = ∅). In this case the algorithm
terminates. Otherwise, the roll-out T is incremented by δ + µ and reiterates.

In case where feasible insertions are found, the best feasible insertion for each pair
(h,m) ∈ (H,M) is selected and inserted in a candidate list. The list is sorted in non-
decreasing order using a second criterion cr2(v, r). Let us first denote by RH

h ⊂ R
the set of requests originating from harvest area h ∈ H, and RM

m the set of requests
destined to mill m ∈M . Also, we denote by fH

h the actual number of fulfilled requests
originating from harvest area h ∈ H, and fM

m the number of those destined to mill
m ∈M until the current value of T .

We also compute the route duration for each truck until the last request cv, v ∈ V .
The consumed time for each truck v ∈ V is computed as cv = fso − ev, where o is
the last operation performed by truck v ∈ V before returning to the depot. The total
consumed time for all the routes is computed as C =

∑
v∈V cv.

Hence, cr2(v, r) is computed as:

cr2(r, v) = cr1(r, v)× cng1(r, v)× cng2(r, v)× fratio(r, v)× iep(r, v) (18)

where cng1(r, v) represents a congestion parameter at mill m ∈ M , and it is
computed as :

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

10 CIRRELT-2024-07

start (T = 0)

Compute the list of available trucks VT until T + δ ∗ µ

For each set Rhm|(h,m) ∈ (H,M), find the truck v ∈ VT with the best value of cr1

Feasible
insertions

Among all sets Rhm|(h,m) ∈ (H,M), find the request with the best value of cr2

Append request r ∈ ∆ ∩Rhm to its corresponding truck and allocate time slots to olr and our ,
VT ← VT \{v}
∆← ∆\{r}

∆ = ∅

VT = ∅

T + δ ∗ µ > Z

end

Yes

No

Yes

Yes

No

T ← T + δ ∗ µ

Yes

No

No

T ← T + δ ∗ µ

Fig. 2: Diagram flow of the rolling horizon heuristic

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 11

cng1(r, v) = 1−min(0,
C

Z × |V |
× |Rmr | − fM

mr
) (19)

cng2(r, v) is a congestion parameter at harvest area h ∈ H, and it is given by:

cng2(r, v) = 1−min(0,
C × |Rhr

|
Z × |V |

− fH
hr
) (20)

fratio(r, v) is the consumed time ratio of each truck v ∈ VT :

fratio(r, v) =
max(0, fv − fso) + δ × µ

Z
(21)

iep(r, v) is used as a lower estimator for the maximum possible of requests between
(hr,mr) ∈ (H,M) to satisfy before the end of the planning horizon:

iep(r, v) =
max(0, 1

2 × f̂hrmr − (|Rhrmr | − f̂hrmr))

f̂hrmr

(22)

where f̂hm denotes the number of requests in Rhm already satisfied in the solution,
and f̂hm with wide hat notation is an upper bound on the number of requests between
h ∈ H and m ∈M that can be performed during the remaining time, and it is updated
after each insertion.

While the first criterion cr1 favors the insertion of trips incurring lesser queuing
times and unloaded travel times, the second criterion cr2 aims at ensuring regu-
lar arrivals at harvest areas and mills (cng1 and cng2). Moreover, this criterion also
favors the early insertion of trips requiring much more time to be fulfilled (thanks to
parameter fratio).

Once the best insertion according to cr2 is applied and the corresponding truck is
removed from VT , the corresponding request r ∈ ∆ is also removed. If VT is not empty,
the algorithm recomputes the next feasible insertion at the same rollout T , otherwise
the rollout is incremented by a step of δ + µ. If the new rollout reaches the planning
horizon Z, the algorithm ends. Otherwise the algorithm starts a new iteration.

To further enhance the initialization procedure, we suggest to embed the rolling
horizon heuristic inside an iterative procedure called the Adaptive Rolling Horizon
Heuristic ARH2. The goal of the ARH2 is the introduction of randomness to allow
the rolling horizon heuristic cover larger part of the search space. The basic idea is to
modify the formula of cr1 by adding two weights α and β, associated with the two
terms related to, respectively, queuing times and unloaded travel times. Hence, cr1 is
rewritten as:

crα,β1 (v, r) = (
WTvr + δ × µ

Z
)α ∗ (t(no, hr)

Tmax
)β (23)

For every combination of values of (α, β), the execution of the rolling horizon
heuristic can yield a different solution. Every modification of the weights changes
the relative importance of criterion parameters and, hence, allowing to construct
diversified solutions during the iterative process as in (Yahiaoui et al., 2023) [16].

Practically, a number of different combinations of (α,β) are generated during each
iteration. Based on an initial values of (α,β), those combinations are generated as

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

12 CIRRELT-2024-07

follows. Four combinations are generated by either increasing or decreasing the cur-
rent values of (α,β) by a step equal to 0.1, while ensuring that the values of (α, β)
within their respective intervals ([1, 2.5[, [0.5, 1.5[). A fifth combination is generated
by randomly choosing (α, β) within their respective intervals. The last combination
maintains the same value of α while β is randomly chosen inside its interval [0.5, 1.5[.
At the end of each iteration, the combination that led to the solution with the best
objective value is used as a basis for the next iteration. In the very first iteration, both
values of (α and β) are set to 1.

The total number of iterations of the ARH2 is set to the size of the fleet |V |.

3.4 General flow

We describe in the following the general flow of the mathheuristic approach. Algorithm
2 provides a pseudo code of the general approach.

Algorithm 2: Matheuristic approach

input : Set of deliveries D, Available trucks V , set of harvest areas H, set of
mills S, required number of deliveries between harvest area h ∈ H
and mill s ∈ S, number of iterations for adaptive heuristic Itermax

output: Set of new routes Solbest
1 counter ← 0
2 Ω← ∅
3 Ωinit ← ARH2(V,R)
4 negative← True
5 Ωcurr ← Ωinit

6 lpSolver ← initLP SPP1(V,R,Ω)
7 while (negative) do
8 (T∗, rc∗) ← lpSolveSPP2(Ωcurr) (See Section 2)
9 Ωnew ← PricingProcedure(T∗, rc∗) (See Section 3.2)

10 if (Ωnew ̸= ∅) then
11 Ωcurr ← Ωcurr ∪ Ωnew

12 end
13 else negative← False

14 end
15 Ω← Ω ∪ Ωcurr

16 mipSolver ← init SPP2(V,R,Ω)
17 Sbest ← mipSolver.solve()
18 return Sbest

The algorithm starts by the generation of a set of solutions using the ARH2 (line
3). Then the column generation process takes place (lines 5-19). This iterative process
starts by solving the RMP (line 8) using SPP1. The solver returns the optimal solution
for the linear relaxation which is composed of the set of columns of the basis. The
routes associated with these columns are provided to the pricing procedure (line 9) in

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 13

order to generate a new set of routes with negative reduced costs (See Section 3.2). If
at least one new route is found, they are added to the current set of routes (lines 10,11)
and the algorithm iterates. On the contrary, if no route is found, then the column
generation procedure is terminated (line 13). Finally, the set of routes produced by
the column generation process in addition to the initial set of routes are used to solve
an integer set partitioning problem using formulation (SPP2) and the best solution
found is returned (lines 16, 17). It is noteworthy to mention that during preliminary
tests, the compact formulation SPP2 proved to be faster than SPP1 when solving
the integer set partitioning.

4 Experimentation tests

We conduct experiments to assess the performance of our method. We compare our
method against the ARH2. The mathheuristic has been implemented using C++
standard library and tested using an HP Proliant DL 360 p G8, with 128 GB of
RAM and two Intel Xeon E5-2670V2 2.50 GHz, with 20 cores able to execute up to
40 threads, equipped with a Ubuntu server 22.04 LTS. We perform ten runs of the
mathheuristic based on random seeds for each instance, and we report the results of
the initialization phase performed by ARH2 and the final results after the column
generation phase. For both methods, we report for each instance, the best objective
value Obj., the average objective value Obj., the best duration Dur., the average
duration Dur., the best travel distance Dist., the average travel distance Dist., the
best queuing times QT., the average queuing times QT. and average computational
times CPU .

We propose a benchmark instances derived from two study cases provided by two
companies in forestry. The case studies contain a list of requests performed during the
year 2017. A major part of the requests are assigned to weeks. To construct instances
for each working day, we performed a pre-processing on the data to assign requests
to specific days. We used a modified version of the mathematical model presented by
Gronalt and Hirsch (2013) [9]. As a result, we elaborated 75 instances, covering 15
weeks, with 5 instances for each week. The planning horizon is set to Z = 15h for all
instances.

Travel distances and travel times are computed using Open Street Routing Machine
(OSRM) API1, which is a Modern C++ routing engine for shortest paths in road
networks.

4.1 Parameters settings

We present in this section the tuning of some parameters of the mathheuristic. We
denote by the GAP in the following sections the percentage optimality gap provided
by CPLEX solver. It is computed as

GAP =
UB − LB

UB
∗ 100, (24)

1http://project-osrm.org/

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

14 CIRRELT-2024-07

http://project-osrm.org/

where UB is the objective value of the best feasible solution found so far and LB is
the best lower bound.

4.1.1 Time limit for the integer SPP

Table 1 depicts the results obtained by the mathheuristic while varying the time budget
allocated when solving the final MIP in Algorithm 2 (line 17) at the end of the solution
process. We notice that the general performance parameters of the mathheuristic have
not been impacted when increasing the time budget from 300 seconds to 500 seconds,
except for computational times, which increased from 447 seconds for a time limit of
300 seconds up to 567.2 seconds when the time budget has a value of 500 seconds. It
noteworthy to mention that the computational times comprise the initialization of the
pool, the column generation phase, and finally the solution of the integer SPP.

The main reasons for such performance is that the vast majority of instances are
solved to optimality within 300 seconds time budget, whereas some other instances
require a substantial amount of time to find the optimal solution (greater than 500
seconds.

Table 1: Impact time limit on the perfor-
mance of the mathheuristic

Time Limit (s) 300 400 500

Dur.(h) 855.6 855.3 854.6

Cost(km) 39928.8 39909.3 39870.9

QT (h) 0.006 0.008 0.006

GAP (%) 0.659 0.626 0.542

CPU(s) 447 511.2 567.2

4.1.2 Size of the initial pool

We investigate in this section the impact of the size of solution pool on the contribution
to the overall performance of the mathheuristic. The results are presented in Table 2.
During the execution of ARH2, the constructed solutions are stored in a pool. It is the
size of this pool that is going to be investigated. The pool size of solutions is varied
from 200 to 500. At the end of ARH2, individual routes are extracted from solutions
in the pool, while avoiding duplicates (row called Cols in Table 2). Additional perfor-
mance indicators are defined. GAP denotes the overall percentage gap after solving
the integer SPP2 while including the column generation phase, whereas Imp denotes
the improvement percentage achieved thanks to the column generation compared to
solving the integer SPP2 directly based on the initial pool of routes, +Cols is the
percentage increase in the number of the columns after the column generation phase.

According to Table 2, the overall objective value decreases when increasing the
pool size. Moreover, we notice a slight increase in computational times when increasing
the pool size going from 450.8 seconds for a pool size equal 300 and up to 470.6

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 15

Table 2: Impact time limit on the perfor-
mance of the Math-heuristic

Pool size 200 300 400 500

Obj. 3063.6 3046.5 3036.9 3034.1

Cols 11526 15060 18063 18991

+Cols 28.45 20.69 18.11 16.61

Impr(%) 1.15 1.12 1.05 1.04

GAP (%) 0.62 0.61 0.61 0.62

Dur. 850.9 846.1 843.5 842.8

QT. 0.02 0.03 0.01 0.01

CPU 450.8 465.6 464.8 470.6

seconds for 500-solution pool size. This observation suggests that the performance
of the mathheuristic reaches a stability point with less than 500 solutions, especially
in terms of the number columns, for which the increase is relatively small when the
size increases from 400 to 500 solutions. We also notice that the number of columns
generated by the column generation phase decreases in percentage when increasing
the size of solutions pool, going from 28.45% for a pool size of 200 and reaching
a percentage of 16.61% when the pool size is equal to 500. On row 5 of Table 2,
the improvement achieved due to the additional columns generated by the pricing
heuristics reaches 1.15% for a pool size equal to 200, and slightly decreases when
increasing the pool size, reaching 1.04% for a pool size equal to 500. Regarding the
optimality gap, we notice that it stays stable, which means that it only depends on
the time budget (300 seconds). Regarding the performance of the general approach,
we notice that the overall average objective function decreases when increasing the
pool size decreasing from 3063 to 3034.1. The same behavior is observed on the overall
average duration, whereas the queuing times stay relatively close to 0.

4.2 Sensitivity analysis

We investigate in this section the contribution of the column generation to the
performance of the mathheuristic.

4.2.1 Sensitivity analysis of the column generation phase

We compare the results obtained by the integer SPP with and without a column
generation phase.

Table 3 presents the overall performance parameters of both configurations. The
column generation phase enriched the pool of columns by an overall of 12070−8953 =
3117 additional column, that is 34.81% of the initial pool size, while consuming less
computational times (447 seconds against 481.1 seconds) when solving the integer
SPP. Regarding the gap to best, has also been improved from 0.86% down to 0.66%.
In details, we notice that solving the integer SPP after the column generation phase
has improved the overall duration, recording a decrease from 864.1 hours to 855.6
hours. Queuing times also has been slightly improved, from an overall of 0.177 hours

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

16 CIRRELT-2024-07

Table 3: Contribution of the
CG compared to integer SPP2
(Time limit = 300s)

Method no− CG CG

Dur.(h) 864.1 855.6

Dist.(km) 40440.8 39928.8

QT (h) 0.177 0.006

GAP (%) 0.861 0.659

NbCols 8953 12070

CPU(s) 482.1 447

to 0.006 hours. The overall travel distance has also been improved from 40440.8 km
to 39928.8 km.

4.2.2 Extended formulation vs. compact formulation

We compare the contribution of the initial formulation SPP1 against the compact
formulation SPP2 during the column generation phase when solving the relaxation.
It is noteworthy to mention that in both cases, the compact formulation SPP2 is used
at the end to solve the integer set partitioning. Table 4 compares the performance
measures of the matheuristic when using each of the two formulations.

Table 4: Contribution of the
CG when using the extended
formulation

Formulation SPP1 SPP2

Obj. 3064 3087

ImprGAP. 1.15 0.47

Dur. 851 857

QT. 0.02 0.19

Cols 11526 11899

+Cols 35.31 39.61

GAP 0.62 0.86

CPU 451 486

Generating of new columns based on SPP1 yielded the best overall objective value,
3064 against 3087 when using SPP2, that is an improvement of 1.15% thanks to
SPP1 against only 0.47% achieved by SPP2. This improvement is observed mainly
on the overall average duration, 851 hours by the extended formulation against 857
hours achieved by the SPP2. Regarding the queuing times, the value is close to 0 for
both cases, with a slight advantage to the SPP1. The increase in the size of the pool
was relatively higher in the case of the compact formulation, that is 39.61% for SPP2

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 17

against 35.31% of SPP1. However, the SPP1 achieved better optimality gap com-
pared to the compact one, 0.62% against 0.86%, while requiring shorter computational
times, 451 seconds on overall against 486 seconds for the compact formulation. As a
result, the use of an extended formulation (SPP1) in the column generation proves
to be more efficient than using the compact one (SPP2). This can be justified by the
fact that the dual problem of SPP1 provides a better and detailed information about
dual costs, which allows to achieve an efficient column generation process.

4.3 Computational tests

We provide in this section a detailed comparison between the best solution obtained
by the ARH2 during the initialization phase and the final solution obtained when
solving the integer SPP at the end of Algorithm 2. Table 5 presents the obtained
results of both methods reported for each benchmark instance. Table 5 depicts the list
of instances along with their number of trucks and number of requests to be performed
in columns (1-3), respectively.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

18 CIRRELT-2024-07

Table 5: Summary of results of adaptive rolling horizon heuristic and mathheuristic

Instance ARH2 mathheuristic

Name |V | |R| Obj. Obj. Dur. Dur. QT QT CPU Obj. Obj. Dur. Dur. QT QT CPU

W2 − D1 75 202 3900 10943 1069.3 1075.8 0.33 1.93 185.3 3312 3325 920 43447.8 0 0 321.1
W2 − D2 75 203 3805 3874 1053.7 1065.1 0 1.10 267.3 3191 3202 886.3 41438.1 0 0 539.8
W2 − D3 75 203 3822 11913 1057.3 1068.6 0.33 1.83 260.6 3238 3242 899.3 42392.4 0 0 436.3
W2 − D4 75 203 3890 5928 1061.7 1069 0.67 2.20 247.1 3254 3271 904 41992.4 0 0 473.6
W2 − D5 80 203 4004 4031 1105.7 1111.9 0.33 0.77 330 3264 3281 906.7 42763.9 0 0 621

3884 7338 1069.5 1078.1 0.33 1.57 258.1 3252 3264 903.3 42406.9 0 0 478.3
W3 − D1 60 183 3151 3204 855.3 862.1 2 2.80 125.1 2700 2735 750 34175.5 0 0 422.5
W3 − D2 60 182 2977 2992 821.3 829.2 0 0.20 123.1 2572 2587 714.3 32181 0 0 421.3
W3 − D3 60 182 3030 3046 836 842.6 0 0.37 124.6 2610 2630 725 32741.8 0 0 402.8
W3 − D4 55 182 2944 3983 794.3 800.9 1 2.77 103.3 2527 2557 702 31530.2 0 0.03 409.2
W3 − D5 55 182 2899 10904 787.3 792.2 0.33 1.43 112.1 2556 2578 710 31996.2 0 0 409.6

3000 4826 818.9 825.4 0.67 1.51 117.7 2593 2617 720.3 32524.9 0 0.01 413.1
W4 − D1 75 198 13888 17999 1040 1051.5 2 5.93 238.7 3214 3224 892.7 41641.7 0 0 303.4
W4 − D2 75 197 3718 3762 1029 1039.2 0 0.57 259 3086 3097 857.3 39208 0 0 548.2
W4 − D3 75 198 3728 3757 1032.7 1036.9 0 0.67 245.7 3160 3169 877.7 40263 0 0 547.2
W4 − D4 75 198 3716 3735 1024.7 1031.4 0 0.60 253.8 3088 3098 857.7 39457.9 0 0 523.6
W4 − D5 75 197 3652 3680 1012.3 1019.1 0 0.30 251.9 2994 3010 831.7 38146.4 0 0 533.5

5740 6586 1027.7 1035.6 0.40 1.61 249.8 3108 3119 863.4 39743.4 0 0 491.2
W5 − D1 70 195 3532 3557 971 979.8 0.33 0.83 194.8 2869 2884 797 35869.7 0 0 488.1
W5 − D2 70 194 3506 3517 965 970.7 0 0.63 205.7 2815 2836 782 34835.1 0 0 503.3
W5 − D3 70 195 3535 3576 978.7 987.2 0 0.60 185.8 2845 2874 790.3 35439.8 0 0 487
W5 − D4 70 194 3528 3558 980 984.1 0 0.43 193.1 2882 2899 800.7 35604.9 0 0 496.2
W5 − D5 75 195 3694 3736 1020 1032.7 0 0.50 225.7 3007 3018 835.3 38024.8 0 0 494

3559 3589 982.9 990.9 0.07 0.60 201 2884 2902 801.1 35954.9 0 0 493.7
W6 − D1 75 203 3731 3749 1028.7 1031 0.33 1.03 236.4 3116 3127 865.7 40356.5 0 0 477.4
W6 − D2 75 203 3851 3969 1053 1062.9 1.67 3.97 226.1 3233 3241 898 42203 0 0 375.9
W6 − D3 70 203 3534 3563 966.3 972.2 1 1.77 215.6 2980 3022 827.7 37810 0 0 519.7
W6 − D4 70 203 3605 3667 976 987.9 1.33 3.07 211.3 3037 3060 843.7 38572.5 0 0 515.4
W6 − D5 70 203 3644 3709 994 1001 1.33 2.93 217.4 3089 3111 858 39842.7 0 0 508.7

3673 3731 1003.6 1011 1.13 2.55 221.4 3091 3113 858.6 39756.9 0 0 479.4
W7 − D1 75 215 3850 3916 1053.3 1062.7 1 2.50 209.2 3324 3342 923.3 43751.4 0 0 579.2
W7 − D2 80 216 4278 11268 1127.7 1137.6 1.67 4.80 294.5 3566 3592 990.7 46855.2 0 0 589
W7 − D3 85 216 4387 4480 1171.7 1183.2 3.33 6.13 320.4 3716 3736 1032.3 50079.1 0 0 551.1
W7 − D4 80 215 3928 3971 1084.3 1093.4 0.33 0.97 283.6 3433 3447 953.7 45080.6 0 0 440.6
W7 − D5 75 215 3794 3814 1040.7 1051.5 0.33 0.80 275.4 3244 3273 901 43062.7 0 0 579.4

4047 5490 1095.5 1105.7 1.33 3.04 276.6 3457 3478 960.2 45765.8 0 0 547.9
W8 − D1 105 239 16266 23585 1407 1426.9 21.33 40.23 594.3 4334 4372 1204 59877.2 0 0.03 948.3
W8 − D2 120 238 9446 15349 1543.7 1564 78.33 103.30 840.8 4627 4704 1285.3 65847.2 0 0.33 1172
W8 − D3 90 238 4639 4678 1267.3 1274.4 1.67 2.50 487.9 3734 3766 1037.3 50897.5 0 0 779.2
W8 − D4 90 238 4804 12760 1283 1288.2 0.67 3.40 429.9 3836 3855 1065.7 51065.2 0 0 748.5
W8 − D5 90 238 4789 6797 1281 1289.7 0.67 4.27 522.8 3878 3929 1077.3 54810.5 0 0.03 812

7989 12634 1356.4 1368.6 20.53 30.74 575.1 4082 4125 1133.9 56499.5 0 0.08 892
W10 − D1 80 198 3918 3957 1088 1096 0 0.33 263.9 3427 3433 952 46441.2 0 0 285.6
W10 − D2 80 198 4379 11289 1118 1124.7 4.33 6.67 239.9 3521 3529 978 47356.3 0 0 318.9
W10 − D3 70 198 3545 3608 978 983.9 0.67 1.83 212.7 3079 3089 855.3 40440.2 0 0 506
W10 − D4 75 198 3809 3893 1044.7 1057.3 1.33 2.40 241.9 3342 3352 928.3 45443.6 0 0 487.7
W10 − D5 80 199 5654 15687 1132.3 1139 38.67 44.07 235.9 3548 3561 985.7 47171.4 0 0 397.5

4261 7687 1072.2 1080.2 9 11.06 238.9 3384 3393 939.9 45370.5 0 0 399.1
W11 − D1 70 174 3664 3708 935.3 942 8 8.80 156.4 2892 2901 803.3 37521 0 0 157.5
W11 − D2 60 173 3144 3177 842.3 850.4 1.67 3.20 127 2491 2498 692 31558.8 0 0 204.1
W11 − D3 55 172 2800 2825 770.3 776.8 0 0.80 106.3 2378 2405 660.7 30500.5 0 0 411.6
W11 − D4 55 172 2935 6094 787 795.8 2 6.37 98 2437 2455 677 30408.7 0 0 405.7
W11 − D5 60 172 2984 2998 822.7 827.2 0.33 0.57 132.8 2422 2433 672.7 30519.9 0 0 328.2

3105 3760 831.5 838.4 2.40 3.95 124.1 2524 2538 701.1 32101.8 0 0 301.4
continued on next page

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 19

Table 5 – continued from previous page

Instance ARH2 mathheuristic

Name |V | |R| Obj. Obj. Dur. Dur. QT QT CPU Obj. Obj. Dur. Dur. QT QT CPU

W22 − D1 75 193 3784 3806 1033.7 1042.3 0.67 1.50 217.6 3302 3309 917.3 45436 0 0 316.8
W22 − D2 75 192 3715 3757 1028.7 1038.9 0 0.47 245.8 3277 3287 910.3 45018.7 0 0 369.1
W22 − D3 75 192 3737 3782 1034.7 1045.9 0 0.47 240.9 3282 3294 911.7 44407 0 0 290.1
W22 − D4 75 192 3803 3827 1044 1050.7 0.33 1.23 193.1 3298 3304 916 45227.9 0 0 444.5
W22 − D5 75 192 3725 3745 1028 1034.9 0 0.53 234 3242 3252 900.7 44599.3 0 0 428.7

3753 3783 1033.8 1042.5 0.20 0.84 226.3 3280 3289 911.2 44937.8 0 0 369.8
W23 − D1 65 178 3316 3346 921 925.7 0 0.37 137.9 2773 2778 770.3 35932.9 0 0 212.4
W23 − D2 70 178 3444 3473 950 959.3 0 0.53 166.7 2879 2893 799.7 37978.5 0 0 178.4
W23 − D3 65 179 3330 3357 906.3 913.1 1 1.93 139.1 2740 2760 761 34726.8 0 0 153.2
W23 − D4 65 179 3464 6532 924 931.1 3 5 148.5 2855 2862 793 36536.2 0 0 161.9
W23 − D5 65 178 3264 3280 903.7 909.4 0 0.17 152.5 2693 2711 748 34547.3 0 0 413.4

3364 3997 921 927.7 0.80 1.60 148.9 2788 2801 774.4 35944.3 0 0 223.8
W24 − D1 65 205 3400 3421 928.3 934.7 0.67 1.57 143.9 2887 2907 802 35452.8 0 0 393.9
W24 − D2 75 206 3979 4059 1028 1041.1 6 8.63 222.4 3152 3178 875.7 40079.4 0 0 317.9
W24 − D3 70 205 3546 3577 971.7 981.2 0.33 1.23 209.3 3000 3010 833.3 37706.8 0 0 260.3
W24 − D4 65 205 3343 3390 926 932.8 0 0.90 149.2 2897 2916 804.7 36889.8 0 0 432
W24 − D5 65 205 3312 3319 913.7 919.3 0 0.27 175.4 2947 3038 818.7 40500.6 0 0.03 452.6

3516 3553 953.5 961.8 1.40 2.52 180 2977 3010 826.9 38125.9 0 0.01 371.3
W28 − D1 60 169 3149 10128 849.7 858.9 0 1 118.8 2681 2692 744.7 34947.7 0 0 368
W28 − D2 60 170 3017 3034 835.7 839.9 0 0.30 114.1 2656 2664 737.7 34535 0 0 272.9
W28 − D3 60 169 2935 2942 813.7 816.9 0 0.03 105.5 2599 2610 722 33752.6 0 0 249.4
W28 − D4 55 169 2784 2814 773.3 780.1 0 0.17 86.7 2456 2467 682.3 31209.2 0 0 374.3
W28 − D5 55 169 2792 2807 775.7 778.8 0 0.10 85.2 2425 2445 673.7 30502.9 0 0 391.1

2935 4345 809.6 814.9 0 0.32 102.1 2563 2576 712.1 32989.5 0 0 331.1
W38 − D1 70 201 3773 3816 991.3 1004.8 4 5.53 205.1 3036 3058 843.3 39365 0 0 443.7
W38 − D2 70 201 3697 3782 994.7 1001.1 2.67 4.93 184 2951 2967 819.7 37957.8 0 0 491.5
W38 − D3 70 201 3704 3793 993 1001.3 3.33 5.23 180 2951 2964 819.7 37151.8 0 0 310.7
W38 − D4 70 201 3770 3870 999.7 1007.2 3.67 6.77 187 3004 3025 834.3 38951.4 0 0.03 492.3
W38 − D5 70 201 3572 3601 987 995 0 0.53 200.5 2963 3005 823 38543.6 0 0 507.1

3703 3772 993.1 1001.9 2.73 4.60 191.3 2981 3004 828 38393.9 0 0.01 449.1
W39 − D1 80 194 3862 3887 1060 1069.8 0.33 1 296.4 3334 3346 926 44831.7 0 0 301.7
W39 − D2 65 193 3425 11452 924.3 932.5 0.67 2.63 159.3 2930 2939 814 37839.4 0 0 479.3
W39 − D3 70 193 3420 3439 949.3 952.4 0 0.30 192.4 2968 2978 824.3 38865.5 0 0 451.9
W39 − D4 60 193 3088 3104 847.7 856.3 0 0.60 157.4 2690 2716 747.3 33437.5 0 0 461
W39 − D5 65 193 3304 3314 910 914.3 0 0.63 175.6 2874 2898 798.3 37737.4 0 0 485.7

3420 5039 938.3 945.1 0.20 1.03 196.2 2959 2975 822 38542.3 0 0 435.9

Mean 3997 5342 993.8 1001.9 2.75 4.50 220.5 3062 3080 850.4 39937.2 0 0.01 445.2

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

20 CIRRELT-2024-07

Based on Table 5, the mathheuristic succeeded to improve the objective value and
the overage objective value of all instances compared to the best solution obtained
by ARH2 during initialization phase, with an improvement of 23.39% of the over-
all best objective value, and 42.34% improvement of the overall average objective
value. The same observation is valid when comparing the total duration, for which the
mathheuristic recorded an improvement of 14.43% compared to ARH2 (850.4 hours
against 993.8 hours for ARH2). This is justified by the fact that ARH2 succeeded
to cover a large set of diversified routes, which allowed the SPP2 afterwards to sub-
stantially improve the best solution, with further improvement achieved after column
generation (See Section 4.2.1). Interestingly, the mathheuristic succeeded to almost
eliminate queuing times on all instances, achieving 0 hour overall best queuing times,
and 0.01 hours on average overall. Even for some instances such as W8−D1, W8−D2,
W10−D5, W11−D1, where the queuing times achieved by the ARH2 are substan-
tial (21.33 hours, 78.33 hours, 38.67 hours, and 8 hours respectively), the matheuristic
achieved 0 queuing times. Regarding computational times, the overall budget time
consumed by the column generation and the integer SPP is 445.2 − 220.5 = 224.7
seconds, while imposing a time limit when solving the the integer SPP to 300 seconds.

4.4 Impact of time slot width on overall results

We investigate in this section the impact of varying the width of the time slots on the
overall performance of the mathheuristic. As explained in the description section 2,
the duration of loading and unloading operations is expressed as an integer multiplier
µ of the width of time slots δ. We conducted experiments where we vary the δ, and
consequently µ, while ensuring that µ × δ is always equal to the average duration of
loading/unloading operations, that is, 1200 seconds.

Table 6: Impact of time slot varia-
tions on the overall results

60 300 600 1200

Dur. 855.3 863.9 860.1 866.7

QT. 2.06 1.29 0.27 0

Idle 2.97 14.79 30.57 59.2

GAP 2.72 2.31 1.10 0.08

CPU 2982 2448 1987 745

Table 6 summarizes the obtained results. We vary the δ from 60 seconds to 1200
seconds. We allocated 2000 seconds to solve the integer SPP . We observe that the
total duration increases when increasing the width of time slots going from 855.3 hours
up to 866.7 hours. However, queuing times decrease when the width of time slots
decreases, from 2.06 when δ = 60 seconds hours to almost 0 hours when δ = 1200
seconds. In the same time, idle times evolve from an average of 2.72 hours and reaches
up to 59.2 hours. The reduction of idle times is a direct consequence of reducing the
width of time slots, and also part of this idle time is captured by queuing times, which

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 21

explains the increase in queuing times when reducing the width of time slots. We
also notice that the overall gap to optimality increases when reducing the width of
time slots, reaching up to 2.72% when δ = 60 seconds, whereas it has only a value of
0.08% when δ = 1200 seconds. Computational times also substantially increase when
reducing the width of time slots, going from 745 seconds when δ = 1200 seconds, and
reach up to 2982 seconds when reducing the width of time slots to δ = 60 seconds.

5 Conclusion and perspective

We presented in this paper a mathheuristic approach to solve the TTVRPQ. The
results showed that combining a rolling horizon heuristic and a column generation
based post-optimization phase can yield very good results. Moreover, the use of fast
heuristics instead a ESPPRC during the pricing problem in column generation proved
to efficient, first by finding new columns with negative reduced costs, and second, by
providing a multitude of new columns (not only the columns with the best reduced
costs), which appears to be more suitable to our approach, since we only solve the col-
umn generation in the root node, as part of a sub-optimal branch-and-price approach.
In addition to its ease of implementation, the proposed approach can be generalized
to a large number of vehicle routing problems with queuing considerations. Experi-
mental tests showed that the proposed approach achieved a major goal when tackling
the TTVRPQ, that is zero queuing times, and succeeded to minimize total duration
of routes. We investigated in the computational tests several aspects of the solu-
tion approach, mainly the contribution of the column generation phase to the overall
results, and we compared the use of an extended formulation against a compact one.
Then, we compared the results obtained by the matheuristic approach and those
obtained by a rolling horizon heuristic inspired from the literature.

Aknowledgement

The authors would like to thank the FORAC research consortium (Université Laval)
for funding this research.

References

[1] Jean-François Audy, Mikael Rönnqvist, Sophie D’Amours, and Ala-Eddine
Yahiaoui. Planning methods and decision support systems in vehicle routing
problems for timber transportation: a review. International Journal of Forest
Engineering, pages 1–25, 2022.

[2] Jean-François Audy, Nizar El Hachemi, Laurent Michel, and Louis-Martin
Rousseau. Solving a combined routing and scheduling problem in forestry. In
International Conference on Industrial Engineering and Systems Management,
May, pages 25–27, 2011.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

22 CIRRELT-2024-07

[3] Maximiliano Ramon Bordon, Jorge Marcelo Montagna, and Gabriela Corsano.
Mixed integer linear programming approaches for solving the raw material
allocation, routing and scheduling problems in the forest industry. 2020.

[4] Dick Carlsson and Mikael Rönnqvist. Backhauling in forest transportation:
models, methods, and practical usage. Canadian Journal of Forest Research,
37(12):2612–2623, 2007.

[5] Nizar El Hachemi, Issmail El Hallaoui, Michel Gendreau, and Louis-Martin
Rousseau. Flow-based integer linear programs to solve the weekly log-truck
scheduling problem. Annals of Operations Research, 232(1):87–97, 2015.

[6] Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau. A hybrid con-
straint programming approach to the log-truck scheduling problem. Annals of
Operations Research, 184(1):163–178, 2011.

[7] Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau. A heuristic to
solve the synchronized log-truck scheduling problem. Computers & Operations
Research, 40(3):666–673, 2013.

[8] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the
cutting-stock problem. Operations research, 9(6):849–859, 1961.

[9] Patrick Hirsch and Manfred Gronalt. The timber transport order smoothing
problem as part of the three-stage planning approach for round timber transport.
Journal of Applied Operational Research, 5(2):70–81, 2013.

[10] Gerard AP Kindervater and Martin WP Savelsbergh. 10. vehicle routing: han-
dling edge exchanges. In Local search in combinatorial optimization, pages
337–360. Princeton University Press, 2018.

[11] Krishna Teja Malladi and Taraneh Sowlati. Optimization of operational level
transportation planning in forestry: a review. International Journal of Forest
Engineering, 28(3):198–210, 2017.

[12] Myrna Palmgren, Mikael Rönnqvist, and Peter Värbrand. A near-exact method
for solving the log-truck scheduling problem. International Transactions in
Operational Research, 11(4):447–464, 2004.

[13] Pablo A Rey, Juan Andrés Muñoz, and Andrés Weintraub. A column genera-
tion model for truck routing in the chilean forest industry. INFOR: Information
Systems and Operational Research, 47(3):215–221, 2009.

[14] Gregory Rix, Louis-Martin Rousseau, and Gilles Pesant. A column generation
algorithm for tactical timber transportation planning. Journal of the Operational
Research Society, 66(2):278–287, 2015.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

CIRRELT-2024-07 23

[15] Andres Weintraub, Rafael Epstein, Ramiro Morales, Jorge Seron, and Pier
Traverso. A truck scheduling system improves efficiency in the forest industries.
Interfaces, 26(4):1–12, 1996.

[16] Ala-Eddine Yahiaoui, Aziz Moukrim, and Mehdi Serairi. Grasp-ils and set
cover hybrid heuristic for the synchronized team orienteering problem with time
windows. International Transactions in Operational Research, 30(2):946–969,
2023.

A Mathheuristic Approach for the Vehicle Routing Problem with Queuing Considerations

24 CIRRELT-2024-07

	Introduction
	Problem description and mathematical formulation
	Column generation based approach
	Pricing problem
	Forward shift operator
	Backward shift operator

	pricing procedure
	Creation of initial pool of columns
	General flow

	Experimentation tests
	Parameters settings
	Time limit for the integer SPP
	Size of the initial pool

	Sensitivity analysis
	Sensitivity analysis of the column generation phase
	Extended formulation vs. compact formulation

	Computational tests
	Impact of time slot width on overall results

	Conclusion and perspective
	CIRRELT-2024-07-abstract.pdf
	Bibliothèque et Archives Canada, 2024

