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Abstract. We introduce the location-or-routing problem (LoRP), which integrates the facility 

location and the vehicle routing problems by uncovering a new connection from the 

customer coverage perspective. In the LoRP, open facilities cover the customers in their 

neighborhood and the uncovered customers are transported to open facilities by 

capacitated vehicles. Each facility has a maximum coverage range and each vehicle route 

is constrained by a maximum length. In this setting, a customer can be covered either by 

'location' or by 'routing', hence the problem name. We discuss several application areas of 

LoRP and present its relation to the location and routing problems. We develop a set 

covering model and a branch-and-price algorithm as an exact solution methodology. The 

results show that the facility coverage range is an important determinant of the number and 

location of open facilities. We find that the vehicle routes play a decreasing role on the total 

cost as facility range increases. Furthermore, our trade-off analyses on random graphs 

show that the total cost decreases almost linearly by increasing facility coverage range. We 

investigate the reasons behind this observation using arguments from asymptotic analysis 

and find that it is a common property when the customers are uniformly distributed. 
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1. Introduction

This paper proposes a generalized customer coverage model by integrating the location and

vehicle routing problems. To this end, we introduce the location-or-routing problem (LoRP), in

which the customers can be covered by capacitated facilities if they are located within the coverage

range of any open facility or by a vehicle departing from an open facility subject to maximum route

length and vehicle capacity constraints. The objective of LoRP is to minimize the total weighted

cost of opening facilities, vehicle routing and customer coverage by open facilities.

Consider locating general service stores such as retailers, supermarkets or shopping malls in an

urban area. In covering location problems, a customer is assumed to be covered (or equivalently

served) if the distance to the closest open facility is within a certain threshold. This threshold,

which is referred to as coverage range, generally represents the tolerance of the customer to travel

to the closest open facility. The customers that lie beyond the coverage range of any open facility

are assumed to be uncovered in covering location problems. When customers cannot be served

by open facilities, complimentary shuttle buses are offered in many large cities including Beijing

(Kai-yan et al., 2013; Wang and Nie, 2020), Toronto (Tsawwassen Mills, 2020; Vaughan Mills, 2020;

CrossIron Mills, 2020), Victoria (Victoria Transport Policy Institute, 2020) and Istanbul (Historia

Shopping Mall, 2020; Starcity Outlet, 2020; Canpark Shopping Mall, 2020). Put differently, the

open facilities cover a subset of customers, and the uncovered customers are served by vehicles.

The LoRP arises in a number of application contexts.

1. Retail store, supermarket and shopping mall location,

2. School location and bus routing: Generally, the school location (Antunes and Peeters, 2000)

and school bus routing problems (Ellegood et al., 2020; Park and Kim, 2010) are solved hierarchi-

cally. When the two problems are considered simultaneously, the problem we deal with is LoRP, in

which the students are assumed to be covered within a certain distance from the school and buses

are used to transport students that lie beyond the coverage range,

3. Urban delivery center location with drone operations: When packages from urban delivery

centers are transported by limited-range drones (Hong et al., 2018; Otto et al., 2018; Chauhan

et al., 2019) and the uncovered customers are served by trucks located at these delivery centers,

we encounter a LoRP application,

4. Facility location in pandemics: When there is a need for a large-scale testing or vaccination

due to a pandemic such as COVID-19, the LoRP can also be applied to the location optimization

of testing centers in urban areas. The aim is to cover the population by providing them with an

opportunity either to visit a nearby center or to get tested at their home by a mobile medical clinic

vehicle.

In general, the LoRP is applicable when a facility provides public or private service to a neigh-

borhood, and the customers beyond the facility coverage range receive service by vehicles either

at their location or by being transported to the facility. Though each different application has
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(a) Facility coverage range = 0,

# vehicles needed = 5,

total travel distance = 630.95.
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(b) Facility coverage range = 40,

# vehicles needed = 3,

total travel distance = 543.79.

Legend

Customer
Candidate

Facility

Facility

Coverage

1

Figure 1: Vehicle routes and total travel distance with and without facility coverage in parts (a) and (b), respectively.

its own peculiarities and side-constraints, the common understanding of service to a customer is

similar: the location decisions induce the mode of service for different sets of customers. In LoRP,

we capture this connection between the location and routing decisions.

Figure 1 demonstrates an example. There are a total of 30 customers. In Figure 1(a), when

facilities cannot cover any customers, five vehicles are needed and the total travel distance is 630.95.

When we assume that the facility covers the customers in its neighborhood as in Figure 1(b), the

total travel distance reduces to 543.79, which includes only the three vehicle routes, and not the

distance for the covered customers to access the facility.

1.1. Literature review

The LoRP is closely related to the location-routing problem (LRP), in which the goal is opening

a set of facilities and visiting every customer by a capacitated vehicle starting at one of the open

facilities. Similar to LoRP, the objective of LRP is to minimize the total cost of opening facilities

and vehicle routing. The facility prototype considered in LRP is a depot or a warehouse (Perl and

Daskin, 1985). Opening a facility does not directly cover any customer.

The idea of combining the location and routing problems is rooted in the study by Von Boventer

(1961) and evolved into the LRP over time (Laporte, 1988; Laporte et al., 1988; Min et al., 1998).

Different LRP extensions have been considered (Laporte et al., 1986; Alumur and Kara, 2007;

Ahmadi-Javid and Seddighi, 2013; Hof et al., 2017; Arslan et al., 2021). Recent reviews on the
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LRP include Nagy and Salhi (2007) and Prodhon and Prins (2014). The survey by Drexl and

Schneider (2015) focuses on variants and extensions of LRP and the survey by Schneider and Drexl

(2017) focuses on the standard LRP.

Combining two NP-hard problems, the LRP includes intricate relationships between the loca-

tion and routing decisions and often necessitates advanced solution techniques. To this end, Berger

et al. (2007) and Akca et al. (2009) develop exact branch-and-price (B&P) algorithms for solving

the LRP. Belenguer et al. (2011) add capacity constraints on depots and vehicles and develop an

exact branch-and-cut algorithm. Baldacci et al. (2011) observe that the LRP can be decomposed

into a limited set of multi-capacitated depot vehicle routing problems and build an algorithm by

various bounding procedures. Contardo et al. (2014) combine these ideas and introduce several

new valid inequalities to accelerate the solution process. Escobar et al. (2014) propose a novel

granular tabu search within a variable neighborhood search. Ponboon et al. (2016) and Farham

et al. (2018) also include time windows in routing.

Considering a heterogeneous fleet of vehicles is an important facet of the vehicle routing problem

(Koç et al., 2016c). The mix LRP (mLRP) relaxes the homogeneity assumption of the vehicles

and considers a heterogeneous fleet in LRP (Koç et al., 2016a). This problem arises in the context

of city logistics (Koç et al., 2016b). The mLRP is particularly important, because every vehicle

type offers an alternative coverage option, similar to the location and routing decisions in LoRP.

We further elaborate on this relationship in Section 2.

All of the studies described above consider the vehicle visits as the only way to serve a customer,

and the location decisions are related to selection of the origin of the vehicle routes. Another closely

related problem that does not have this assumption is the covering tour problem (CTP) (Gendreau

et al., 1997). The CTP defines a coverage circle around a customer node, and all customers in this

circle are assumed to be covered when the node is visited. CTP then finds a minimum cost vehicle

route such that all customers are within a certain radius from any node on the route. Unlike the

vehicle routing problem, serving a customer is possible without actually visiting the customer by

a vehicle. Several variant have been developed such as bi-objective CTP (Jozefowiez et al., 2007),

multi-vehicle CTP (Hachicha et al., 2000), multi-vehicle probabilistic CTP (Karaoğlan et al., 2018)

and cumulative multi-vehicle CTP (Flores-Garza et al., 2017). Recently, Murakami introduced a

generalized model to solve large-scale CTP. The coverage circle is the same in CTP for all the nodes

in the network. In LoRP, on the other hand, a customer does not have a coverage radius, but a

candidate facility has, which is a major difference between the two problems. In LoRP, facility

location decisions are also made and a customer can be covered by a facility only, but not by any

other customer.

1.2. Scientific contributions and organization of the paper

In our study, we take the location and routing decisions as alternative ways of serving the

customers. As contributions of this study, we
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• introduce the ‘location-or-routing problem’ and position it precisely in the vast body of vehicle

routing and facility location literature,

• develop a B&P algorithm as an exact solution methodology and

• test the computational efficiency of the B&P algorithm on a wide range of instances and

investigate the trade-off among several problem parameters,

• show that the facility range is an important determinant of the number and location of open

facilities. We find that the vehicle routes play a decreasing role on the total cost as the facility

range increases. Furthermore, the results show that the cost decreases linearly by increasing

facility range.

We introduce the formal problem definition and a set covering formulation in Section 2, present

location-or-routing as a problem class in Section 3, develop an exact B&P algorithm in Section 4,

test its computational efficiency in Section 5 and discuss the results in Section 6. We conclude the

study in Section 7.

2. Problem definition and formulation

In this section, we formally define the LoRP, investigate its relation with the LRP and develop

a set covering formulation and valid inequalities.

2.1. Problem definition

Let I be the set of candidate facilities, J be the set of customers and G = (N,A) be a directed

network, where N = I ∪ J is the set of nodes and A = {(i, j) : i, j ∈ N, i 6= j} is the set of

arcs. The length of arc (i, j) ∈ A is dij , which represents the travel cost of arc (i, j). The cost of

covering customer j by facility i is proportional to dij . Without loss of generality, we assume that

the distance matrix satisfies the triangular inequality. Each candidate facility i ∈ I has a setup

cost fi, a coverage range ri and a capacity Ci. Each customer j ∈ J has a demand qj , which must

be covered either by a facility or by a vehicle. A facility i can cover a customer j if dij ≤ ri. Let

Ij be the set of facilities covering customer j ∈ J and Ji be the set of customers covered by facility

i ∈ I. There is a homogeneous fleet of vehicles with capacity Q and route lengths are constrained

to be maximum T .

Definition 1. Location-or-routing problem (LoRP) is defined as selecting a set of facilities to open

and determining a set of vehicle routes, each of which start at an open facility, visit a subset of

customers and return to the same facility, respecting the vehicle capacity and maximum length

constraints such that every customer is covered either by a facility or by a vehicle route and the

total cost of opening facilities, routing vehicles and covering the customers by facilities is minimized.
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Remark 1. If the coverage range ri = 0 for all i ∈ I, LoRP then transforms into a LRP.

Remark 2. If the maximum route length of vehicles T = 0 and there is no cost for covering

customers by facilities, LoRP then transforms into a set covering problem.

Therefore, the problem introduced in this paper is a generalization of the LRP and the set

covering problem.

Remark 3. LoRP is a special case of mLRP.

The correctness of Remark 3 is rooted in the observation that covering a customer j by facility

i can be represented by a dummy vehicle route pij = (i, j, i) with its length equal to the cost

of covering customer j by facility i. This, however, requires introducing a different vehicle type

for every customer j ∈ J and facility i ∈ Ij with capacity qj . Therefore, using the formulations

developed for mLRP for solving the LoRP is impractical.

2.2. A set covering formulation

We define a (closed) path p as an ordered set of directed arcs, starting and ending at the

same candidate facility node i ∈ I. We use the terms route and path interchangeably. Set Jp

represents the customers visited on path p, Ap represents the arcs in p, p0 represents the starting

(and ending) node of p and dp represents the routing cost of path p. We refer to a path as feasible

if it respects the maximum route length and vehicle capacity constraints, that is,
∑

(i,j)∈Ap
dij ≤ T

and
∑

(i,j)∈Ap:j 6=p0
qj ≤ Q. Let P̃j be the set of paths visiting customer j ∈ J , P i be the set of

paths starting from facility i ∈ I, P̂ij = P̃j ∩ P i, and P =
⋃

i∈I P i. Let xi equal 1 if facility i ∈ I
is selected and 0 otherwise, yp equal 1 if path p ∈ P is selected and 0 otherwise and zij equal

1 if customer j is allocated to facility i and 0 otherwise. Note that allocating a customer to a

facility specifies which facility covers that customer in a particular solution. A customer can still

be covered by multiple facilities. We formulate the LoRP as follows.

minimize wF

∑
i∈I

fixi + wR

∑
p∈P

dpyp + wA

∑
j∈J

∑
i∈Ij

dijzij (1)

subject to
∑
i∈Ij

zij +
∑
p∈P̃j

yp = 1 j ∈ J (2)

∑
j∈Ji

qjzij +
∑
p∈Pi

qpyp ≤ Cixi i ∈ I (3)

zij ≤ xi i ∈ I, j ∈ Ji (4)

xi, yp, zij ≥ 0 and integer i ∈ I, j ∈ Ji, p ∈ P, (5)

where wF , wR and wA are nonnegative weights in the objective function associated with fixed,

routing and allocation costs, respectively. The objective function minimizes the weighted sum of
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these three cost components. Constraints (2) ensure that all customers are covered. Even though

multiple open facilities may be within the coverage range of a customer, constraints (2) ensure that

all customers are covered only one time in a solution. Constraints (3) respect facility capacities and

also ensures that a path starts from an open facility. Constraints (4) link location and allocation

variables and constraints (5) are the domain restrictions.

2.3. Valid inequalities

Aside from enforcing the facility capacities to be respected, constraints (3) ensure that xi = 1

when there exists a path in the optimal solution starting at facility i. The same implication can

be achieved by the following stronger set of constraints.∑
p∈P̂ij

yp ≤ xi i ∈ I, j ∈ J (6)

which states that if a customer j is served by a vehicle route starting from a facility i, then facility

i should be open. Constraints (6) are known to be stronger (Akca et al., 2009) than constraints

(3) and improve the linear programming (LP) relaxation of the model.

Let vi be an integer variable representing the number of vehicles starting their routes from

facility i ∈ I. This variable type is not necessary for problem description, but it is mainly used to

implement the branching rules in a B&P algorithm. The following inequalities are then valid.∑
p∈Pi

yp = vi i ∈ I (7)

∑
i∈I

vi ≥

⌈∑
j∈J\∪i∈IJi qj

Q

⌉
(8)

Constraint (7) assigns the number of vehicles used at facility i to variable vi and Constraint (8)

puts a lower bound on the number of vehicles to be used. This bound is generally weaker in LoRP

than LRP because customers are not necessarily visited by vehicles and they may be covered by a

facility.

Combining the initial model with these valid inequalities, we obtain the following formulation,

which we refer to as the set covering (SC) model.

(SC) minimize wF

∑
i∈I

fixi + wR

∑
p∈P

dpyp + wA

∑
j∈J

∑
i∈Ij

dijzij

subject to (2)− (4), (6)− (8)

xi, yp, zij , vi ≥ 0 and integer i ∈ I, j ∈ Ji, p ∈ P (9)

Note that we relax binary variables x, y and z into integer variables without loss of generality
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due to the minimization type of the objective function. This eliminates the need to add an upper

bound of 1 on the binary variables when solving the LP relaxation of the SC model.

3. Location-or-routing as a problem class

The problem we define in this paper integrates the location and routing problems. We now

discuss several variants of LoRP, which we obtain by considering different problems in location

science.

3.1. Uncapacitated location-or-routing problem (ULoRP)

The problem as we define above considers capacitated facilities and hence can be referred to

as the capacitated LoRP. By relaxing the facility capacity constraints, we obtain the uncapacitated

LoRP , which is formulated as follows.

minimize wF

∑
i∈I

fixi + wR

∑
p∈P

dpyp + wA

∑
j∈J

∑
i∈Ij

dijzij

subject to (2), (4), (6)− (9)

Therefore, there is a capacitated and uncapacitated version of every problem considered below.

3.2. Set covering location-or-routing problem (SCLoRP)

In the set covering location problem, the coverage of customers does not contribute to the

objective function. In a similar logic, the set covering location-or-routing problem (SCLoRP) min-

imizes the number of facilities to cover all the demand, which is modeled by setting wR = wA = 0

in the SC model.

3.3. Hard-cost minimizing location-or-routing problem (HMLoRP)

The first two cost components in the objective function of the SC model are hard costs that

are directly related to setting up the infrastructure and carrying out the operations, whereas the

third component is a soft cost and is not directly incurred. It models the inconvenience of the

customers that directly transport to the facilities. When we consider only the hard costs in the

objective function, we obtain the hard-cost minimizing location-or-routing problem (HMLoRP),

which is modeled by setting wA = 0 in the SC model. This implies that a vehicle visit is not

necessary for customers that are covered by at least one facility.

Proposition 1. In HMLoRP, we set P̂ij = ∅ when dij ≤ ri, for all i ∈ I and j ∈ J .

Proof. Assume that di0j0 ≤ ri0 , for i0 ∈ I and j0 ∈ J and that yp0 = 1 in the optimal solution for

path p0 = (i0, . . . , i1, j0, i2 . . . , i0) starting at i0 and visiting customer j0. Since customer j0 can be

covered at no cost by facility i0, there exists a feasible path p1 = p0 \ {j0} = (i0, . . . , i1, i2 . . . , i0)
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with dp0 = dp1 due to triangular inequality. Thus, an alternative optimal solution with yp0 = 0 and

yp1 = 1 exists. Applying the same argument for every i and j pair with dij ≤ ri gives the desired

result. �

Note that due to Proposition 1, increasing coverage range implies fewer feasible routes in HMLoRP.

This proposition is also valid for the SCLoRP.

3.4. P-median location-or-routing problem (pMLoRP)

Transforming the first term in the objective function into a constraint and taking the parameters

dp and dij as time, the objective function represents the total time that customers spend to reach

to facilities. Here, dp represents the vehicle riding time and dij represents the direct transportation

time of customers to their nearest facilities. This problem combines the p-median location and

vehicle routing problems and is therefore referred to as the p-median location-or-routing problem,

pMLoRP(p), where p is the number of facilities to be located. The model is as follows.

minimize wR

∑
p∈P

dpyp + wA

∑
j∈J

∑
i∈Ij

dijzij (10)

subject to (2)− (4), (6)− (9)∑
i∈I

xi ≤ p (11)

where constraint (11) limits the number of open facilities by p.

3.5. P-center location-or-routing problem (pCLoRP)

If the objective is to minimize the maximum time a customer spends to reach to a facility,

we then obtain the p-center location-or-routing problem, pCLoRP(p), where p is the number of

facilities to be located. Let η be an auxiliary variable representing the maximum time that it takes

for any customer to reach to a facility in the network and parameter d̂p be the the ride time of the

first customer on the route, which equals the total route time less the travel time from the facility

to the first customer. We can then model pCLoRP(p) as follows.

minimize η (12)

subject to (2)− (4), (6)− (9), (11)

η ≥ dijzij i ∈ I, j ∈ Ji (13)

η ≥
∑
p∈P̂ij

d̂pyp i ∈ I, j ∈ J (14)

where constraints (13) and (14) ensures that η is correctly assigned.
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3.6. Maximum covering location-or-routing problem (MCLoRP)

Another extension is obtained by changing the objective function as the maximization of the

customer coverage and by considering the cost as a constraint, which would lead to the maximum

covering location-or-routing problem (MCLoRP). Let tj equal 1 if a customer is covered and 0

otherwise. We can then model the MCLoRP as follows.

maximize
∑
j∈J

qjtj (15)

subject to (3)− (4), (6)− (9)

wF

∑
i∈I

fixi + wR

∑
p∈P

dpyp + wA

∑
j∈J

∑
i∈Ij

dijzij ≤ B (16)

∑
i∈Ij

zij +
∑
p∈P̃j

yp = tj j ∈ J (17)

tj ∈ {0, 1} j ∈ J (18)

The objective function maximizes the customer coverage. Constraint (16) forces a budget of B,

constraints (17) assign tj = 1 when customer j is covered (either by a facility or by a vehicle) and

constraints (18) are the domain restrictions.

Therefore, the LoRP can be considered as a class of problems. In the next section, we develop

an algorithm to solve the SC model. This directly allows solving the uncapacitated and capacitated

versions of LoRP, SCLoRP, HMLoRP and pMLoRP. On the other hand, pCLoRP and MCLoRP

requires calculating the reduced cost of y variables differently. Nevertheless, this does not alter the

problem structure or the pricing problem and the methodology we develop below can be adapted

in a straightforward manner to solve the pCLoRP and MCLoRP.

4. Solution methodology

We now develop an exact B&P algorithm to solve the SC model. In this section, we present

a column generation algorithm, the pricing problem, branching rules, and other implementation

details including generation of initial set of columns, variable fixing and upper bound heuristics.

4.1. Column generation

Solving the LP relaxation of SC model, which we refer to as SC-R, is an integral part of the B&P

algorithm. We start the column generation algorithm by solving the LP relaxation of a restricted

SC model with an initial set of columns only. This provides us with the dual variables, which in

turn allows us to obtain the reduced cost of all path variables in the SC model. We then add at

least one variable with a negative reduced cost, if one exists, and resolve the LP relaxation. This

iterative procedure is continued until no such variable with a negative reduced cost exists after
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solving the restricted SC model, which gives us a certificate that the solution obtained is optimal

for the SC-R.

Let αj and γi be the dual variables unrestricted in sign, associated with constraints (2) and

(7), respectively, and βi and δij be the nonnegative dual variables associated with constraints (3)

and (6), respectively, The reduced cost of variable yp is then given in the following expression.

cp = wRdp +
∑
j∈Jp

(δp0j − αj + qjβp0)− γp0 . (19)

Having minp∈P{cp} ≥ 0 ensures that all path variables with nonnegative reduced costs are in

the problem and the SC-R is solved optimally. If there exists a path p with cp < 0, we add the

corresponding variable yp to the formulation. Therefore, the goal after solving the restricted SC-R

is to identify a path with negative reduced cost. This problem is referred to as the pricing problem,

which is the topic of the next section.

4.2. Pricing problem

For candidate facility i, consider graph Ĝi = (N̂i, Âi), where î is a duplicate node of facility i,

N̂i = J ∪ {i, î} and Âi =
{

(m,n) ∈ A : m,n ∈ J
}⋃{

(i,m) : m ∈ J
}⋃{

(m, î) : m ∈ J
}

. The

length of arc (m,n) ∈ Âi is

d̂mn =

wRdmi − γi if n = î

wRdmn + δin − αn + qnβi otherwise
(m,n) ∈ Âi. (20)

Traveling an arc (m,n) ∈ Âi consumes two types of resources, r1mn and r2mn from the vehicle

capacity (Q) and the maximum route length (T ), respectively.

r1mn =

qn if n 6= î

0 otherwise
(m,n) ∈ Âi, (21)

r2mn =

dmn if n 6= î

dim otherwise
(m,n) ∈ Âi. (22)

Note that the length of path p = (p0, p1, . . . , pn, p̂0) in Ĝi is equal to the reduced cost of

yp in SC-R, that is,
∑

(m,n)∈p d̂mn =
∑

(m,n)∈Ap
wRdmn +

∑
n∈Jp(δp0n − αn + qnβp0) − γp0 = cp.

Furthermore,
∑

(m,n)∈p r
1
mn is equal to the customer demand on path p and

∑
(m,n)∈p r

2
mn is equal

to the distance of path p, which are restricted to be at most Q and T , respectively.

The pricing problem is then to find a shortest path in graph Ĝi for every candidate facility

i ∈ I subject to two side constraints associated with the vehicle capacity Q and the maximum

route length T . Let umn equal 1 if and only if arc (m,n) is selected. The formulation presented

11

The Location-or-routing Problem

CIRRELT-2021-11



below models the pricing problem for a given facility i in graph Ĝi.

minimize
∑

(m,n)∈Â

d̂mnumn (23)

subject to
∑

n:(m,n)∈Â

umn −
∑

n:(n,m)∈Â

unm =


1 if m = i

−1 if m = î

0 otherwise

m ∈ N̂i (24)

∑
(m,n)∈Â

r1mnumn ≤ Q (25)

∑
(m,n)∈Â

r2mnumn ≤ T (26)

∑
(m,n)∈S

umn ≤ |S| − 1 S ⊂ Âi (27)

umn ∈ {0, 1} (m,n) ∈ Âi. (28)

The objective function minimizes the reduced cost. Constraints (24) are the node balance equa-

tions. Constraints (25) and (26) ensure that the selected path respects the resource constraints.

Constraints (27) ensure that the selected path is elementary and constraints (28) are the domain

restrictions.

The pricing problem itself is NP-hard, however, several algorithms exist for solving a resource

constrained shortest path problem (Pugliese and Guerriero, 2013). In this paper, we adopt a state-

of-the-art algorithm developed by Lozano et al. (2016), referred to as the pulse algorithm. The

algorithm solves an elementary resource constrained shortest path problem with time windows. In

our implementation, we use step size = 25 and lower time limit = 25. We also set r2mn as the time

consumption on arc (m,n) and set the time window of a candidate facility as [0, T ]. Resource r1mn

counts towards the capacity Q. This ensures that the path given by the algorithm is elementary

resource constrained shortest path respecting the vehicle capacity and the maximum route length

constraints.

4.3. Determining feasibility

Before starting the algorithm, we use the following observation to determine if an instance is

feasible.

Proposition 2. For j ∈ J , let `j be the distance to the closest candidate facility, that is, `j =

mini∈I dij. A given LoRP instance is feasible if and only if one of the following two conditions hold

for every customer j ∈ J :

• there exists i ∈ I such that dij ≤ ri,
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• qj ≤ Q and `j ≤ T/2.

Proof. (Necessity) Assume that a given LoRP instance is feasible. Then, for each customer j ∈ J ,

there exists either a facility that covers j or a feasible path visiting j. The former provides the

first condition above. Let pj be the path visiting customer j, Nj be the set of nodes on path pj

and Aj be the set of arcs on path pj . Due to feasibility, we have
∑

k∈Nj
qk ≤ Q, which implies

that qj ≤ Q. Similarly, we have
∑

(m,n)∈Aj
dmn ≤ T and due to triangular inequality, we have

2`j ≤
∑

(m,n)∈Aj
dmn ≤ T , which provides the second condition above.

(Sufficiency) Assume that at least one of the two conditions holds for every j ∈ J . First, assume

that the former condition holds. Then, there exists i ∈ I such that dij ≤ ri and customer j is

covered. Now, assume that the second condition holds. Let ij be the closest facility to customer

j ∈ J . Since qj ≤ Q and `j ≤ T/2, opening candidate facility ij and selecting path (ij , j, ij) covers

customer j. This solution with all customers covered either by an open facility or by a path is

feasible for the given problem instance. �

4.4. Initial set of columns

The initial set of columns is needed to ensure that the first restricted problem is feasible

and that the dual variables can be obtained. Therefore, there must exist a path variable in the

formulation corresponding to each customer. Similarly, there must exist a path variable starting

at every candidate facility. Furthermore, these paths must be feasible. We build a feasible solution

as follows. Let ij be the closest candidate facility to customer j ∈ J and pj be a path that visits

customer j from ij . That is, pj = (ij , j, ij) for every j ∈ J . We add a variable for path pj for every

customer j ∈ J if dpj > T , which ensure that the restricted SC-R is feasible when the instance is

feasible due to Proposition 2.

4.5. Branching rules and variable fixing

If the optimal solution of SC-R is integer, it is also optimal for SC model. If it has fractional

terms, we need to branch for an integer solution. We implement a four-stage hierarchical branching.

In all levels, we select the most fractional variable to branch on. The first level branches on the

facility variables x. At the master problem level, we only add a constraint to enforce the branching

rule. We also do not need to solve the pricing problem associated with a facility i if xi = 0. When

all facility variables are binary, we branch on v variables. Similar to the facility location variables,

we only add a single constraint to the master problem in order to enforce the branching rules. The

pricing problem is not impacted by the branching rules on v variables. The third branching level

is on flow variables. We branch on implicit variable rkij which equals 1 if arc (i, j) is used in the

solution by a vehicle starting at facility k, and 0 otherwise. To enforce rkij = 1, we remove all the

variables from the master problem corresponding to the paths starting at facility k and visiting

nodes i or j without using arc (i, j). We also remove all variables corresponding to paths starting

13

The Location-or-routing Problem

CIRRELT-2021-11



at a facility k̂ 6= k and using arc (i, j). Note that, because of the problem structure, nodes i and j

can still be covered by facilities with rkij = 0. To avoid this, we also ensure that no facility covers

nodes i and j by setting
∑

h∈Ji zhi = 0 and
∑

h∈Jj zhj = 0. At the pricing problem level, we remove

all arcs leaving node i and entering node j except for arc (i, j) when solving the pricing problem

corresponding to facility k. For other facilities k̂ 6= k, we remove nodes i and j when solving

the pricing problem. To forbid using arc (i, j) is more straightforward, we remove all variables

corresponding to paths using arc (i, j) from the master problem and forbid using arc (i, j) in the

pricing problem. The fourth level branches on the zij variables. Similar to the x and v variables,

we add a constraint to the master problem in order to enforce the branching rules and the pricing

problem is not impacted by the branching rules on zij variables.

We also implement variable fixing by reduced cost for facility location variables (Savelsbergh,

1994). Let ψi be the reduced cost of variable xi for all i ∈ I and z and z be the upper and lower

bounds on the optimal objective function value, respectively, at any given node of the branch-and-

bound (B&B) tree. The variable xi is set equal to zero if ψi > z−z. The implementation is similar

to first level branching rule.

4.6. Upper bound heuristic

At any node in the B&B tree, we can build a mixed integer linear program (MILP) from the

SC-R model by imposing integrality constraints on the continuous variables in order to obtain a

feasible solution for the SC model. If the solution generated improves the incumbent solution, we

keep the new solution as the incumbent and continue exploring the B&B tree. We build the first

MILP after solving the SC-R at the root node, which provides an upper bound when starting to

explore the B&B tree. Note that any feasible solution of such a restricted MILP model is also

feasible for the SC model. Therefore, we do not necessarily run the restricted MILP to optimality.

In our implementation, we run the restricted model for at most 120 seconds. In our computational

experiments, we observed that the MILP model generally runs much faster, in a few seconds.

Similarly, we build the restricted MILP model every time 1,000 or more new path variables are

generated. This allows us to obtain good upper bounds as we build the B&B tree.

5. Computational study

We now present the experimental setting, present computational performance of algorithms

and discuss the results. In this section, we solve uncapacitated HMLoRP (u-HMLoRP), capac-

itated HMLoRP (c-HMLoRP), uncapacitated pMLoRP (u-pMLoRP), and capacitated pMLoRP

(c-pMLoRP). We implemented our algorithms using Java, and all the experiments were conducted

on the Cedar cluster of Compute Canada using single thread and 10GB of RAM on a Linux environ-

ment. We used CPLEX 12.10.0 for solving the linear programs. The time limit for all experiments

is set to three hours.
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Figure 2: Arc length distribution in the 42 networks considered

5.1. Experimental setting

Table 1: Datasets

Set Subset # nodes # facilities # networks # instances

Akca Akca-30-5 30 5 6 1296
Akca-40-5 40 5 6 1296

Prodhon Prodhon-20-5 20 5 4 864
Prodhon-50-5 50 5 8 1728
Prodhon-100-5 100 5 6 1296
Prodhon-100-10 100 10 6 2376
Prodhon-200-10 200 10 6 2376

Total 42 11,232

We use the networks of Akca et al. (2009) and Prodhon (2006) (Table 1). We consider the large

instances of the Akca set containing 6 networks with 30 customers (namely, r30x5a-1, r30x5a-2,

r30x5a-3, r30x5b-1, r30x5b-2, r30x5b-3) and 6 networks with 40 customers (namely, r40x5a-1,

r40x5a-2, r40x5a-3, r40x5b-1, r40x5b-2, r40x5b-3), all of which have 5 candidate facilities. In the

Prodhon set, there are 4 networks with 20 nodes, 8 networks with 50 nodes, 12 networks with 100

nodes, and 6 networks with 200 nodes, which makes 30 networks in total with 5 to 10 capacitated

facilities. The fixed setup costs of facilities are equal to 100 in all networks in the Akca set and

they are between 5029 and 126,029 in the Prodhon set. The vehicle capacities vary between 275

and 390 in the Akca set and between 70 and 150 in the Prodhon set. The facility capacities are

between 1000 and 1750 in the Akca set and between 70 and 1260 in the Prodhon set. The maximum
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distance between any pair of nodes in the network changes between 101 and 130 in the Akca set

and between 4977 and 6930 in the Prodhon set. The coordinate system of the Akca networks is

in order of tens and that of the Prodhon networks is in order of thousands. To simplify the design

of experiments and to improve the presentation of the results, we scale the arc lengths so that

the arc between the two farthest nodes in every network equals 100. Figure 2 plots the arc length

distribution in all 42 networks considered. The horizontal axis is the arc length and the vertical

axis is the percentage of the arcs in the graphs.

We have three sets of experiments.

• Experiment set-1: The first experiment set corresponds to the base case. We use a fixed

coverage range for every facility, which we refer to as R. We test for R ∈ {0, 10, 20, 30, 40, 50}
and T ∈ {100, 125, 150}. We solve uncapacitated and capacitated HMLoRP and pMLoRP(p)

for p = 1, . . . , |I|. For the Akca set, this makes 216 u-HMLoRP instances, 216 c-HMLoRP

instances, 1080 u-pMLoRP instances, and 1080 c-pMLoRP instances. In the Prodhon set, we

have 18 networks with 5 candidate facilities and 12 networks with 10 candidate facilities. This

makes 540 u-HMLoRP instances, 540 c-HMLoRP instances, 3780 u-pMLoRP instances, and

3780 c-pMLoRP instances for Prohon set. In total, we have 11,232 problem instances. Note

that, by definition, we have wA = 0 for HMLoRP and wF = 0 for pMLoRP. Respecting these

two conditions, in this first set of experiments, we fix (wF , wR, wA) = (1, 1, 0) for HMLoRP

and (wF , wR, wA) = (0, 1, 0) for pMLoRP. We use this set for presenting computational results

in Section 5.2. We also discuss the results of the Akca set in Section 6.2.

• Experiment set-2: We develop this second set to investigate how the objective function

weights affect the results. We test the same settings for the Akca set as in ‘Experiment

set-1’, and change the weights as (wF , wR, wA) = (4, 1, 0) by amplifying the fixed costs for

HMLoRP and (wF , wR, wA) = (0, 1, 0.2) by increasing the allocation costs for pMLoRP, which

makes a total of 2592 instances. We discuss their results in Section 6.3.

• Experiment set-3: In the third set, we solve large scale instances involving 100 customers

and 10 to 60 facilities. To ensure reproducibility, we use the same 3 networks from the

Prodhon-100-10 dataset (Table 1) and only add new facilities, which are obtained from the

Prodhon-100-10 and the Prodhon-200-10 datasets. This allows us to obtain 60 different

candidate facilities. We then build 6 copies of each of the 3 networks by adding 10, 20, 30,

40, 50, or 60 facilities. For these 18 different networks, we solve u-HMLoRP and c-HMLoRP

for R ∈ {0, 10, 20, 30, 40} and T ∈ {40, 50, 60}, which makes 540 instances. We again set

(wF , wR, wA) = (1, 1, 0) for HMLoRP and (wF , wR, wA) = (0, 1, 0) for pMLoRP. We discuss

their results in Section 6.4.

Therefore, there are a total of 14,364 instances. In the following, we first present the computational

results and then study the impacts of R and T on the total cost and facility and vehicle utilizations.
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5.2. Computational results

We carry out the computational tests on ‘Experiment set-1’ and report the solution status of

instances in Table 2. The first column is the name of the dataset, the second column is the name

of problem (including both uncapacitated and capacitated problem types) and the third column

is the number of instances. The number of optimal, infeasible, feasible, and unknown solutions

are shown in columns 3−6, respectively. The unknown instances are certified to be feasible using

Proposition 2, but the root node relaxation could not be solved and therefore, no bound information

is available. Among the 11,232 instances, a total of 7910 are solved optimally (5666) or proven

to be infeasible (2244), which corresponds to more than 70% of the dataset. The remaining 3322

instances are ‘Feasible’ or ‘Unknown’. There are no unknown solutions in the Akca set. Note the

number of infeasible pMLoRP instances is large for p ≤ 2.

Table 2: Solution status breakdown with respect to dataset and problem type in ‘Experiment set-1’

Dataset Problem # instances Solution status (# of instances)

Optimal Infeasible Feasible Unknown

Prodhon HMLoRP 1080 383 96 227 374
pMLoRP(1) 1080 86 798 43 153
pMLoRP(2) 1080 331 468 108 173
pMLoRP(3) 1080 558 96 147 279
pMLoRP(4) 1080 620 96 124 240
pMLoRP(5) 1080 629 96 131 224
pMLoRP(6) 432 219 63 150
pMLoRP(7) 432 215 70 147
pMLoRP(8) 432 216 72 144
pMLoRP(9) 432 216 73 143
pMLoRP(10) 432 217 72 143

Akca HMLoRP 432 376 48 8
pMLoRP(1) 432 98 330 4
pMLoRP(2) 432 352 72 8
pMLoRP(3) 432 384 48
pMLoRP(4) 432 382 48 2
pMLoRP(5) 432 384 48

Total 11,232 5666 2244 1152 2170

Table 3 reports the solution status breakdown as the percentage of the total number of instances

in the same dataset. For example, there are 864 instances in the Prodhon-20-5 dataset and 75.7%

are solved optimally and 24.3% are proven to be infeasible. Note that the total percentage of

feasible and unknown instances increases as the number of nodes in the network increases.

In Table 4, the solution status breakdown is reported for different R, which mainly affects the

number of feasible and unknown instances. When R is high, the number of vehicles routes to
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Table 3: Solution status breakdown as percentages with respect to dataset in ‘Experiment set-1’

Dataset # nodes # instances Solution status (% of instances)

Optimal Infeasible Feasible Unknown

Prodhon-20-5 20 864 75.7% 24.3% 0.0% 0.0%
Akca-30-5 30 1296 80.8% 19.0% 0.2% 0.0%
Akca-40-5 40 1296 71.7% 26.9% 1.5% 0.0%
Prodhon-50-5 50 1728 46.3% 27.8% 19.6% 6.4%
Prodhon-100-5 100 1296 29.6% 34.3% 12.0% 24.1%
Prodhon-100-10 100 2376 44.3% 10.6% 19.7% 25.5%
Prodhon-200-10 200 2376 33.7% 11.1% 7.1% 48.1%

Avearge 11,232 50.4 20.0 10.3 19.3

Table 4: Solution status breakdown with respect to R in ‘Experiment set-1’

Facility # instances Solution status (# of instances)

range (R) Optimal Infeasible Feasible Unknown

0 1872 499 374 232 767
10 1872 506 374 300 692
20 1872 732 374 372 394
30 1872 1156 374 128 214
40 1872 1344 374 84 70
50 1872 1429 374 36 33

Total 11,232 5666 2244 1152 2170
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be generated is small and therefore, the solution process is more efficient and more instances are

solved optimally. On the other hand, the number of infeasible instances is not impacted by R,

which is always less than T in the ‘Experiment set-1’. Therefore, if a customer can be covered

by a facility, it can always be covered by the vehicle too, but the opposite is not true. The main

factor affecting the number of infeasible instances is T . There are 2244 infeasible instances, which

corresponds to 20.0% of all the instances and we report their breakdown in Table 5. The first

column is the name of the problem and the second column is the number of infeasible instances.

Columns 3−5 report the infeasible instance counts for the uncapacitated problem for T = 100, 125

and 150, respectively. Columns 6−8 report the same statistics for the capacitated problem. The

majority of infeasible instances are in pMLoRP when both p and T are small. Since a customer

can be covered by location or routing, feasibility requires at least one of the coverage types for

every customer. Note that there are also 432 instances of pMLoRP with 6 ≤ p ≤ 10, all of which

are feasible and therefore not reported in this table.

Table 5: Breakdown of infeasible instances with respect to problem type and T in ‘Experiment set-1’

Problem # infeasible Uncapacitated problem Capacitated problem

instances T=100 T=125 T=150 T=100 T=125 T=150

HMLoRP 144 54 18 54 18
pMLoRP(1) 1128 252 102 18 252 252 252
pMLoRP(2) 540 96 18 180 126 120
pMLoRP(3) 144 54 18 54 18
pMLoRP(4) 144 54 18 54 18
pMLoRP(5) 144 54 18 54 18

Total 2244 564 192 18 648 450 372

The optimality gaps are reported in Table 6. The averages are 0.7%, 1.2%, 2.4%, 0.6%, 0.3%,

and 0.2% when R equals 0, 10, 20, 30, 40, and 50, respectively. The gaps are generally higher for

capacitated instances.

The solution times are significantly affected by R (Table 7). Their averages are 5912.8, 4839.9,

4656.7, 2097.7, 982.1, and 489.3 seconds for R = 0, 10, 20, 30, 40, and 50, respectively. When R

increases, several customers are covered by the open facilities. This results in smaller number of

vehicle routes to be generated by the column generation algorithm and the solution times decrease

accordingly. The parameter T also has an impact on the average solution times because the pricing

problem is less constrained and takes more time when T is high.

6. Discussion

In this section, we discuss the impacts of several parameters on the total cost and on the facility

and vehicle utilization. We first demonstrate the impacts of new problem type on the solutions
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Table 6: Average optimality gaps for different R and T in ‘Experiment set-1’

Problem Maximum route Facility range (R)

type length (T ) 0 10 20 30 40 50

Uncapacitated 100 0.8% 1.3% 1.6% 0.3% 0.1% 0.0%
125 0.4% 0.9% 2.4% 0.7% 0.4% 0.0%
150 0.5% 0.8% 1.9% 0.3% 0.4% 0.5%

Capacitated 100 0.9% 1.8% 2.8% 0.9% 0.1% 0.0%
125 0.9% 1.2% 2.9% 0.9% 0.2% 0.2%
150 1.0% 1.2% 2.6% 0.6% 0.5% 0.4%

Average 0.7% 1.2% 2.4% 0.6% 0.3% 0.2%

Table 7: Solution times (s) for different T and R in ‘Experiment set-1’

Maximum route Facility range (R)

length (T ) 0 10 20 30 40 50

100 4984.9 4976.5 3565.8 1237.1 219.0 19.6
125 5896.1 5855.2 4765.8 2153.0 983.9 400.8
150 6857.5 6688.1 5638.6 2903.1 1743.5 1047.5

Average 5912.8 5839.9 4656.7 2097.7 982.1 489.3

using an illustrative example in Section 6.1. We then discuss the results of ‘Experiment set-1’,

‘Experiment set-2’, and ‘Experiment set-3’ in Sections 6.2, 6.3, and 6.4, respectively.

6.1. An illustrative example

We first demonstrate the effect of facility coverage range on the optimal solutions using the

example in Figure 3. The network we consider is ‘r40x5a-2’ of the Akca set with T = 150. There

are 40 nodes and 5 candidate facilities. We solve the HMLoRP for R = 0, 10, 20, 30, 40, 50 and the

optimal locations and vehicle routes are shown in Figures 3(a)−(f), respectively. Starting with the

top-left figure, the optimal cost is 753.03 when R = 0 and 7 vehicles are used. When R = 10, the

cost is not significantly affected, it only reduces 2.66% and 1 fewer vehicle is used (Figure 3(b)).

The impact is more obvious when R = 20, in which case the cost reduction is more than 17.9%

and 4 vehicles are used (Figure 3(c)). When R = 30, the cost reduces by 36.7% and the number of

facilities increases to 3, which collectively cover 35 customers (Figure 3(d)). In this setting, only

5 customers are covered by 2 vehicles. Increasing R to 40 (Figure 3(e)) leaves only 1 uncovered

customer by the 2 open facilities, which is also covered by the open facilities when R = 50 (Figure

3(f)). The problem effectively transforms into a set covering problem.
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(a) Range = 0, Cost = 753.03, 7 vehicles.
Facilities cover 0% of customers.

x

x

(b) Range = 10, Cost = 732.99, 6 vehicles.
Facilities cover 7.5% of customers.

xx

(c) Range = 20, Cost = 618.16, 4 vehicles.
Facilities cover 37.5% of customers.

x

x

x

(d) Range = 30, Cost = 476.82, 2 vehicles.
Facilities cover 85% of customers.

x

x

(e) Range = 40, Cost = 291.18, 1 vehicle.
Facilities cover 97.5% of customers.

x

x

(f) Range = 50, Cost = 200.00, no vehicle.
Facilities cover 100% of customers.

Legend

x

Customer Candidate

Facility

Selected

Facility

Facility

Coverage

Figure 3: Selected facilities and vehicle routes in optimal solutions for network ‘r40x5a-2’ of the Akca set, maximum
route length T = 150 and facility coverage range R ∈ {0, 10, 20, 30, 40, 50} in parts (a)−(f), respectively.
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6.2. Experiment set-1: base case

In this section, we present the results of the Akca set in ‘Experiment set-1’. We omit the

results of the Prodhon set because there are many non-optimal solutions, which prevents drawing

meaningful insights. For the same reason, we do not report the results corresponding to pMLoRP(1)

and we remove the instances in the Akca set corresponding to networks ‘r30x5b-3’, ‘r40x5b-1’ and

‘r40x5b-2’ because they are infeasible when T = 100 but feasible when T = 125 or T = 150.

Table 8: Average costs for different problem types and R for the Akca set instances in ‘Experiment set-1’

Problem Facility range (R)

name 0 10 20 30 40 50

HMLoRP 781.7 771.4 694.0 553.7 396.2 222.2
pMLoRP(2) 582.1 570.7 502.5 397.9 235.6 27.6
pMLoRP(3) 535.9 517.8 419.8 274.0 122.1 0.0
pMLoRP(4) 523.0 495.8 377.7 233.5 116.4 0.0
pMLoRP(5) 515.6 484.7 355.9 230.0 116.4 0.0

Table 8 reports the costs of HMLoRP for different problem types and R. The averages are

781.7, 771.4, 694.0, 553.7, 396.2, and 222.2 for R = 0, 10, 20, 30, 40, and 50, respectively. There is

almost a linear relationship between the cost and R when range is at least 20 (Figure 4). The slope

of the linear part of the blue curve is 15.7. That is, every unit increase in R decreases the cost by

15.7. The linear relationship between the cost and the range is rooted in the random distribution

of customers in the plane and we elaborate on this topic in Section 6.2.1. The average costs of

pMLoRP for 2 ≤ p ≤ 5 are also reported in Table 8 and are shown in Figure 4. We observe a

similar trend in pMLoRP to the HMLoRP. The average costs of HMLoRP are higher because they

also include the opening cost of facilities. Note that the costs of pMLoRP(p) for 3 ≤ p ≤ 5 are zero

when R = 50 because opening facilities does not contribute to the objective function in pMLoRP,

the allocation weight wA = 0 and no vehicle is necessary to cover the customers because they are

covered by facilities.

Table 9 reports the average number of open facilities in HMLoRP solutions. There are generally

more open facilities in c-HMLoRP solutions than in u-HMLoRP solutions. The average number of

open facilities is decreasing when T increases, because more customers can be covered by vehicles.

In the R dimension, the average number of facilities in solutions are 2.04, 2.11, 2.39, 2.81, 2.46

and 2.22 for R = 0, 10, 20, 30, 40, and 50, respectively. Figure 5 plots this relationship. There are

two parts of this function. The average number of open facilities is increasing until R = 30 and

then decreasing. The reason is the tradeoff between opening a new facility to cover customers (in

which case fixed cost is incurred), and sending vehicles from the other open facilities (in which

case routing cost is incurred). In the first part of the function, the cost of opening a new facility

to cover customers is less than the cost of covering them by vehicles. The marginal benefit of
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Figure 4: Average costs for different problem types and R for the Akca set instances in ‘Experiment set-1’

Table 9: Average number of open facilities used in HMLoRP solutions for different T and R for the Akca set instances
in ‘Experiment set-1’

Problem Max. route Facility range (R)

type length (T ) 0 10 20 30 40 50

Uncapacitated 100 2.33 2.44 2.67 3.00 2.67 2.22
125 1.89 2.00 2.33 2.78 2.33 2.22
150 1.56 1.67 2.11 2.56 2.22 2.22

Capacitated 100 2.33 2.44 2.67 3.11 2.67 2.22
125 2.11 2.11 2.33 2.78 2.44 2.22
150 2.00 2.00 2.22 2.67 2.44 2.22

Average 2.04 2.11 2.39 2.81 2.46 2.22
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Figure 5: Average number of open facilities used in HMLoRP solutions for different R for the Akca set instances in
‘Experiment set-1’
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Figure 6: Average percent of customers covered by facilities in HMLoRP solutions for different R for the Akca set
instances in ‘Experiment set-1’

opening a new facility is increasing as R approaches from 0 to 30 because each new facility covers

more customers. In the second part of the function, the facility coverages start to overlap. In

other words, the marginal contribution of each new facility is not good enough, and covering the

customers by vehicles from open facilities is better in terms of the objective function. To this end,

the average percent of customers covered by facilities and the marginal contribution of 10 units

increase in R are shown in Figure 6. Note that the marginal contribution line in red is decreasing

when R ≥ 30.

Table 10: Average number of vehicles used in HMLoRP solutions for different T and R for the Akca set instances in
‘Experiment set-1’

Problem Max. route Facility range (R)

type length (T ) 0 10 20 30 40 50

Uncapacitated 100 7.33 6.56 5.78 3.56 1.78 0.00
125 6.33 5.89 4.44 2.67 1.44 0.00
150 6.11 5.67 3.89 2.44 1.44 0.00

Capacitated 100 7.44 6.78 5.89 3.56 1.89 0.00
125 6.22 5.67 4.44 2.67 1.33 0.00
150 6.11 5.67 3.89 2.33 1.33 0.00

Average 6.59 6.04 4.72 2.87 1.54 0.00

Table 10 shows the number of vehicles used in the HMLoRP solutions. The average number of

vehicles used is 6.59, 6.04, 4.72, 2.87, 1.54 and 0.00 when facility range is 0, 10, 20, 30, 40, and 50,

24

The Location-or-routing Problem

CIRRELT-2021-11



0 10 20 30 40 50

0

1

2

3

4

5

6

7

8

Facility range (R)

#
v
eh

ic
le

s

Figure 7: Average number of vehicles used in HMLoRP solutions for different R for the Akca set instances in
‘Experiment set-1’

respectively. The clear relationship between these two factors is depicted in Figure 7. On average,

the number of vehicles reduces by 1.3 for every 10 units of increase in R. This rate of change

depends on the instance and may be as high as 1.8. Note that, for some networks and specific

range values, increasing the range does not necessarily reduce the number of vehicles.

6.2.1. An approximation for the cost

It is a well-known result in continuous approximation models (Beardwood et al., 1959; Da-

ganzo, 1984a,b) that, given n points that are uniformly and independently distributed in an (fairly

compact) area of size A, we have L∗√
n
→ β

√
A as n → ∞, where L∗ is the optimal length in

traveling salesman problem and β is a constant term. For empirical β values, we refer the reader

to Franceschetti et al. (2017). For VRP, Daganzo (1984a) approximated the optimal length as

L∗ = 2rm + 0.57
√
nA, where r is the so called stem distance and m is the number of vehicles.

Inspired by this line of thinking, we investigate the relationship that we empirically observe in

Figure 4 between the facility range R and the cost. To this end, we consider the routing cost

in the problem, expressed by the second term in the objective function (1) of SC model. For a

facility coverage range of R, let LR be the optimal routing cost and ηR be the square root of the

fraction of the uncovered customers by the facilities (0 ≤ ηR ≤ 1). Figure 8 plots the average LR

and ηR for different R values. In HMLoRP instances in Figure 8(a), the routing cost is shown in

red with values on the left axis and the ηR is shown in blue with values on the right axis. The LR

and ηR for pMLoRP are shown in Figure 8(b). The strong relationship is easily observed on the

average values. Furthermore, ηRL0 can be used to approximate LR for any problem instance. In

particular, we find that this approximation is within 5%, 10%, 20% and 30% of the true optimal
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routing cost in 65.7%, 75.3%, 88.9% and 95.7% of the instances. As an example, consider the

instance in Figure 3. In Table 11, we report the percent of uncovered customers by any facility,

ηR, total cost, fixed cost, routing cost, approximation of the routing cost and the absolute error

in columns 2−8, respectively. The absolute errors are below 5% except when R = 30. The error

would be only 1.1% if the number of uncovered customers was 4 instead of 6.

Table 11: Routing cost continuous approximation in the example in Figure 3

Facility Uncovered customers ηR Total Fixed Routing Approximation Absolute
Range (R) by any facility (%) cost cost cost (LR = ηRL0) error (%)

0 100.0 1.00 753.0 200.0 553.0 553.0 0.0
10 92.5 0.96 733.0 200.0 533.0 531.9 0.2
20 62.5 0.79 618.2 200.0 418.2 437.2 4.6
30 15.0 0.39 476.8 300.0 176.8 214.2 21.1†

40 2.5 0.16 291.2 200.0 91.2 87.4 4.1
50 0.0 0.00 200.0 200.0 0.0 0.0 0.0

† This error would be 1.1% if the number of uncovered customers was 4 instead of 6.

It is noteworthy that, unlike its counterpart in the vehicle routing problem, the continuous

approximation for the LoRP cost is not impacted by the decreasing size of the area as facility

range increases. Even though the coverage of customers by the open facilities induces a nonconvex

shape of uncovered customers, the relationship is strong and it closely approximates the routing

costs. This is mainly because the vehicles still need to travel this distance and all the uncovered

customers are beyond the coverage range.

The routing cost changes proportional to ηR. We now take one step further and observe that the

average number of customers covered by a facility is directly proportional to the area of the facility

coverage, which equals πR2. Therefore ηR, which is defined as the square root of the fraction of the

uncovered customers by the facilities, changes linearly in R. This explains the linear relationship

of the routing cost by increasing facility range.

6.3. Experiment set-2: changing the objective function coefficients

In this section, we report the results of instances in ‘Experiment set-2’. The main purpose is

to investigate the changes in average costs, number of open facilities and number of vehicles used

with respect to the base case in ‘Experiment set-1’. To this end, the objective function weights are

set as (wF , wR, wA) = (4, 1, 0) for HMLoRP and as (wF , wR, wA) = (0, 1, 0.2) for pMLoRP.

The average costs for different problem types and R are reported in Table 12 and plotted in

Figure 9. For the pMLoRP, the solutions are not impacted significantly by the change in the

objective function weights. When R = 0, the same objective function values are obtained as in the

base case (c.f. Table 8), because the customers are not covered by the facilities and wR = 0 for

pMLoRP. For higher R values, the costs are always greater than those in the base case, but the

increase is insignificant. For the HMLoRP, on the other hand, the average costs increase at least
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Figure 8: The change in routing cost is aligned with the square root of the fraction of uncovered customers by the
facilities
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by 70% with respect to the base case mainly due to the increase in wF . Furthermore, the average

numbers of open facilities decrease in HMLoRP solutions and change between 1.8 and 1.84 for all

R values (Table 13). Because of the decrease in the number of open facilities, the customers are

mainly covered by vehicles, which justifies the increase in the average numbers of vehicles in Table

14 with respect to those in Table 10.

Table 12: Average costs for different problem types and R in ‘Experiment set-2’

Problem Facility range (R)

name 0 10 20 30 40 50

HMLoRP 1338.2 1331.5 1274.6 1175.0 1022.6 813.2
pMLoRP(2) 582.1 572.1 515.5 432.7 293.5 113.9
pMLoRP(3) 535.9 519.3 438.1 315.7 183.7 77.3
pMLoRP(4) 523.0 498.6 398.4 274.7 173.7 72.3
pMLoRP(5) 515.6 488.7 377.8 269.0 170.7 69.4

Table 13: Average number of open facilities used in HMLoRP solutions for different T and R in ‘Experiment set-2’

Problem Max. route Facility range (R)

type length (T ) 0 10 20 30 40 50

Uncapacitated 100 2.22 2.22 2.22 2.22 2.22 2.22
125 1.45 1.45 1.45 1.55 1.55 1.55
150 1.08 1.08 1.08 1.08 1.25 1.25

Capacitated 100 2.22 2.22 2.22 2.22 2.22 2.22
125 2.00 2.00 2.00 2.00 2.00 2.00
150 2.00 2.00 2.00 2.00 2.00 2.00

Average 1.80 1.80 1.80 1.81 1.84 1.84

The results show that the location decisions highly depend on the tradeoff between the location

and routing multipliers in the objective function of the SC model, wF and wR, respectively. We

find that a greater number of facilities are opened when the wF is small; whereas, for large wF

values, the number of facilities is small, and the customers are primarily served using vehicles. In

any case, the open facilities are spread and not clustered. The routing multiplier wR, on the other

hand, has an opposite effect, for smaller wR values, the number of open facilities is smaller. We

observe that the vehicle routes play a decreasing role in cost as R increases.

6.4. Experiment set-3: greater number of facilities

In this section, we present the results for ‘Experiment set-3’. We consider 18 networks with

100 customers and 10, 20, 30, 40, 50, or 60 candidate facilities. We set the step size parameter of

the pulse algorithm equal to 5 to solve the pricing problem. We solve u-HMLoRP and c-HMLoRP
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Figure 9: Average costs for different problem types and R in ‘Experiment set-2’

Table 14: Average number of vehicles used in HMLoRP solutions for different T and R in ‘Experiment set-2’

Problem Max. route Facility range (R)

type length (T ) 0 10 20 30 40 50

Uncapacitated 100 7.33 6.89 6.33 5.00 2.89 0.00
125 6.78 6.78 6.00 4.89 3.44 1.56
150 6.00 5.89 5.11 4.22 3.44 1.78

Capacitated 100 7.44 7.22 6.44 5.22 3.00 0.00
125 6.33 5.78 4.89 3.67 2.22 0.44
150 6.44 5.67 4.11 3.22 1.78 0.22

Average 6.72 6.37 5.48 4.37 2.80 0.67
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for R ∈ {0, 10, 20, 30, 40} and T ∈ {40, 50, 60}. There are infeasible instances when T and the

number of candidate facilities are both small (Table 15), because some customers are not within

the coverage range of any facility and they cannot be reached by any vehicles from these facilities

because of the maximum route length. We therefore do not consider the instances in which the

number of candidate facilities is 10, 20 or 30.

Table 15: Infeasible instances in ‘Experiment set-3’

Max. route # candidate Range (R) Total

length (T ) facilities 0 10 20

40 10 6 6 6 18
20 6 6 6 18
30 4 4 4 12

50 10 6 6 6 18

Total 22 22 22 66

Table 16 reports the costs for different T and R. The cost is the highest when T = 40, number

of candidate facilities is 40 and R = 0. This corresponds to the most restricted setting considered

in the table. When T = 40, the costs do not change significantly for increasing R from 0 to 20.

However, there is a significant reduction when R = 30. This is when the facility range exceeds

a certain threshold beyond which vehicle visits are unnecessary to cover customers because they

are covered by facilities. We can also observe this result in Table 17, where we observe that the

average number of open facilities reduce significantly when R increases to 30.

Table 16: Average costs of HMLoRP solutions (in thousands) for different T and R in ‘Experiment set-3’

Max. route # candidate Facility range (R)

length (T ) facilities 0 10 20 30 40

40 40 392.09 391.98 391.01 178.61 138.51
50 365.08 364.97 364.00 178.61 138.51
60 365.08 364.97 364.00 178.61 138.51

50 40 230.88 230.76 230.23 178.61 138.51
50 230.87 230.76 230.23 178.61 138.51
60 230.87 230.76 230.24 178.61 138.51

60 40 179.79 179.70 179.30 178.61 138.51
50 179.79 179.70 179.30 178.61 138.51
60 179.80 179.70 179.30 178.61 138.51

Average 261.58 261.48 260.84 178.61 138.51

In Table 17, the average number of open facilities change between 2.83 and 7. The number of

open facilities is significantly affected by R, but the number of candidate facilities in the network
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Table 17: Average number of open facilities used in HMLoRP solutions for different T and R in ‘Experiment set-3’

Max. route # candidate Facility range (R)

length (T ) facilities 0 10 20 30 40

40 40 7.00 7.00 7.00 3.67 2.83
50 6.67 6.67 6.67 3.67 2.83
60 6.67 6.67 6.67 3.67 2.83

50 40 4.67 4.67 4.67 3.67 2.83
50 4.67 4.67 4.67 3.67 2.83
60 4.67 4.67 4.67 3.67 2.83

60 40 3.67 3.67 3.67 3.67 2.83
50 3.67 3.67 3.67 3.67 2.83
60 3.67 3.67 3.67 3.67 2.83

Average 5.04 5.04 5.04 3.67 2.83

affects the average number of open facilities only marginally. Put differently, a high number of

potential locations does not significantly impact the results. The facility coverage range on the

other hand is the primary determinant on the number and location of open facilities.

7. Conclusion and future research

The facility location and vehicle routing are closely related problems in transportation. We

have uncovered a new connection between the location and routing decisions by introducing the

location-or-routing problem (LoRP), in which a customer can be covered either by a facility or by a

vehicle visit. Each selected facility covers the customers in the neighborhood around itself defined

by a coverage range, similar to the set covering problem. If a customer lies beyond the coverage

range of any open facility, then a vehicle visit is required to cover the customer. This new problem

has applications in location optimization of retail stores, supermarkets, shopping malls, schools,

urban delivery centers and medical testing centers. We have presented a set covering model with

an exponential number of variables for solving the LoRP. As a solution method, we have devel-

oped an exact branch-and-price algorithm and provided insights on the total costs. In particular,

experiments on random graphs have shown that the total cost decreases almost linearly as the fa-

cility coverage range increases. We have also demonstrated that the facility range is an important

determinant of the number and location of open facilities. We have found that the vehicle routes

play a decreasing role on the total cost as the facility range increases. Several extensions of LoRP

are possible. Basic extensions include considering stochastic nature of the demand. Additionally,

the customer demand and the facility coverage range are assumed to be independent in this study.

However, in retail store, supermarket or shopping mall location applications, the coverage of the

demand may decay as the distance between a facility and a customer increases. Lastly, since mul-
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tiple facilities can potentially cover a customer, backup coverage may be considered when making

decisions.
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