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Abstract. Dial-a-ride problems aim to design a least-cost door-to-door vehicle routes for 
transporting individual persons, subject to several service constraints like time windows, 
service and route durations, and ride-time. In some cases, providers cannot meet the 
demand and may outsource some requests. In this paper, we introduce, model, and solve 
the dial-a-ride problem with private fleet and common carrier (DARP-PFCC) that makes it 
possible to transfer the demand unmet by the provider to mobility-on-demand services and 
taxis. We design a branch-and-cut (B&C) algorithm to solve the DARP-PFCC exactly, and 
we develop a near parameter-free parallel metaheuristic to handle large instances. Our 
metaheuristic combines the Biased Random-key Genetic Algorithm (BRKGA) and the Q-
learning (QL) method into the same framework (BRKGA-QL). Both algorithms are flexible 
enough to solve the classical DARP, and extensive computational experiments demonstrate 
the efficiency of our methods. For the DARP instances, our B&C proved optimality for 41 of 
the 42 instances tested in a reasonable computational time, and the BRKGA-QL found the 
best-known solution for these instances within a matter of seconds. In the DARP-PFCC 
experiments, both B&C and BRKGA-QL proved to be very efficient. We also derive some 
managerial analyses to assess the effects of the COVID-19 pandemic on shared 
transportation. Finally, we present the results for a real case study, where BRKGA-QL 
solves very large problem instances. The results point to the benefits of combining the 
private fleet and common carriers in dial-a-ride problems, both for the provider and for the 
users. 
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1. Introduction

Urban mobility is one of the most important contemporary challenges. Although technological development

allows new transportation options, elderly and disabled people have a specific demand due to their physical

and mobility needs. These users require more responsive and flexible means, mainly door-to-door, besides

imposing quality of service constraints, like duration, time window, and ride-time. On the other hand,

transportation providers seek to offer an efficient service, which implies designing shared-ride vehicle routes

with additional operational constraints such as capacity, pairing, and precedence. Historically, this has been

solved as a dial-a-ride problem (DARP) [9], and several heuristics [4, 10, 12, 22, 23, 24] and exact algorithms

[3, 8, 31, 34, 35] have been proposed to solve its standard version and variants. For a deeper review and

recent developments we refer to Ho et al. [19].

However, the increasing number of users over time has given rise to more significant concerns with respect

to the service level offered [27]. Furthermore, the COVID-19 pandemic imposed a sharp capacity reduction

in shared transportation systems to maintain a safe distance between passengers. To meet this new arrange-

ment, providers end up resorting to more expensive means such as taxis and mobility-on-demand (MoD)

services like Uber and Lyft.

In the freight transportation industry, the combination of an owned private fleet with extra vehicles is already

considered within the scope of the vehicle routing problem (VRP) [11, 14]. Here, a common carrier serves

as an outsourced transportation capacity that can be used on-demand. However, the human aspect in the

DARP makes this fleet integration more complicated because it imposes different requirements than in a

VRP. In addition, these routes transporting packages need to consider pairing, precedence, time window,

and ride-time limits. These requirements are even more critical when dealing with users, especially those

with restricted mobility as is the case of the elderly and the differently-abled.

In the passenger segment, the integration of modes involves, in most studies, some links with public transport.

Nonetheless, the level of integration is different from the VRP with common carrier perspective since public

transport can only be used on some legs, with no complete outsourcing of requests. In Posada et al. [30] an

integrated DARP (IDARP) is considered where the intermediate legs of the trip are performed with regular

buses, according to their timetables, while the first and last legs are performed by the private fleet. The

authors compare two different models, but no dedicated algorithm was designed for the problem. Steiner and

Irnich [40] propose a network planning optimization model for general users, where MoD services make the

first and last legs while an existing public line performs intermediate ones. The problem takes into account

a specific service-level requirement in terms of travel time. A branch-and-price algorithm was designed to

solve the problem, and medium-sized instances with up to 20 bus lines were evaluated. A similar problem
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was studied by Narayan et al. [26], differing in that flexible public transport can be used to perform any part

of the trip. The paper captures dynamic aspects of the demand, and an agent-based simulation framework

was proposed to solve a real scenario in Amsterdam, the Netherlands. More recently, Molenbruch et al. [25]

propose a large neighborhood search-based algorithm to solve an IDARP with synchronization for rural areas

and evaluated the method on an artificial data-set with realistic features. The algorithm also succeeded in

solving related problems from the literature.

With the challenges imposed by the pandemic, the use of the maximum capacity of a vehicle is no longer

ideal, given the need for the distance between passengers. In this sense, using extra vehicles from common

carriers, observing the total service costs, is safer for users and drivers, besides enabling more efficient routes

by combining them with the private fleet. To the best of our knowledge, no method explores the benefits of

full modal integration in this new context of the problem.

In order to fill this gap, we optimize shared transportation services for door-to-door requests, satisfying

operational and quality of service constraints when a provider can use a common carrier besides their own

private fleet. Motivated by a real case, we introduce the dial-a-ride problem with private fleet and common

carrier (DARP-PFCC), and propose a branch-and-cut (B&C) algorithm to solve it exactly. Due to its

combinatorial aspect, we also design an efficient near parameter-free metaheuristic to handle more realistic

instances of the DARP-PFCC. Our method is adapted from Chaves and Lorena [5] and combines a Biased

Random-key Genetic Algorithm (BRKGA) with a Q-Learning (QL) algorithm (BRKGA-QL) within a new

parallel framework. Since Gonçalves and Resende [15] proposed it, BRKGA has been successfully applied

to a range of combinatorial optimization problems, such as container loading [16], project scheduling [18],

parallel machine scheduling [6], facility layout [17], and vehicle routing [21]. However, whereas metaheuristics

are strongly dependent on the problem at hand, the parameter setting is a complex and crucial step in their

performance. In this sense, BRKGA-QL aims to release BRKGA from its parameter tuning phase.

The scientific contributions of this paper are:

1. We introduce a new DARP variant by combining private fleet and common carriers, and this approach

is beneficial both for users who are served more quickly, safely, and comfortably, and for providers who

can exploit a combined fleet to reduce their costs.

2. We design an improvement for the BRKGA-QL, exploiting the local search and the evolutionary

processes in parallel.

3. We assess the performance of our algorithms, which are flexible enough to solve the standard DARP,

on the classical instances of Cordeau [8] and Ropke et al. [35].

4. We propose a new instance set for the DARP-PFCC, and then analyze new operational constraints

with different cost structures.

2

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



5. We solve real-case scenarios in the context of the DARP-PFCC through our metaheuristic and derive

many managerial insights, both with respect to cost and service level.

6. The new instances are made publicly available.

The remainder of the paper is organized as follows. Section 2 formally describes the problem and provides a

mixed-integer linear programming (MILP) formulation for the DARP-PFCC, and several valid inequalities

are discussed in Section 3. The B&C algorithm is presented in Section 4, and we detail our BRKGA-QL

and explain it new features in Section 5. In Section 6, we discuss the results of extensive computational

experiments performed to assess the quality of the algorithms, and several managerial insights are derived

based on the results. Section 7 presents our conclusions and directions for future works.

2. Problem definition and mathematical model

Based on the Ropke et al. [35], we define the DARP-PFCC as follows. Let n denote the number of transporta-

tion requests to be satisfied, and G = (N ,A) be a directed graph. The node set is N = {0, ..., 2n+ 1}, where

0 and 2n+1 are the origin and destination depot nodes, while subsets P = {1, ..., n} and D = {n+ 1, ..., 2n}

are the sets of pickup and delivery nodes, respectively. The arc set is A, where each arc (i, j) ∈ A has a

routing cost/distance cij and a travel time tij , both respecting the triangle inequality.

Each request i is known a priori and is associated with a ride-time limit Li, a pickup origin i ∈ P, and a

delivery destination j ∈ D, j = n + i. Each node i ∈ N has a demand qi, a service duration di, and a time

window [ei, li] where ei and li define the earliest and the latest times to serve i. Time windows can also be

imposed on delivery nodes. For the depot, time windows define the earliest and latest times a vehicle must

depart [e0, l0] and return [e2n+1, l2n+1]. The following parameters are used: d0 = d2n+1 = 0, q0 = q2n+1 = 0,

and qi ≥ 0, qi = −qj , i ∈ P, j ∈ D, j = n+ i.

A limited private (owned) fleet of m homogeneous vehicles with capacity Q is available at the origin depot.

As a novel approach in the DARP, transportation providers manage all requests and decide if extra vehicles

from a common carrier should also serve users. We consider an unlimited and heterogeneous fleet, with

enough capacity to satisfy any request directly from node i to n+ i, i.e., a direct pickup and delivery route.

When a request i is serviced by a common carrier, a fixed cost fi and a variable cost vi are charged, so the

associated extra cost is given by fi + vi(ci,n+i).

Let S be the set of all node subsets S ⊆ N , in which 0 ∈ S, 2n + 1 ̸∈ S, and at least one node i ∈ P

with i ̸∈ S and n + i ∈ S. The total demand for a subset S ⊆ N is given by q(S) =
∑

i∈S |qi|, so that

a lower bound on the number of times vehicles must enter and leave S in order to serve all their nodes is
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max {1, ⌈q(S)/Q⌉}. Finally, let R the set of infeasible paths with respect to route duration, time windows,

and ride-times, and let A(R) represent all arcs (i, j) of R ∈ R. The decision variables are:

• Xij = 1 if a vehicle from the private fleet travels directly from i to j, with (i, j) ∈ A, 0 otherwise.

• Yi = 1 if node i is served by a common carrier vehicle which travels directly from i ∈ P to n + i, 0

otherwise. Equivalently, Yj , j ∈ D, j = n+ i are the auxiliary variables associated with Yi.

The DARP-PFCC can be formulated by (1)−(11):

min
∑

(i,j)∈A

cijXij +
∑
i∈P

[fi + vi(ci,n+i)]Yi (1)

subject to

∑
j∈N

X0j ≤ m (2)

∑
i∈N

Xi,2n+1 ≤ m (3)

∑
i∈N

Xij + Yj = 1 j ∈ P ∪ D (4)

∑
j∈N

Xij + Yi = 1 i ∈ P ∪ D (5)

Yi = Yn+i i ∈ P (6)∑
i,j∈S

Xij ≤ |S| − 2 S ∈ S (7)

∑
i,j∈S

Xij ≤ |S| −max {1, ⌈|q(S)|/Q⌉} S ⊆ P ∪ D, |S| ≥ 2 (8)

∑
(i,j)∈A(R)

Xij ≤ |A(R)| − 1 R ∈ R (9)

Xij ∈ {0, 1} (i, j) ∈ A (10)

Yi ∈ {0, 1} i ∈ P ∪ D. (11)

The objective function (1) minimizes the sum of private fleet and common carrier routing costs. Constraints

(2) and (3) limit the number of private vehicles used. Constraints (4) and (5) ensure that each node is

visited exactly once. Constraints (6) guarantee that if a user is picked up by a common carrier, the delivery

4

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



is performed by it, while (7) impose precedence constraints, i.e., a pickup node i ∈ P is visited before its

corresponding delivery node j = n+ i, j ∈ D, and both are served by the same vehicle (see [36]). Rounded

capacity constraints are defined by (8) and infeasible paths are eliminated with constraints (9). Finally,

constraints (10) and (11) define the variables domain.

Considering the set of infeasible paths R, Ropke et al. [35] present an improved formulation to eliminate

them. For an infeasible path R = (k1, ..., kr), constraint (9) can be strengthened based on the tournament

constraints of Ascheuer et al. [1] and directly extended to the DARP-PFCC as follows:

r−1∑
i=1

r∑
j=i+1

Xki,kj
≤ |A(R)| − 1. (12)

Now consider a path R = (i, k1, ..., kr, n + i) connecting nodes i and n + i, and violating time window or

ride-time constraints for these nodes. Because the triangular inequality is respected, R can be removed by

imposing constraint (13):

Xi,k1 +

r−1∑
h=1

Xkh,kh+1
+Xkr,n+i ≤ |A(R)| − 2. (13)

Finally, if both R = (k1, ..., kr) and its reverse path R′ = (kr, ..., k1) are infeasible, then (14) is valid:

r−1∑
i=1

(Xki,ki+1 +Xki+1,ki) ≤ r − 1. (14)

3. Valid inequalities

Cordeau [8] and Ropke et al. [35] present a set of valid inequalities for the DARP that can be easily

extended to the DARP-PFCC. They are subtour elimination constraints (SEC), generalized order constraints

(GOC), strengthened infeasible path constraints (SIPC), and fork constraints (FC). These inequalities are

not required to define a feasible solution but help provide tighter lower bounds for the problem. The following

suitable notation is employed:

• X(S) =
∑

i,j∈S Xij is the sum of the arcs between all nodes in S

• S = S\N is the complementary set of S ⊆ N

• N(R) is the set of nodes of path R.
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3.1. Subtour elimination constraints

Cordeau [8] employs precedence constraints for i and n+ i to lift classical SEC for the DARP. In this sense,

the author defines π(S) = {i ∈ P : n + i ∈ S} and σ(S) = {n + i ∈ D : i ∈ S} as the predecessors and

successors, respectively, for any subset S ⊆ P ∪ D. Then, the following inequalities are introduced:

X(S) +
∑

i∈S∩σ(S)

∑
j∈S

Xij +
∑

i∈S\σ(S)

∑
j∈S∩σ(S)

Xij ≤ |S| − 1 (15)

X(S) +
∑
i∈S

∑
j∈S∩π(S)

Xij +
∑

i∈S∩π(S)

∑
j∈S\π(S)

Xij ≤ |S| − 1. (16)

3.2. Generalized order constraints

Ruland and Rodin [36] introduced this inequality for the pickup and delivery problem (PDP), which can

also be extended for the DARP-PFCC. Let U1, ..., Uv ⊂ N be mutually disjoint subsets and let i1, ..., iv ∈ P

be requests, such that 0, 2n+ 1 /∈ Ul and il, n+ il+1 ∈ Ul for l = 1, ..., v, where iv+1 = i1. Generalized order

constraints can be formulated as follows:

v∑
l=1

X(Ul) ≤
v∑

l=1

|Ul| − v − 1. (17)

Considering the same subsets U1, ..., Uv ⊂ N , Cordeau [8] also presents two lifted forms of constraint (17)

for the DARP when the graph is directed, which are presented next.

v∑
l=1

X(Ul) +
v−1∑
l=2

Xi1,il +
v∑

l=3

Xi1,n+il ≤
v∑

l=1

|Ul| − v − 1 (18)

v∑
l=1

X(Ul) +
v−2∑
l=2

Xn+i1,il +
v−1∑
l=2

Xn+i1,n+il ≤
v∑

l=1

|Ul| − v − 1. (19)

3.3. Strengthened infeasible path constraints

Let R = (i1, ..., iq) be a feasible path satisfying time window constraints. Taking into account precedence

constraints, the nodes of subset π(N(R))\N(R) must be visited before the nodes of N(R), while the nodes

of subset σ(N(R))\N(R) must be visited after those of N(R). Let ϕ(S) be the set of all permutations of

the nodes of S. If path R′ = (ϕp, R, ϕd) is infeasible for all permutations ϕp ∈ ϕ(π(N(R))\N(R)) and for all

permutations ϕd ∈ ϕ(σ(N(R))\N(R)), then R is infeasible for any solution of the DARP-PFCC and can be

removed by constraint (12).
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3.4. Fork constraints

Fork constraints introduced by Ropke et al. [35] are also valid for the DARP-PFCC. They remove infeasible

paths by identifying groups of infeasible paths that have arcs in common. Consider a feasible path R =

(k1, ..., kr), and an infeasible path R′ = (i, R, j), for i ∈ S and j ∈ T , with S, T ⊂ N . So the following

inequality is valid:

∑
i∈S

Xi,k1
+

r−1∑
h=1

Xkh,kh+1
+
∑
j∈T

Xkr,j ≤ r. (20)

Ropke et al. [35] also present two strengthened versions of constraint (20). The first one is called outfork

inequality and associates with each intermediate nodes k2, ..., kr−1 a set of nodes that lead to infeasible paths.

Let S, T1, ..., Tr ⊂ P ∪ D be subsets with j = 2, ..., r, and kj /∈ Tj−1. If for any pair of nodes i ∈ S, j ∈ Th

and for any integer value h ≤ r, path R′ = (i, k1, ..., kh, j) is infeasible, then it can be removed. Based on

this conclusion, the following inequality is valid for the DARP-PFCC:

∑
i∈S

Xi,k1
+

r−1∑
h=1

Xkh,kh+1
+

r∑
h=1

∑
j∈Th

Xkh,j ≤ r. (21)

The second version is called infork inequality and is very similar to the previous one. This inequality

is formulated considering arcs that reach path R. Here, we consider subsets S1, ..., Sr, T ⊂ P ∪ D with

j = 1, ..., r − 1 and kj /∈ Sj+1. If for any integer value h ≤ r and any pair of nodes i ∈ Sh, j ∈ T , path

R′ = (i, kh, ..., kr, j) is infeasible, then inequality (22) is valid for the DARP-PFCC.

r∑
h=1

∑
i∈Sh

Xi,kh
+

r−1∑
h=1

Xkh,kh+1
+
∑
j∈T

Xkr,j ≤ r. (22)

4. Branch-and-cut algorithm

The number of constraints (7)−(9) grows exponentially with the number of requests, and their full enu-

meration for large instances is impracticable. Alternatively, they can be dynamically generated and added

whenever these constraints are violated. This branch-and-cut (B&C) scheme was previously used to solve

the DARP [3, 8, 35] and we extend it to solve the DARP-PFCC. Furthermore, our algorithm extends all

preprocessing techniques of Dumas et al. [13] and Cordeau [8] to the DARP-FCC. These techniques contem-

plate a time window tightening procedure (Section 4.1), which provides better lower bounds, and arc removal
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procedures (Section 4.2), which analyze aspects of precedence, time window, demand, and user ride-times to

reduce the size of the problem by removing several arcs. Section 4.3 describes the separation procedures of

the many cuts and valid inequalities, and Section 4.4 presents the general framework of our B&C algorithm.

4.1. Time window tightening

As usual in several algorithms for the DARP [8, 20, 35] we consider that users can define an inbound

(outbound) time window, valid for the pickup (delivery) node, but not in both. Let T be the time limit

to complete the service of the last delivery. Based on Cordeau [8], inbound time windows for the DARP-

PFCC can be tightened by imposing en+i = max {0, ei + di + ti,n+i} and ln+i = min {li + di + L, T} on

the delivery nodes. Equivalently, ei = max {0, en+i − L− di} and li = min {ln+i − ti,n+i − di, T}, works for

the pickup nodes. Finally, time windows for the depot nodes 0 and 2n + 1 can be tightened by imposing

e0 = e2n+1 = min {ei − t0,i} and l0 = l2n+1 = max {li + di + ti,2n+1}.

4.2. Arc removal

Considering pairing, precedence, demand, time windows, and ride-time constraints, a set of infeasible arcs

(i, j) ∈ A can be removed from the search space. The following arc removal procedures were introduced by

Dumas et al. [13] and Cordeau [8], and are valid for the DARP-PFCC.

• Arcs (i, 0), (2n+ 1, i), and (i, i), with i ∈ N are never used and can be removed from the model.

• Precedence-pairing : Following precedence and pairing relations, pickup node i must be visited prior to

its associated delivery node n + i. Then arcs (0, n + i), (i, 2n + 1), and (n + i, i), with i ∈ P can be

removed.

• Vehicle capacity : If qi + qj > Q, with i ̸= j ∈ P, then arcs (i, j), (j, i), (i, n+ j), (j, n+ i), (n+ i, n+ j),

and (n+ j, n+ i) can be removed.

• Time windows: If ei + di + ti,j > lj , with i ̸= j ∈ N , arc (i, j) can never be used and can be removed.

• Ride-time: If tij + dj + tj,n+i > L, with i ∈ P and j ∈ N , then (i, j) and (j, n+ i) can be removed.

• Infeasible paths: Considering time windows and pairing constraints for i ̸= j ∈ P, we can remove:

i) arc (i, n+ j), if path (j, i, n+ j, n+ i) is infeasible;

ii) arc (n+ i, j), if path (i, n+ i, j, n+ j) is infeasible;

iii) arc (i, j), if paths (i, j, n+ i, n+ j) and (i, j, n+ j, n+ i) are both infeasible;

iv) arc (n+ i, n+ j), if paths (i, j, n+ i, n+ j) and (j, i, n+ i, n+ j) are both infeasible.
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Additional arcs can be removed based on the interaction of time window, ride-time, and vehicle capacity

constraints. To this end, it is enough to identify all pairs of users who cannot be served by the same vehicle.

Consider pickup nodes i, j ∈ P and their associated delivery nodes n + i, n + j ∈ D. The paths respecting

precedence constraints are (i, j, n+i, n+j), (i, j, n+j, n+i), (j, i, n+i, n+j), (j, i, n+j, n+i), (i, n+i, j, n+j),

and (j, n+ j, i, n+ i). If all these paths are infeasible, arcs (i, j), (i, n+ j), (n+ i, j), (n+ i, n+ j), (j, i), (j, n+

i), (n+ j, i), and (n+ j, n+ i) can be removed.

Assessing the feasibility of a specific path R = (i, i+ 1, ..., q) is not a trivial task, especially in the presence

of ride-time constraints, as in the DARP-PFCC. We must determine the service start time Bi for each node

i. However, defining Bi = max {ei, Ai}, where Ai is the vehicle arrival time in i ∈ P, is not sufficient to

ensure a feasible route (if one exists).

It can often be advantageous to appropriately wait before the departure from the origin depot, after perform-

ing a delivery, or before starting the service at a pickup node, in order to minimize the route total duration

and the unnecessary waiting times at the subsequent nodes (see [9]). In this context, we must compute for

each node i its forward time slack Fi, which indicates the maximum delay for the start of service without

violating the time windows for the subsequent nodes. Cordeau [8] presents a generalization to Fi introduced

by Savelsbergh [37] for the travelling salesman problem with time windows, and it can be directly applied

to the DARP-PFCC.

Fi = min
i≤j≤q

 ∑
i<p≤j

Wp +min{lj −Bj , L− Pj}

 . (23)

In equation (23), Wi represents the waiting time at node i and Pj is the user ride-time where the destination

node is j, if n+ 1 ≤ j ≤ 2n, and Pj = −∞, otherwise.

4.3. Separation procedures

In this section, we present the heuristic and exact procedures to check if constraints (7)−(9) and also valid

inequalities presented in Section 3 are violated along the search on the branch-and-bound (B&B) tree. These

procedures were proposed by Cordeau [8] and Ropke et al. [35] and can be extended to the DARP-PFCC.

For presentation proposes, we consider: δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}, δ+ = {(i, j) ∈ A : i ∈ S, j /∈ S},

and δ(S) = δ−(S) ∪ δ+(S), with S ⊆ N .
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4.3.1. Precedence constraints

Ropke et al. [35] point out that constraints (7) are equivalent to X(δ−(S)) ≥ 1, for S ∈ S, because X(S) =

|S| − 1 − X(δ−(S)) and 0 ∈ S. We can identify exactly if any equivalent constraint has been violated by

solving maximum flow (MF ) problems as follows. For each request i, we compute the MF from nodes i and

2n + 1 to nodes 0 and n + i on a support graph G∗ = (N ,A∗), where the arc capacity is given by the LP

solution for the X∗
ij variables. If MF < 1, a violated precedence constraint is identified, and S corresponds

to one shore of the minimum cut, such that 0, n+ i ∈ S and i, 2n+ 1 /∈ S.

4.3.2. Capacity constraints

Inspired by Augerat et al. [2], Cordeau [8] proposed a tabu search heuristic to identify violated capacity

constraints (8) for the classical DARP, and we extend it to the DARP-PFCC. The algorithm considers a

random subset S ⊆ P or S ⊆ D, and at each iteration, a node is either removed or added in S so that

X(δ(S)) is minimized and q(S) > Q. The algorithm controls repeated insertions and reinsertions, ensuring

that a node added to (deleted from) S is declared tabu for a given number of iterations, prohibiting reverse

movements. The algorithm runs for a given number of iterations (e.g., 25), allowing the identification of

multiple violated constraints.

Additionally, Ropke et al. [35] designed a randomized construction heuristic to identify if constraints (9)

are violated. It selects a node from P ∪ D in G∗, and adds it to S with a probability of being selected

proportional to the flow on the corresponding arc, iteratively checking for any violation.

4.3.3. Infeasible path constraints

Violated constraints (9) can be separated through a path construction heuristic Ri = (i, k1, k2, ...) departing

from each i ∈ P. The algorithm adds a node kj adjacent in G∗ to the previous added node ki, such that

X∗
ki,kj

is maximized. The procedure stops when n+ i or 2n+ 1 is reached, or when a subtour containing i

is formed. We evaluate if time window and ride-time constraints are violated whenever n+ i is reached.

4.3.4. Subtour elimination constraints

Violated lifted inequalities (15) and (16) can also be separated through a tabu search heuristic. Cordeau [8]

considers the fact that in an integer solution, 2X(S) +X(δ(S)) = 2|S|. Based on this, violated inequalities

(15) can be identified by finding a set of nodes S, such that:

X(δ(S))− 2

( ∑
i∈S∩σ(S)

∑
j∈S

Xij

)
− 2

( ∑
i∈S\σ(S)

∑
j∈S∩σ(S)

Xij

)
< 2. (24)
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From an empty set S, the procedure iteratively either adds or removes (when |S| > 0) a node from S,

minimizing the left-hand side of (24). A similar method can separate violated valid inequalities (16).

4.3.5. Generalized order constraints

As in Ropke et al. [35], violated lifted GOC (18) and (19) can be separated by applying two simple heuristics,

both only covering the case when v = 3 and |U1| = |U2| = |U3| = 2. For each request i, the first heuristic

identifies another request j, such that Xi,n+j +Xn+j,i +Xij is maximized. Then, it finds another request k

that maximizes the left-hand side of (18). The second heuristic is similar and identifies a request j for each

i, such that Xi,n+j + Xn+j,i + Xn+i,n+j is maximized. Besides, it also identifies another request k which

maximizes the left-hand side of (19).

4.3.6. Fork constraints

Ropke et al. [35] describe two separation procedures to identify violated FC, and we extended them to

the DARP-PFCC. For r = 1 (see inequality (21)), a procedure identifies violated inequality (21) by first

enumerating the set H of all infeasible paths containing three nodes connected in G∗. Then, from each arc

(i, j) with X∗
ij > 0, the algorithm creates a path S with all nodes h such that (h, i, j) ∈ H. Finally, set T1

is created by adding all nodes k, with (h, i, k) ∈ H and for h ∈ S. Equivalently, violated inequality (22) can

be separated through a set T of all nodes k, with (i, j, k) ∈ H, following the identification of the set S1 of

nodes h, with (h, j, k) ∈ H.

When r ≥ 2, violated FC can be separated through a heuristic procedure. Departing from each node

k0 ∈ P∪D, this heuristic creates feasible paths (k0, k1, ..., kl−1, kl) by adding a node kl, such thatX∗
kl−1,kl

> 0

in G∗. Violated inequalities are separated based on the current path, by creating a set T of nodes j, such

that (k0, k1, ..., kl−1, kl, j) is an infeasible path. Then, node k0 is inserted in S, jointly with node i, such

that all paths (i, k1, ..., kl−1, kl, j) are infeasible for each i ∈ S and j ∈ T . Path (k1, ..., kl−1, kl) and sets S

and T describe a simple fork inequality (20). To lift it to an outfork (infork) inequality, we can add to sets

T1, ..., Tl and S1, ..., Sl as many nodes as possible, as long as set definition of Section 3.4 is respected. Similar

to Ropke et al. [35], in order to identify violated constraints in a reasonable computational time, we limit

the path length to six vertices.

4.4. General framework of the B&C

At the root node, we generate and solve the linear programming (LP) relaxation of the model from Section

2, without constraints (7)−(9). Whenever a node is optimized, a search for violated constraints, including

SEC, GOC, SIPC, and FC inequalities of Section 3, is performed. For this purpose, we use the cut separation
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procedures presented in Section 4.3. These routines return violated inequalities or prove, at best, that there

are no violations in the current solution of the LP relaxation. The process continues until a feasible or

dominated solution is found or there are no more inequalities to add. At this point, branching occurs on

a fractional variable, and two new subproblems (nodes) are generated. Then a new node is selected and

optimized. The algorithm ends with no more nodes to be optimized, and the optimal solution is proven, or

by reaching a time limit. In Algorithm 1 we present the pseudocode of our B&C.

Algorithm 1 Pseudocode of the proposed B&C algorithm

1: Apply time window tightening and arc removal procedures.

2: At the root node, generate (1)−(6) ∪ (10)−(11).
3: Solve the LP relaxation of the node.

4: Termination check:

5: if there are no more nodes to evaluate then

6: Stop.

7: else

8: Select one node from the B&C tree.

9: end if

10: while the solution of the LP relaxation violates (7)−(9) or a valid inequality from Section 3 do

11: Identify violated inequalities and add them to the LP relaxation.

12: end while

13: if the solution of the current LP relaxation is integer then

14: Go to Termination check.

15: else

16: Branching: branch on one of the fractional variables.

17: Go to Termination check.

18: end if

5. Metaheuristic algorithm

In this section, we detail our BRKGA-QL proposed to solve the DARP-PFCC. A BRKGA explores the

solution space of a problem through an indirect search in an independent r-dimensional hypercube. An

encoding/decoding procedure is employed to transform solutions from this hypercube to feasible solutions

for the problem at hand. To solve a specific problem, we simply need to specify algorithm parameters, how

to encode and decode a solution, and how to compute its corresponding fitness value. In our algorithm,

a Q-Learning mechanism is used to control the many parameters of the classical BRKGA. We present an

overview of its structure (Section 5.1), followed by the description of encoding and decoding procedures

(Section 5.2), local search improvement used to polish promising solutions (Section 5.3), and a novel parallel

optimization scheme (Section 5.4).
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5.1. BRKGA-QL overview

BRKGA is an evolutionary heuristic introduced by Gonçalves and Resende [15] that provides a general and

reusable framework for solving combinatorial optimization problems. As in other evolutionary algorithms,

a chromosome is a vector structure capable of adequately representing a solution for the problem at hand,

and the algorithm evolves a population P over a maximum number of iterations. The initial population is

composed of p random keys vectors (chromosomes), where each position of the vector stores a uniform random

value from [0, 1). At each iteration, the population P is ranked according to their fitness, and chromosomes

are partitioned into two groups: an elite solution set Pe ⊂ P and a non-elite solution set P\Pe. The next

generation is composed of three population substrates: i) an elite subset Pe, from the previous generation,

ii) a subset of mutant solutions Pm with a uniform random value from [0, 1) on each position of vectors, and

iii) a set Pc (|Pc| = |P | − |Pe| − |Pm|) of solutions formed by using the parametrized uniform crossover (see

[39]) with a parent randomly selected from Pe and another from P\Pe from the previous generation. In this

case, parameter ρe represents the probability of the offspring inheriting the vector component of the elite

parent. A decoder function is applied at each new generation to transform each chromosome into a solution.

The population is then partitioned into elite and non-elite, and the process is repeated. In general, a time

limit is imposed as a stopping criterion.

Other than ρe, population sizes (|P | = p, |Pe| = p×pe, and |Pm| = p×pm) are also BRKGA parameters and

must be set before solving the problem. In general, a user configures these values in a tuning phase, evaluating

the solution obtained and choosing those values which yield the best solution. However, it should be noted

that once defined, these values remain fixed throughout the method’s evolutionary process. Chaves et al.

[7] pointed out that different values may perform better during different stages of the search. Additionally,

optimal values for solving a given instance may not be appropriate for another one. Thus, determining these

values can be a task as difficult as the algorithm implementation itself. To overcome this limitation, QL

is employed to help find the best parameter configuration, and the tuning phase is dynamically performed

along the optimization process.

QL is a reinforcement learning algorithm developed by Watkins [41], which employs a Markov process

framework to model an agent learning process within an environment in terms of states, actions, and rewards.

For each state s, the algorithm makes a decision a following a Q(s, a) policy. The choice of the action follows

the ϵ-greedy policy [41], guided by the exploration-exploitation paradigm, often choosing good actions and

eventually selecting actions that lead to discovering new policies, potentially better than existing ones. The

learning process updates Q(s, a) from reward ρ obtained by decision a in state s, guided by the Bellman

equation:
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Q(s, a)← Q(s, a) + lf · [ρ+ df ·maxa′Q(s′, a′)−Q(s, a)]. (25)

In (25), the learning factor lf controls how fast the algorithm learns, while the discount factor df is used to

balance immediate and future rewards. After choosing a state-action value in current the stage, s′ indicates

the new state. Initially, the Q-table is generated with null values.

Our problem-dependent subroutines are inspired by Chaves and Lorena [5], who coupled QL as a control

module to manage all parameters involved in the integrated BRKGA-QL. The BRKGA parameters con-

trolled are p, pe, pm, and ρe, whereas the QL parameters are learning (lf ) and discount (df ) rates, and the

exploration-exploitation parameter ϵ. The authors consider a single state for each parameter, while actions

follow recommended values from the literature, as present in Table 1. The population size p is defined by

some Fibonacci values. Thus, it is possible to control population growth without adding a new rate.

Table 1: Action list of parameters [5]

Parameter Action List

p {233, 377, 610, 987, 1597, 2584}

pe {0.30, 0.25, 0.20, 0.15, 0.10}

pm {0.25, 0.20, 0.15, 0.10, 0.05}

ρe {0.80, 0.75, 0.70, 0.65, 0.60, 0.55}

ϵ {0.10, 0.15, 0.20, 0.25, 0.30}

lf {0.2, 0.4, 0.6, 0.8, 1.0}

df {0.2, 0.4, 0.6, 0.8, 1.0}

5.2. Encoding and decoding

In the DARP-PFCC, we need to satisfy a set of n requests with a pickup and delivery pair (i, n+i), either by

a fleet of m private vehicles or by a common carrier. A solution can be represented by a chromosome having

n+ 1 genes. Each gene i has a uniform random value from [0, 1), called random-key (ri), and i = {1, ..., n}

represents a request in the format (i, n+ i). In order to increase solution diversity, we have developed four

different decoder functions, whose choice is dependent on the value of gene n+ 1. On the interval [0; 0.25),

decoder one is selected, while [0.25; 0.50) selects decoder two, values within [0.50; 0.75) choose decoder three,

and decoder four is selected when the value of gene n+ 1 is greater than or equal to 0.75.

Decoders are specific constructive heuristics capable of producing slightly different solutions. Their choice is

part of the evolutionary process, so decoders that generate better solutions are invoked more often. At the
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same time, the evolutionary process alternates between decoders, diversifying the set of solutions throughout

the optimization process. We present next the four decoders designed for the DARP-PFCC.

1. Insert-end: This decoder operates in two stages. First, it assigns each request i ∈ P to a private fleet

vehicle ν = ⌊(ri)m⌋+1, where m is the fleet size. The second stage designs routes for each vehicle ν as

follows: let ∆ν be the set of requests assigned to ν, and ∆′
ν be the list of requests, sorted by ri (from

lowest to highest). Vehicle ν departs from the origin depot 0, and returns to destination depot n+ 1.

Then, the first request i ∈ ∆′
ν is inserted in the route, yielding the partial path R = (0, i, n+ i, 2n+1).

After the first insertion, the next element of ∆′
ν is evaluated based on the cheapest insertion cost,

considering the path from the previously inserted pickup i to destination depot 2n + 1. Let cj and

cj+n be the cheapest insertion costs for the pickup and the delivery nodes of request j, respectively.

Let also fj and vj be the fixed and variable costs to serve j by a common carrier vehicle, respectively.

If [cj + cj+n] > [fj + vj(cj,n+j)], or if any pairing, time window, or ride-time constraint is violated,

request j is transferred to a common carrier vehicle. Inserting a request after the last pickup avoids

recalculating temporal information such as service time and travel time for the entire route. We only

need to consider the vicinity of the insertion and the remaining nodes of the routes.

2. Insert-best: This decoder is quite similar to the previous one, except that the insertion cost takes

into account the whole path, from 0 to 2n+ 1. Here the computational effort is more significant since

all timing information must be calculated for each new request insertion evaluation.

3. Insert-all: This decoder is even more general than the second one since it considers all requests at once

for each vehicle, and enumerates all possible sequences, i.e., it does not perform any sequential request

assignment. The transfer to common carrier vehicles is also made depending on cost or infeasibility.

4. Insert-own: This decoder is dedicated to maximizing the usage of the private fleet. Therefore it

operates similarly to Insert-all, but a request is transferred to a common carrier only in case of

infeasibility.

Consider an example of an instance with n = 8 requests (P = {1, ..., 8}, D = {9, ..., 16}, with 0 and 17 being

the origin and destination depots), and thus in a nine-element chromosome, shown in Figure 1a. We also

consider a private fleet with m = 2 vehicles, implying the assignment rule ν = ⌊(ri) · 2⌋ + 1. Thus, when

ri < 0.5 (≥ 0.5), request i is assigned to ν = 1 (2), yielding ∆1 = {1, 3, 6, 7, 8} and ∆2 = {2, 4, 5}. The

random-key of position n+ 1 indicates that decoder 1 (insert-end) should be applied (r9 = 0.19 < 0.25).

Since the process differs only by the insertion criteria, Figure 1(b) describes the decoding for ν = 1. After

sorting by ri, we have ∆
′
1 = {7, 3, 1, 6, 8}, and their corresponding delivery points {15, 11, 9, 14, 16}. We also

consider T = 120, Q = 3, Li = 40, di = 3, qi = 1, fi = 3, and vi = 2 for each i ∈ P. Table 2 reports time

windows values (considering only inbound requests). For simplicity, we consider distances equal to times,
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showing in Table 3 values only for the arcs evaluated in the decoding process (insert-end).

Considering the distances of Table 3, each insertion is presented step-by-step, based on the cheapest insertion

cost. Light-blue circles indicate the last pickup point inserted (request number in red) and the last delivery

point (number in black) in the route. Finally, RCC indicates the set of requests served by the common carrier.

According to the ∆′
1, request 7 is the first to be inserted. The insertion cost in the private fleet vehicle is

c7 = c0,7+c7,15+c15,17−c0,17 = 5+11+4−0 = 20, which is smaller than the cost to serve it with the common

carrier (c′7 = 3 + 2× c7,15 = 25). The pickup node of the next request from ∆′
1 (node 3) can be inserted in

any position after the last pickup node. The cheapest insertion cost is c3 = c7,3 + c3,11 + c11,15 − c7,15 = 15,

placing nodes 3 and 11 after the last pickup inserted in the route (node 7). A transfer to the common carrier

is not advantageous because c′3 = 3+2×c3,11 = 23. On the other hand, the next request (1, 9) is served by a

common carrier vehicle (RCC = {1}), with c′1 = 3+2c1,9 = 13. Next, pickup node 6 and its delivery node 14

are inserted in the private fleet vehicle route, with c6 = [c11,6 + c6,15 − c11,15] + [c15,14 + c14,17 − c15,17] = 19,

being the cheapest insertion cost. Departing from depot 0 at time 0, we can start the service in the last

pickup node (6) at time 39. This value is greater than the opening time window of the next pickup in ∆′
1,

l8 = 30, forcing request (8, 16) to be served by a common carrier vehicle. Thus, requests 1 and 8 are served

by a common carrier, indicated by RCC = {1, 8}, and all other requests are served by the private fleet vehicle

v = 1. The total cost is 96.

Requests Decoder

0.25 0.78 0.14 0.83 0.98 0.43 0.05 0.49 0.19

1 2 3 4 5 6 7 8 9

a) Encoding

Request 7

Request 3

Request 1

Request 6

Request 8 3 11 6 15 14 170 7

3 11 6 15 14 170 7

3 110 7

0 7 15 17

15 17

3 110 7 15 17

RCC ← {1, 8}

RCC ← {1}

RCC ← {1}

RCC ← {}

RCC ← {}

b) Decoding

Figure 1: Encoding and decoding process
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Table 2: Time windows of inbound requests

i ei li n + i ei li

1 35 50 9 0 480

3 15 30 11 0 480

6 25 40 14 0 480

7 5 20 15 0 480

8 15 30 16 0 480

Table 3: Arcs used in the decoding procedure

i j cij = tij i j cij = tij i j cij = tij i j cij = tij i j cij = tij

0 7 5 3 17 16 8 15 14 11 15 8 15 8 19

0 17 0 6 8 12 8 16 13 11 17 15 15 9 21

1 9 5 6 11 14 8 17 15 14 8 16 15 11 17

1 11 16 6 14 17 9 11 17 14 11 14 15 14 9

1 15 13 6 15 6 9 15 16 14 15 18 15 16 16

1 17 14 6 17 15 9 17 15 14 16 15 15 17 4

3 1 18 7 3 8 11 1 13 14 17 9 16 14 15

3 6 13 7 15 11 11 6 7 15 1 14 16 15 18

3 11 10 7 17 6 11 9 15 15 3 16 16 17 19

3 15 9 8 14 19 11 14 20 15 6 15

5.3. Local search improvement

In order to promote exploitation of promising areas of the search space, we also design a local search procedure

as in Chaves et al. [7]. Our module is composed of seven operators, whose details are presented as follows.

1. Assign a request to another vehicle: This operator randomly selects a private fleet vehicle ν, and

removes a request i served by this vehicle. Then i and n+ i are inserted in another private fleet vehicle

ν′, following the cheapest insertion rule. The insertion is performed when all pairing, precedence, time

window, and ride-time constraints are preserved on the route of ν′.

2. Swap intra-route: The nature of the DARP-PFCC, particularly precedence and time windows, makes

it unprofitable to perform exchanges between nodes close to the route endpoints. Hence, this operator

performs the swap of up to four consecutive nodes within the same route. It randomly selects a private

fleet vehicle ν and a node u visited by it. Let νR = (0, ..., u, v, w, z, ..., 2n + 1) be the route of ν, and

(u, v, w, z) be the four selected consecutive nodes. All 24 possible permutations are evaluated, and the

most beneficial among the feasible ones is performed.

3. Swap two requests inter-route: This procedure randomly selects two private vehicles, ν and ν′,

and swaps two requests between them. Let request i served by ν, and Si = sνi + sνn+i be the total

savings by removing the pickup and delivery nodes of i from ν. Equivalently, Sj = sν
′

j +sν
′

n+j computes

the total saving by removing request j from ν′. Insertion costs follow the cheapest insertion rule, and
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Ci = cν
′

i + cν
′

n+i is the lowest insertion cost of request i in vehicle ν′, while Cj = cνj + cνn+j represents

the same for j in ν. Requests i and j are chosen so that [(Si + Sj)− (Ci + Cj)] is maximized, and all

constraints are respected.

4. Swap segments inter-route: This operator considers a saving maximization associated with a swap

inter-route as in the previous one. However, it swaps path segments between two vehicles. Path

segments are natural sequences (see [28]) encompassing arcs where the vehicle load is zero.

5. Remove a request from a private fleet vehicle: It removes a request i from the route of a private

fleet vehicle v and assigns its service to a common carrier vehicle. The most significant reduction in

costs drives the request choice, that is, [sνi + sνn+i]− [fi + vi(ci,n+i)] must be maximized.

6. Remove a request from a common carrier vehicle: This operator works in the opposite direction

of the previous one by transferring a request from a common carrier vehicle to the private fleet.

Consider a request i served by a common carrier vehicle, with service cost given by fi + vi(ci,n+i). Let

Ci = cνi + cνn+i be the cost, following the cheapest insertion rule, of assigning request i to vehicle v. If

Ci < fi + vi(ci,n+i), a vehicle is chosen so that (fi + vi(ci,n+i)−Ci) is maximized (maximum saving),

as long as no constraints are violated.

7. Destroy 1/3: This operator randomly removes up to 1/3 of the requests currently assigned to the

private fleet and reinserts them in other positions into the same vehicle, or in other vehicles of the

private fleet. The insertion is performed taking into account all vehicles and always observing feasibility

and the cheapest insertion rule.

5.4. General framework of our parallel BRKGA-QL

At the beginning of processing, the time window tightening and arc removal procedures are applied to

reduce the size of the problem (see Sections 4.1 and 4.2), and the Q-table starts with null values. An initial

population P is created with p random-keys vector (chromosomes), each one representing a potential solution

for the DARP-PFCC. When the population P is complete, the chosen decoder evaluates the fitness for each

chromosome, identifying the best incumbent solution.

In the next step, we choose an action for each state from the Q-table, i.e., a value for each parameter, using

the ϵ-greedy policy. In the evolutionary process, chromosomes are partitioned into the elite and non-elite

population, copying the |Pe| individuals to the next generation. Then, Pm and Pc are generated (see Section

5.1). The chosen decoder calculates the fitness for each new chromosome. If a new best solution is found in

the population, a reward ρ = 1 is established, the Q-table is updated following the Bellman equation (25),

completing the evolutionary process.

Whenever a new best solution is found (exploration) or if the best solution is not improved for 10 generations
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(stagnation), we apply the Label Propagation (LP) method (Raghavan et al. [32]) to identify communities

with similar chromosomes in the elite partition. The local search module is applied to the best chromosomes

not yet improved from each community identified by the LP, where a Random Variable Neighborhood Descent

(RVND, see [29]) manages the choice among different heuristics. Our algorithm stores the best solution,

either obtained directly from the decoders or improved by local search. In order to preserve diversity in the

evolutionary process, solutions obtained from the local search module are not added to the population of

the BRKGA-QL. Besides, a random gene-switching move in chromosomes from Pe, which is not subject to

local search improvement, is also included to increase the diversity through a perturbation operator.

In Chaves and Lorena [5], the evolutionary process only continues after processing all local searches in the

identified solutions. Inspired by Schenekemberg et al. [38], who proposed a hybrid parallel framework by

combining heuristic and exact algorithms to solve an inventory-routing problem, we also explore parallel

computing resources, designing a non-sequential approach within the BRKGA-QL iterative process. Simul-

taneously to the evolutionary process, the local search module is invoked in parallel using the same RVND

approach to process each candidate chromosome and polish solutions identified by the LP method. Figure

2 presents the general framework for the BRKGA-QL we propose for the DARP-PFCC.

generate  individuals 
with random keys

create mutants for 
next generation

copy elite individuals  
to next generation

classify individuals as 
elite or non-elite

calculate reward and 
update Q-Table

runtime 
exceeded?

end

initiate Q-Table

yes

choose an action for 
each state 

generate offspring for 
next generation

no

identify communities 
with similar individuals

local search?
yes

no

Problem-independent

Problem-dependent

decode each individual

apply local search 
heuristics

apply perturbation to 
similar individuals 

queue promising 
individuals for LS

begin

apply TW tightening and 
arc removal

Figure 2: BRKGA-QL scheme

19

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



6. Computational experiments

In this section, we present the results of the extensive computational experiment we performed. As mentioned

before, our algorithms are flexible enough to handle classical DARP instances, and the only adjustment

consists in setting a big M value to the fixed and variable costs for a common carrier, fi and vi, respectively.

We first discuss its results by solving the two sets adapted by Ropke et al. [35] from the basic set of Cordeau

[8] with up to 96 requests (Section 6.1). Next, we analyze the results for the same instances adapted to the

problem at hand and discuss some situations that impose restrictions on the full use of the fleet (Section

6.2). Finally, the results for a case study with up to 713 requests are presented, along with some managerial

analyses (Section 6.3).

All algorithms were coded in C++, executed in computers equipped with Intel(R) Xeon(R), CPU E5-2683

v4 @ 2.10GHz. Mathematical models were solved by Gurobi Optimizer 9.1.0 with default parameters. Our

BRKGA-QL was applied 30 runs (with different seeds) to each instance. The parameter runtime was defined

as 2× n for tests with instances of the literature and 10× n for tests with instances of the case study. The

instances and computational results are available at https://www.leandro-coelho.com/darp/. The source

code for the BRKGA-QL (problem-independent) is available at https://github.com/antoniochaves19/B

RKGA-QL.

6.1. Results for the classical DARP

These instances have up to 96 requests and 8 vehicles, divided into two sets (A and B) with 21 instances in

each. In Set A, the vehicle capacity is Q = 3, demands are unitary (qi = 1), service duration is di = 3, and

maximum ride-time is L = 30 minutes. In Set B, the vehicle capacity is Q = 6, demand is randomly chosen

from {1, ..., Q}, service time is proportional to the demand, i.e., di = qi, and the maximum ride-time is

L = 45 minutes. Both sets have tight time windows of 15 minutes. Starting from the maximum duration of

the route (T ), time windows [ei, li] are generated as follows: for an outbound user i, choose l(n+i) randomly

in [60, T ] and define e(n+i) = l(n+i) − 15. For an inbound user, ei is randomly chosen from [0, T − 60] and

li = ei + 15. In all instances, depots coordinates are located at the origin (0, 0), and pickup and delivery

nodes coordinates are randomly chosen among [−10, 10]2, following a uniform distribution. Travel time (tij)

and routing cost (cij) are obtained from the Euclidean distance between i and j.

Tables 4 and 5 present the results for sets A and B, respectively. Optimal solutions are provided by Ropke

et al. [35] (column Opt.). The columns UB and LB indicate the upper and lower bounds obtained by our

B&C, the column Gap (%) reports the relative difference between these bounds, and the column T (s) reports

the computational time in seconds. The columns UB Best and UB Avg indicate the values of the best solution
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found by BRKGA-QL in 30 runs and its average. Column T (s) Best reports the average computational

time of the BRKGA-QL to find the best solution. The columns ∆%UB Best and Avg. compute the relative

percentage deviation defined by:

∆%UB =
(Z −Opt)

Opt
× 100, (26)

where Z is UB Best or UB Avg. of our BRKGA-QL.

Our B&C found the optimal solution for all instances except b8-96. This is due to the fact that our B&C

complies with the DARP-PFCC formulation, and has more variables and constraints than the classical

DARP. BRKGA-QL found the optimal solution in 19 instances of set A and 20 instances of set B. The

deviations of the three instances in which BRKGA-QL did not find the best-known solution was small; the

worst case was 0.38% in instance a8-96. Furthermore, the deviations from the mean of the 30 runs were also

very small; on average, it was 0.09% in set A and 0.03% in set B. BRKGA-QL found the optimal solution

in all runs in 76% of the instances. The computational time of B&C and BRKGA-QL increases with the

size of the instances. However, in larger instances, BRKGA-QL finds the best solution in approximately one

minute, while B&C needs several minutes to prove optimality. The average computational time of B&C was

157 seconds for set A and 673 seconds for set B, while the average computational times of BRKGA-QL are

24 seconds and 20 seconds. We can observe that the BRKGA-QL had similar behavior in both sets, different

from the B&C, which presents longer times in set B.

6.2. Results for the DARP-PFCC

In this study, we create three scenarios for the DARP-PFCC using the DARP instances. The same instances

presented in Section 6.1 are used in the first scenario, allowing requests to be served by a common carrier.

In the second scenario, it is possible to use a maximum of 2/3 of the capacity of the private fleet, considering

social distancing in the context of the COVID-19 pandemic. In the third scenario, we consider one fewer

vehicle in the fleet. Four combinations of fixed (fi) and variable (vi) costs (low-low, low-high, high-low, and

high-high) regarding the common carrier are evaluated in each scenario, totaling 504 instances tested. In all

cases, low equals 2 and high equals 3.5.

Tables 6 and 7 summarize the results for the DARP-PFCC. The columns are the same as in Tables 4 and

5, but considering the average result for the 21 evaluated instances. Detailed results for each instance are

available at https://www.leandro-coelho.com/darp/. B&C found the optimal solution of all instances

of set A. In set B the method did not find the optimal solution in 8 instances. Therefore, B&C was able to

prove the optimality of 98.41% of the instances. We can observe that BRKGA-QL found solutions as good
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Table 4: B&C and BRKGA-QL results for the DARP on instances of set A from Cordeau [8] and Ropke et al. [35]

Instance Opt.
B&C BRKGA-QL ∆%UB ∆%UB

UB LB Gap (%) T (s) UB Best UB Avg. T (s) Best Best Avg.

a2-16 294.25 294.25 294.25 0.00 2.13 294.25 294.25 0.01 0.00 0.00

a2-20 344.83 344.83 344.83 0.00 3.12 344.83 344.83 0.02 0.00 0.00

a2-24 431.12 431.12 431.12 0.00 8.53 431.12 431.12 0.15 0.00 0.00

a3-24 344.83 344.83 344.83 0.00 18.31 344.83 344.83 0.26 0.00 0.00

a3-30 494.85 494.85 494.85 0.00 2.63 494.85 494.85 0.32 0.00 0.00

a3-36 583.19 583.19 583.19 0.00 8.11 583.19 583.19 0.91 0.00 0.00

a4-32 485.50 485.50 485.50 0.00 6.69 485.50 485.50 0.53 0.00 0.00

a4-40 557.69 557.69 557.69 0.00 19.82 557.69 557.69 0.82 0.00 0.00

a4-48 668.82 668.82 668.82 0.00 40.91 668.82 668.82 2.10 0.00 0.00

a5-40 498.41 498.41 498.41 0.00 14.12 498.41 498.41 0.57 0.00 0.00

a5-50 686.62 686.62 686.62 0.00 74.97 686.62 686.62 6.25 0.00 0.00

a5-60 808.42 808.42 808.42 0.00 67.20 808.42 808.42 4.29 0.00 0.00

a6-48 604.12 604.12 604.12 0.00 92.62 604.12 604.12 2.18 0.00 0.00

a6-60 819.25 819.25 819.25 0.00 71.76 819.25 819.25 24.37 0.00 0.00

a6-72 916.05 916.05 916.05 0.00 91.08 916.05 916.58 69.14 0.00 0.06

a7-56 724.04 724.04 724.04 0.00 78.03 724.04 724.04 22.43 0.00 0.00

a7-70 889.12 889.12 889.12 0.00 184.65 889.12 889.44 54.34 0.00 0.04

a7-84 1033.37 1033.37 1033.37 0.00 194.41 1034.42 1036.35 81.11 0.10 0.29

a8-64 747.46 747.46 747.46 0.00 149.94 747.46 751.34 67.45 0.00 0.52

a8-80 945.73 945.73 945.73 0.00 299.71 945.73 949.18 69.49 0.00 0.37

a8-96 1229.66 1229.66 1229.66 0.00 1884.33 1234.30 1237.76 98.00 0.38 0.66

Avg. 671.78 671.78 671.78 0.00 157.09 672.05 672.69 24.04 0.02 0.09
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Table 5: B&C and BRKGA-QL results for the DARP on instances of set B from Cordeau [8] and Ropke et al. [35]

Instance Opt.
B&C BRKGA-QL ∆%UB ∆%UB

UB LB Gap (%) T (s) UB Best UB Avg. T (s) Best Best Avg.

b2-16 309.41 309.41 309.41 0.00 7.24 309.41 309.41 0.12 0.00 0.00

b2-20 332.64 332.64 332.64 0.00 0.24 332.64 332.64 0.01 0.00 0.00

b2-24 444.71 444.71 444.71 0.00 7.89 444.71 444.71 0.25 0.00 0.00

b3-24 394.51 394.51 394.51 0.00 18.70 394.51 394.51 0.27 0.00 0.00

b3-30 531.44 531.44 531.44 0.00 7.42 531.44 531.44 0.36 0.00 0.00

b3-36 603.79 603.79 603.79 0.00 13.35 603.79 603.79 0.48 0.00 0.00

b4-32 494.82 494.82 494.82 0.00 10.65 494.82 494.82 0.34 0.00 0.00

b4-40 656.63 656.63 656.63 0.00 19.06 656.63 656.63 0.69 0.00 0.00

b4-48 673.81 673.81 673.81 0.00 164.80 673.81 673.81 2.96 0.00 0.00

b5-40 613.72 613.72 613.72 0.00 141.52 613.72 613.72 1.10 0.00 0.00

b5-50 761.40 761.40 761.40 0.00 199.06 761.40 761.40 3.74 0.00 0.00

b5-60 902.04 902.04 902.04 0.00 257.85 902.04 902.04 16.06 0.00 0.00

b6-48 714.83 714.83 714.83 0.00 11.92 714.83 714.83 0.90 0.00 0.00

b6-60 860.07 860.07 860.07 0.00 144.26 860.07 860.07 15.54 0.00 0.00

b6-72 978.47 978.47 978.47 0.00 866.18 978.47 978.47 34.05 0.00 0.00

b7-56 823.97 823.97 823.97 0.00 3398.48 823.97 823.97 21.34 0.00 0.00

b7-70 912.62 912.62 912.62 0.00 243.89 912.62 912.62 36.46 0.00 0.00

b7-84 1203.37 1203.37 1203.37 0.00 744.69 1203.37 1204.58 89.77 0.00 0.10

b8-64 839.89 839.89 839.89 0.00 487.40 839.89 840.42 50.08 0.00 0.06

b8-80 1036.34 1036.34 1036.34 0.00 190.82 1036.34 1036.64 74.45 0.00 0.03

b8-96 1185.55 1185.55 1162.46 1.95 7201.32 1187.27 1190.23 90.12 0.15 0.39

Avg. 727.33 727.33 726.24 0.09 673.18 727.42 727.66 20.91 0.01 0.03
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as the best-known ones, showing an average deviation of 0.03% in set A and 0.004% in set B. A general

analysis of the results shows that BRKGA-QL found the optimal solution in 451 instances proven by the

B&C (91% of the total number of instances with optimal solution). Among the 8 instances in which B&C

did not find the optimal solution, in two of them, the best solution found by BRKGA-QL was better than the

upper bound obtained by the B&C. The BRKGA-QL was also robust, obtaining average solutions very close

to the best solutions found (average gap of 0.13% in set A and 0.15% in set B). Furthermore, BRKGA-QL

required 21% and 4% of the computational time spent by B&C in sets A and B, respectively.

It is interesting to note that considering the instances of set A (unit demand), it was possible to obtain

solutions with total costs close to those found in the original scenario. When a vehicle is removed from

the private fleet, we observe an average increase in costs of 3.06%, and when we decrease the capacity of

vehicles to 2/3×Q, we have an average increase in costs of only 1.15%. The instances of set B also present

average costs close to the original scenario for fleet reduction (average increase of 3.66%). However, the

instances with reduced capacity of this set incurred an average cost increase of 45.95%. This behavior is

associated with the demands of requests that vary from 1 to Q. Thus, the reduction in vehicle capacity has

a considerable impact on the operating costs due to the greater use of the outsourced fleet.

Table 6: B&C and BRKGA-QL results for the DARP-PFCC on instances of set A

Type
Costs B&C BRKGA-QL ∆%UB ∆%UB

Fixed Variable #Opt. UB LB Gap (%) T (s) UBBest UBAvg. T (s) Best Best Avg.

Original

low
low 21 664.28 664.28 0.00 133.75 664.48 665.36 29.23 0.03 0.16

high 21 669.69 669.69 0.00 138.71 670.07 670.63 26.05 0.06 0.14

high
low 21 667.51 667.51 0.00 179.13 667.82 668.40 27.02 0.05 0.13

high 21 670.21 670.21 0.00 160.08 670.49 671.05 23.65 0.04 0.13

2/3×Q

low
low 21 671.69 671.69 0.00 41.36 672.04 672.76 32.82 0.05 0.16

high 21 677.66 677.66 0.00 42.70 677.92 678.53 28.78 0.04 0.13

high
low 21 675.09 675.09 0.00 46.18 675.35 675.99 30.46 0.04 0.13

high 21 678.21 678.21 0.00 44.66 678.33 678.93 25.47 0.02 0.11

m− 1

low
low 21 676.43 676.43 0.00 164.02 676.56 677.27 30.42 0.02 0.12

high 21 697.31 697.31 0.00 252.51 697.36 697.94 23.99 0.01 0.09

high
low 21 681.42 681.42 0.00 181.58 681.47 682.29 27.74 0.01 0.13

high 21 699.41 699.41 0.00 173.53 699.54 700.10 23.23 0.02 0.10

Avg. 21.00 677.41 677.41 0.00 129.85 677.62 678.27 27.41 0.03 0.13

Figure 3 presents a boxplot with the objective function values found by B&C and BRKGA-QL methods.

We consider the best and average values found by the metaheuristic. We can observe that the boxplots are

very similar. The median values (second quartile) are 719.9 for the B&C and 720.1 for the BRKGA-QL

(best and average upper bounds). The first and third quartile are also equal in the boxplots of the B&C and

BRKGA-QL (best), respectively, 506.7 and 919.8. Finally, we performed a statistical analysis to compare

B&C and BRKGA-QL considering all instances of this test. We apply the Wilcoxon signed-rank test [33]
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Table 7: B&C and BRKGA-QL results for the DARP-PFCC on instances of set B

Type
Costs B&C BRKGA-QL ∆%UB ∆%UB

Fixed Variable #Opt. UB LB Gap (%) T (s) UBBest UBAvg. T (s) Best Best Avg.

Original

low
low 20 714.12 713.21 0.08 725.05 714.33 714.73 28.95 0.03 0.21

high 20 724.50 723.37 0.10 832.97 724.55 724.86 23.05 0.01 0.21

high
low 20 718.32 717.16 0.10 872.13 718.37 718.68 27.30 0.01 0.21

high 20 725.57 724.06 0.13 709.00 725.64 725.91 24.27 0.01 0.26

2/3×Q

low
low 21 896.18 896.18 0.00 38.97 896.18 896.23 14.82 0.00 0.01

high 21 1181.05 1181.05 0.00 37.80 1181.05 1181.05 7.14 0.00 0.00

high
low 21 925.48 925.48 0.00 38.16 925.48 925.53 12.37 0.00 0.01

high 21 1208.35 1208.35 0.00 38.66 1208.35 1208.35 4.90 0.00 0.00

m− 1

low
low 20 728.97 727.56 0.12 669.00 729.00 729.51 34.14 0.00 0.27

high 20 760.13 758.89 0.10 665.24 760.17 760.35 23.51 0.00 0.19

high
low 20 736.21 734.73 0.12 720.67 736.13 736.64 29.97 -0.01 0.26

high 20 763.44 762.06 0.12 607.62 763.46 763.65 21.64 0.00 0.21

Avg. 20.33 840.19 839.34 0.07 496.27 840.23 840.46 21.01 0.00 0.15

to compare B&C with BRKGA-QL (best and average upper bounds). This test shows that the B&C ranks,

were not statistically significantly different than the BRKGA-QL ranks, (p-value = 0.9371) when compared

with best upper bounds, nor when compared with average upper bounds (p-value = 0.8406).

6.3. Case study with the DARP-PFCC

We conducted a case study based on a data set collected from a company that operates a dial-a-ride service

in Québec, Canada. We present instances with up to 713 requests for the DARP-PFCC. For confidentiality

reasons, we do not disclose the real data, but for each database request, we identify the postal code of the

pickup and delivery nodes. We then generate an instance by selecting node locations within the same postal

codes. For each of the 10 generated instances, Table 8 lists the instance name, the number of requests (n),

number of homogeneous vehicles (m = 3 and Q = 5), the demand (qi = 1), the service time (di = 2),

the maximum ride-time duration (L = 90), and the maximum route duration (T = {480, 600, 720}). Time

windows were generated according to the definition of Section 6.1. We use different time windows according

to the number of users. Users 1, ..., n/2 are outbound requests and n/2 + 1, ..., n are inbound requests.

Distances and travel times are obtained using the road network. The routing costs of the private fleet are

generated by multiplying the distances by 0.4. Regarding the common carrier, we consider two different

fixed costs fi ∈ {5, 10}, and the variable cost is calculated by multiplying the distances by 2.

The results for the case study are presented in Tables 9 and 10. The B&C results for these instances are

substantially worse than the results obtained by BRKGA-QL since B&C could not prove optimality for

any instance tested, and the average gap was 96%. The large number of requests and the less tight time

25

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



B&C BRKGA−QL (UB Best) BRKGA−QL (UB Avg.)

6
7

8
9

10
11

12
13

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue
 (

lo
g 

sc
al

e)

Figure 3: Boxplot with solution costs found by B&C and BRKGA-QL (best and average upper bounds).

Table 8: Real data parameters

Instance n m qi di L T en+i ln+i ei li

a100 100 3 1 2 90 480 ln+i – 30 [60, T ] [0, T − 60] ei + 30

a150 150 3 1 2 90 480 ln+i – 30 [60, T ] [0, T − 60] ei + 30

a200 200 3 1 2 90 480 ln+i – 30 [60, T ] [0, T − 60] ei + 30

a250 250 3 1 2 90 480 ln+i – 30 [60, T ] [0, T − 60] ei + 30

a300 300 3 1 2 90 600 ln+i – 45 [60, T ] [0, T − 60] ei + 45

a350 350 3 1 2 90 600 ln+i – 45 [60, T ] [0, T − 60] ei + 45

a400 400 3 1 2 90 600 ln+i – 45 [60, T ] [0, T − 60] ei + 45

a500 500 3 1 2 90 720 ln+i – 60 [60, T ] [0, T − 60] ei + 60

a600 600 3 1 2 90 720 ln+i – 60 [60, T ] [0, T − 60] ei + 60

a713 713 3 1 2 90 720 ln+i – 60 [60, T ] [0, T − 60] ei + 60

26

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



windows affect B&C’s performance. Therefore, in this section, we only present the results obtained by the

BRKGA-QL.

Table 9 presents the operational costs for the private fleet (column PF cost) and common carrier (column CC

cost), and the number of users (column #Req) served by each one, separated by fixed costs fi. We emphasize

that the BRKGA-QL stop criteria was set to 10 × n seconds. It is possible to observe that increasing the

number of requests significantly increases the common carrier operational cost; that is, the private fleet

cannot satisfy all requests, and we have many more users being served by the outsourced vehicles. Despite

this, we noticed that when more requests need to be served, the number of users served by the private fleet

is larger. The instance with 713 requests has twice as many points served by the private fleet as 100 requests

(84 and 182). We highlight that the private fleet size and their capacity are the same for all instances, and

this behavior is related to the greater number of options that can be selected to be served by the private

fleet.

Table 10 presents an operational analysis of the routing service and also contributes to this conclusion. We

break down the operating time into i) traveling with passengers (TP ), ii) traveling empty (TE), iii) service

duration (SD), and iv) waiting (W ). We can observe that vehicles travel most of the time transporting

passengers (on average 62% of the time), and the travel time without passengers decreases as there are more

requests to be met. With 100 users, we have vehicles on average 5.49% (fi = 5) and 6.15% (fi = 10) of the

time without passengers, while with 713 users, we have an average of 2.79% (fi = 5) and 1.08% (fi = 10)

of the time with empty displacements. The same behavior can be observed in the vehicle waiting times.

Thus, these results show that the vehicle fleet is not sufficient to satisfy all users but that a larger number

of requests allows for more efficient routing of the private fleet.

Table 9: Private fleet (PF) and common carrier (CC) operation costs

Instance
fi = 5 fi = 10

PF Cost #Req CC Cost #Req PF Cost #Req CC Cost #Req

a100 273.16 84 416.34 16 270.45 83 508.66 17

a150 279.73 94 1259.56 56 290.24 94 1530.74 56

a200 274.35 103 2378.66 97 289.49 99 2866.06 101

a250 305.10 102 3661.73 148 315.47 101 4413.40 149

a300 326.92 151 4011.31 149 336.47 141 4870.80 159

a350 336.35 147 5583.73 203 326.30 149 6746.70 201

a400 341.37 148 6683.57 252 350.56 147 8021.70 253

a500 428.69 170 8746.82 330 407.15 172 10384.00 328

a600 385.94 189 10898.51 411 421.13 191 13030.78 409

a713 411.00 182 13830.87 531 373.44 195 16478.83 518

Avg. 336.26 137.00 5747.11 219.30 338.07 137.20 6885.17 219.10

Finally, in Figure 4 we compare the number of requests served by the private fleet concerning its idleness.
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Table 10: Private fleet operating time break down

Instance
fi = 5 fi = 10

∆%TP ∆%TE ∆%SD ∆%W ∆%TP ∆%TE ∆%SD ∆%W

a100 62.13 5.49 27.05 5.33 61.20 6.15 26.83 5.82

a150 62.95 2.98 28.62 5.45 64.51 4.29 28.86 2.34

a200 62.62 3.27 31.17 2.93 63.77 2.55 29.07 4.60

a250 64.55 3.26 29.43 2.77 66.03 2.82 29.33 1.82

a300 62.09 2.13 35.05 0.73 63.23 1.68 33.50 1.60

a350 59.73 4.32 34.73 1.22 59.22 4.05 35.21 1.52

a400 62.93 2.02 34.16 0.89 62.90 2.51 33.68 0.91

a500 64.37 1.31 32.26 2.07 62.27 2.69 33.70 1.35

a600 59.87 1.93 36.22 1.99 61.33 2.22 35.76 0.69

a713 61.68 2.79 34.68 0.85 59.93 1.08 37.68 1.31

Avg. 62.29 2.95 32.34 2.42 62.44 3.00 32.36 2.20

TP : traveling with passengers; TE: traveling empty; SD: service duration; W : waiting.

We consider as idle time the total of the traveling empty (TE) and waiting (W ) times. This idle time does

not generate revenue for the transportation provider and can be reduced through optimization. The figure

shows that as the number of requests to be served increases, the combination between private fleet and

common carrier allows the transportation provider to select more profitable users, increasing the number of

requests served by the private fleet, and the efficient use of these assets by reducing the total idle time from

11.97% to 2.39%.

7. Conclusions and future works

In this paper, we have introduced, modeled, and solved the dial-a-ride problem with private fleet and common

carrier (DARP-PFCC) that makes it possible to outsource part of the demand unmet by the transportation

provider to mobility-on-demand services and taxis. We have designed a state-of-the-art branch-and-cut

algorithm to solve the DARP-PFCC exactly, and we have also developed a near parameter-free parallel

BRKGA-QL to handle large instances. Both algorithms are flexible enough to solve the classical DARP

instances, obtaining excellent results. We have adapted these instances and generated a dataset of 504

instances for the DARP-PFCC. Our results show that the cost increases 1.15% on average when we reduce

1/3 of vehicle capacity, while reducing one vehicle from the private fleet the impact is about 3.06% on average.

For a case study with up to 713 requests, the results point to the benefits of combining the private fleet and

common carriers in dial-a-ride problems. Remarkably when increasing the total number of user requests,

the idleness of the private fleet substantially decreases by reducing the empty traveling from 5.8% when we

have 100 requests to 1.9% when the number of requests is 713. Similarly, the waiting time decreases from

5.58% to 1.08% regarding the same range of requests. Our instances and source codes (problem-independent

28

The Dial-a-Ride Problem with Private Fleet and Common Carrier 

CIRRELT-2021-47



Number of requests served by the private fleet

Id
le

 ti
m

e 
(%

)

80 90 100 110 120 130 140 150 160 170 180 190 200

2

3

4

5

6

7

8

9

10

11

12 Fixed cost  (f i = 5)

Fixed cost  (f i = 10)

Figure 4: Idle time of the private fleet
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BRKGA-QL) are made publicly available for the research community.

From the methodological perspective, we suggest that future studies hybridize B&C with BRKGA-QL in a

shared parallelized framework. Thus, the efficiency of BRKGA-QL in obtaining good solutions in a shorter

computational time may be advantageous to B&C, which could increase the number of optimal solutions

proved. Regarding the scope of the problem, a promising direction could involve the integration of the

private fleet, common carrier, and public transportation. This new context would reach a broader profile of

users, including those who can use buses and trains. Synchronization constraints need to be incorporated as

public transport operates within a fixed timetable. On the other hand, more options for serving users would

reduce operating costs for transportation providers.
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