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Abstract. Inventory-routing problems (IRPs) define a class of challenging integrated 
combinatorial optimization problems, encompassing inventory management and vehicle 
routing decisions into the same framework. Due to their complexity, exact algorithms can 
solve only small cases, which is far from practical context which arises with many rich 
features such as multi-vehicle, multi-depot, and multi-echelon. In this paper, we propose 
new modular mechanisms that can be embedded into different optimization algorithms, 
either heuristic or exact ones. We exploit the use of these mechanisms to improve a 
traditional branch-and-cut scheme. We evaluate our methods by solving three different 
classes of IRP. In particular, we address the multi-vehicle IRP, the multi-depot IRP, and the 
multi-depot IRP in a two-echelon supply chain. The results show that our methods are very 
effective, outperforming other exacts and heuristics approaches from the literature, 
obtaining 152 new optimal solutions and 353 new best-known solutions on 1712 well-known 
benchmark instances from the literature. 
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1. Introduction

Inventory-routing problems (IRPs) are crucial in logistics operations as they combine into a single framework

the joint optimization of inventory management and distribution activities [10]. They have been very well

studied by exact approaches such as branch-and-cut (B&C) [1, 4, 6, 7, 11, 12, 18] and branch-and-price-and-

cut (B&PC) [14]. A wide range of heuristics and matheuristics have also been proposed [1, 3, 5, 7, 8, 18].

The most challenging set of instances for the single-vehicle IRP was introduced by Archetti et al. [3], where

the largest ones have up to 200 customers and a planning horizon with six periods. These instances were

adapted to the multi-vehicle IRP (MIRP) by Coelho and Laporte [12], by considering up to 5 vehicles.

More recently, Bertazzi et al. [7] and Guimarães et al. [18] have proposed instances for the multi-depot

multi-vehicle IRP (MDIRP) and two-echelon MDIRP (2E-MDIRP), with up to 50 customers, six depots,

and three vehicles. These problems arise in many practical contexts [2], in which the size of the problem is

significantly larger than what current algorithms are capable of solving exactly. State-of-the-art algorithms

are capable of proving optimality for instances with up to 50 customers for the single-vehicle IRP and

2E-MDIRP. Regarding the MDIRP, no optimal solution has been proven for instances with more than 15

customers, three periods, and two depots.

Some of these algorithms work by combining different solutions or modifying them to generate new ones. It

is common that these new solutions might not be feasible or not yet fully optimized even to a local minimum.

On the exact methods, such as B&C and B&PC, infeasible solutions are not explored along the search tree.

As pointed by Talbi [26], feasibility repairing strategies usually operate in a greedy heuristic framework,

and are dependent on specific features of the problem at hand. At the same time, the performance of

such strategies is closely related to the design and success of these heuristics, especially when the repairing is

done by penalizing the objective function [3, 17, 22]. Partition methods, like those based on the fix-and-relax

scheme of Escudero and Salmeron [15], are also able to repair infeasibility. However, its constructive nature

is not fit to improve a potential solution, requiring a further local search procedure to handle it [25, 27]. On

the other hand, enhancing techniques embedded into optimizing algorithms consider only feasible solutions

[11, 19].

In this paper, we develop two dedicated strategies for recovering feasibility and improving even partial

solutions. The first one, which we call Feasibility and Improvement Procedure (FIP), regains feasibility by

allowing the nodes of a route to be reorganized and also improves solutions by optimizing the inventory flow

for a given set of delivery routes. Unlike other approaches of this nature, FIP is capable of working on an

infeasible solution, making it robust enough for being adapted to varying structural conditions within the

scope of the IRP. The second one, called General Improvement Procedure (GIP), is inspired by the local
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branching technique of Fischetti and Lodi [16], and works by exploring a neighborhood exactly. The way we

construct the neighborhood is related to the existing current routes, which is significantly more restricted

than the total search space of all possible routes. As a main scientific contribution, both FIP and GIP are

flexible enough to be embedded in a wide range of algorithms, being heuristics, matheuristics, or exacts ones,

and they can be easily extended to other problems.

The paper is organized as follows. In Section 2, we present a basic formulation of the IRP, while a traditional

B&C scheme is provided in Section 3. In Section 4, we describe FIP and GIP and show how to embed them

into the B&C. In Section 5, extensive computational experiments on several classes of IRPs from the literature

are performed, and the details of the results are discussed. Our conclusions follow in Section 6.

2. A core model for the inventory-routing problem

The most studied variant of the IRP is suitable to represent all needs of our paper. In this sense, we

present the classical IRP formulation. This problem is defined over an undirected graph G = (V, E), where

V = {0, ..., n} is the vertex set, and E = {(i, j) : i, j ∈ V, i < j} is the edge set. Vertex 0 represents the plant,

and set C = V\{0} represents customers. A non-negative cost cij is associated with each edge (i, j) ∈ E .

The planning horizon is defined over a set T = {1, ..., p} of periods. At each period t ∈ T , a fleet of |K|

homogeneous vehicles of capacity Q and a certain amount rt of product are made available at plant. Both the

plant and customers have a minimum and a maximum inventory level, given by Li and Ui, respectively, and

also incur an inventory holding cost hi, i ∈ V, for each unit stocked per period. In t = 0, the decision maker

knows the initial inventory levels I0i , i ∈ V, and the demands of the customers along the whole planning

horizon, given by dti, i ∈ C.

A vehicle can perform at most one delivery route per period, all routes must start and finish at the plant, and

split deliveries are not allowed. The objective of the IRP is to minimize the total inventory and transportation

cost, determining when to visit and how much product to deliver for each customer, and how to combine

customers deliveries into vehicle routes.

The following variables are used in the mathematical formulation:

• qkti : quantity delivered to customer i by vehicle k in period t;

• Iti : inventory level at vertex i ∈ V at the end of period t;

• Y kt
i = 1 if vehicle k visits vertex i ∈ V in period t, 0 otherwise;

• yktij = 1 if vehicle k travels directly between customer i and customer j in period t, 0 otherwise;

2
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• ykt0i ∈ {0, 1, 2}. When ykt0i = 1, vehicle k travels from the plant to customer i in period t. If ykt0i = 2, a

round trip is defined, 0 otherwise;

The IRP can be formulated by (1)−(14):

min
∑
t∈T

∑
i∈V

hiI
t
i +

∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijy
kt
ij (1)

subject to

It0 = It−10 + rt −
∑
k∈K

∑
i∈C

qkti t ∈ T (2)

Iti = It−1i +
∑
k∈K

qkti − dti i ∈ C, t ∈ T (3)

∑
k∈K

qkti ≤ Ui − It−1i i ∈ C, t ∈ T , (4)

qkti ≤ UiY
kt
i i ∈ C, k ∈ K, t ∈ T (5)∑

i∈C
qkti ≤ QY kt

0 k ∈ K, t ∈ T (6)

∑
k∈K

Y kt
i ≤ 1 i ∈ C, t ∈ T (7)

∑
j∈V
i<j

yktij +
∑
j∈V
j<i

yktji = 2Y kt
i i ∈ V, k ∈ K, t ∈ T (8)

∑
i∈S

∑
j∈S
i<j

yktij ≤
∑
i∈S

Y kt
i − Y kt

m S ⊆ C, |S| ≥ 2,m ∈ S, k ∈ K, t ∈ T (9)

qkti ≥ 0 i ∈ C, k ∈ K, t ∈ T (10)

Li ≤ Iti ≤ Ui i ∈ V, t ∈ T (11)

Y kt
i ∈ {0, 1} i ∈ V, k ∈ K, t ∈ T (12)

yktij ∈ {0, 1} i, j ∈ C, i < j, k ∈ K, t ∈ T (13)

ykt0i ∈ {0, 1, 2} i ∈ C, k ∈ K, t ∈ T . (14)

The objective function (1) minimizes the inventory and the transportation costs. Constraints (2) and (3)

balance the inventory flow for the plant and customers, while (4) impose inventories policies. Constraints (5)

link the quantity delivered with the visit to the customer, while constraints (6) ensure that the total amount

delivered does not exceed the vehicle capacity. Split deliveries are avoided by constraints (7). Linking and
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subtour elimination conditions are imposed by (8) and (9), respectively. The variables domain is defined by

constraints (10)−(14).

Several valid inequalities have been proposed to strengthen the formulation, according to the variant of the

problem: for the basic IRP and MIRP [4, 13, 14], for the MDIRP [7], and the 2E-MDIRP [18].

3. Branch-and-cut algorithm

The complete enumeration of the subtour elimination constraints (SEC) (9) is impracticable. However, SEC

can be dynamically generated along the search process, and added to the problem whenever a subtour is

found at the current solution. This strategy can be embedded inside an exact procedure, such as a B&C.

Except for the SEC, at the beginning of the search process, all constraints are generated and added to the

root node. Whenever a node of the search tree is solved, we use the CVRPSEP package from Lysgaard

et al. [20] to search for subtours. When one is found, its corresponding SEC are added to the search tree.

Otherwise, a fractional variable is chosen for branching yielding a new subproblem, and the model is then

reoptimized in a new node. The optimization process goes on until a feasible or dominated solution is found,

or until there are no more cuts to be added. The pseudocode of our B&C is presented by Algorithm 1.

Algorithm 1 Pseudocode of the proposed B&C algorithm

1: At the root node, generate (1)−(14), except (9), and all associated valid inequalities.

2: while (Processing Time < Time Limit) and (there is node to evaluate) do

3: Select one node from the B&C tree.

4: Solve the linear programming (LP) relaxation of the node, yielding SLP .

5: while Solution SLP contains subtours do

6: Add violated subtour elimination constraints.

7: end while

8: if Solution SLP is integer then

9: if f(SLP ) < f(SBEST ) or SBEST = ∅ then
10: SBEST ← SLP ;

11: end if

12: else

13: Branch on a fractional variable.

14: end if

15: end while

16: return SBEST ;
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4. Mechanisms for feasibility and improvement

Although current exact methods are not very efficient in solving large IRP instances, several authors have

designed B&C algorithms for this task (see Section 1). In this sense, we now introduce our mechanisms for

feasibility and improvement that will be embedded in the B&C algorithm of Section 3.

4.1. Feasibility and improvement procedure

The first stage of FIP operates on the routing structure of any solution of the problem, feasible or not, and

works as follows. Whenever a new solution is found, FIP identifies all vertices i visited by vehicle k in period

t, in order to generate the set Rkt = {i ∈ V : Y kt
i = 1}, k ∈ K and t ∈ T . At this point, one of the following

situations can occur:

1. |Rkt| > 0, Y kt
i = 1 with only i ∈ C. In this case, we generate Rkt ← Rkt ∪ {0} if the problem has only

one depot, or Rkt ← Rkt ∪ {u} for the multi-depot case, where u is the depot in which vehicle k is

housed.

2. |Rkt| > 1, Y kt
i = 1 with i ∈ V.

3. |Rkt| = 0, or |Rkt| = 1 and the only node is a depot. In this case, the set Rkt is disregarded.

For cases 1 and 2, the optimal sequence of visiting the nodes in Rkt is determined by applying the B&C

procedure of Padberg and Rinaldi [21]. This stage has two essential roles in the search process. First, it

recovers feasibility when the solution contains subtours, which necessarily happens in case 1. Second, it

minimizes the transportation cost of each vehicle in each period, eliminating all dominated routes from the

current solution. Since the set Rkt in the case 2 is composed of all nodes visited by vehicle k and its depot,

no subtour exist after its optimization, and an infeasible or partial solution becomes feasible.

Figure 1 illustrates the first stage of FIP. In case 1 in a given period t, vehicle k = 1 has one subtour, and its as-

sociated setR1t ← {1, 2, 3} ∪ {0} yields the optimal route {0→ 2→ 1→ 3→ 0}. The two subtours of vehicle

k = 2 generate the set R2t = {6, 7, 8, 9, 10}. The subtour is eliminated by setting R2t ← {6, 7, 8, 9, 10} ∪ {0},

which produces the optimal route {0→ 6→ 7→ 9→ 10→ 8→ 0}, and R3t ← {5} ∪ {0}, yielding the

roundtrip {0→ 5→ 0}. In case 2, the set R1t = {0, 2, 3, 4} has a dominating route, which turns into an

optimal sequence {0→ 2→ 3→ 4→ 0} by applying the B&C of Padberg and Rinaldi [21]. When the set

R2t = {0, 6, 7, 8, 9, 10} is generated, the subtour of customers {7, 9, 10} no longer exists. Thus, the optimal

sequence of visits is {0→ 6→ 7→ 9→ 10→ 8→ 0}. Round trip of set R3t remains.

As the inventory flows remain unchanged, the solution obviously could be suboptimal for the new set of

routes generated by the first stage of FIP, even though the routing aspect is optimal. Thus, a second stage
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Figure 1: First stage of FIP

is required to determine the delivery quantities which optimizes the inventory cost for the set of routes

established in the first stage. We formulate it as a mixed-integer programming (MIP) (see [9]), which uses

the binary parameter:

• ψkt
i : equal to 1 if vertex i is visited in the current route of vehicle k in period t, where Y kt

i = 1, 0

otherwise.

The model is formulated as:

min
∑
t∈T

∑
i∈V

hiI
t
i (15)

subject to (2)–(4), (10), (11), and to:

qkti ≤ Uiψ
kt
i i ∈ C, k ∈ K, t ∈ T (16)∑

i∈C
qkti ≤ Qψkt

0 k ∈ K, t ∈ T . (17)
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The objective function (15) minimizes the inventory costs. Constraints (16) link the quantity delivered with

the visit to the customer, while constraints (17) ensure that the total amount delivered does not exceed the

vehicle capacity.

After solving the second stage of FIP, we identify all customers i visited by vehicle k in period t and define

the following set Bkt = {i ∈ C : qkti > 0}, for all k ∈ K and for all t ∈ T . After this, the optimal sequence

of visiting between depot and each |Bkt| > 0 is given by the B&C of Padberg and Rinaldi [21], where k ∈ K

and t ∈ T . This removes unserved customers, minimizing the transportation cost.

4.2. General improvement procedure

The General Improvement Procedure (GIP) was first introduced by Schenekemberg et al. [24] for a specific

case of IRP with fleet management, and has also been adapted to the two-echelon production-routing problem

(2E-PRP) by Schenekemberg et al. [23]. In this paper, we generalize GIP to handle several variants of IRPs.

It improves a given solution s̄ by performing removals, insertions, and customers swaps only on established

routes. By preventing customers from being served by new routes, GIP explores a much smaller search space

than the original model.

In this sense, let Akt be the set of customers i ∈ C served by vehicle k in period t. A subset of edges

adjacent to the depot is also introduced, given by Ekt ⊆ E , with Ekt = {(i, j) : i, j ∈ {0} ∪ Akt ∪ Ac
kt}, and

Ac
kt = C\Akt. Formally, GIP sets free qkti , Y kt

i and yktij to be optimized if and only if their associated routes

exist, where (i, j) ∈ Ekt and |Akt| > 0. Otherwise, when Akt = ∅, the associated variables qkti , Y kt
i and yktij

are set to zero, and all other decision variables are also free to be optimized. Due to this large search space,

it can still be difficult to improve solutions in an acceptable time. To overcome this limitation, GIP limits

the number of changes to each route, by adding the following constraints inspired by the local branching

scheme [16].

∑
i∈Akt

(
1− Y kt

i

)
+
∑

i∈Ac
kt

Y kt
i ≤ B k ∈ K, t ∈ T , |Akt| > 0. (18)

The positive integer parameter B limits the number of binary variables switching their value with respect

to each existing route from a solution s̄, either from 1 to 0 or from 0 to 1. The set of solutions satisfying

constraints (18) define the B-OPT neighborhoodN (s̄,B) of s̄. The parameter B must be chosen appropriately

since when B is too small, the probability of finding solutions better than s̄ is low. Otherwise, big values for

B do not allow a thorough exploration of the neighborhood in a suitable time.

Figure 2 illustrates a situation with 14 customers, vehicle capacity Q = 400, before (a) and after (b)

applying GIP for two consecutive periods, [t, t + 1]. The transportation cost is calculated as the sum

7

Mechanisms for Feasibility and Improvement for Inventory-Routing Problems 

CIRRELT-2020-12



of distances on each route, represented by D, while
∑

t′∈[t,t+1]

∑
i∈V hiI

t′

i gives the inventory cost. The

total amount delivered by a route is L. The routes of vehicle k = 1 in t and t + 1 before GIP define

A1,t = {7, 8, 9, 10, 11} and A1,t+1 = {7, 13}, while for vehicle k = 2 they are A2,t = {1, 2, 3, 4, 5, 6} and

A2,t+1 = {2, 12, 14}, respectively. Therefore, their associated complementary sets are given by Ac
1,t =

{1, 2, 3, 4, 5, 6, 12, 13, 14}, Ac
1,t+1 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14}, Ac

2,t = {7, 8, 9, 10, 11, 12, 13, 14}, and

Ac
2,t+1 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}, respectively. After applying GIP by considering B = 4 as maximum

number of movements, we obtain one removal (customer 8) and two insertions (customers 3 and 13) for

k = 1, while for k = 2 two removals (customers 2 and 3) and two insertions (customers 12 and 14) are

performed in t. In period t + 1, one removal (customer 13) and three insertions (customers 2, 8 and 12)

occur for k = 1. These changes imply the removals of all customers served by k = 2, eliminating the route

of that vehicle. At the same time, by optimizing qkti , a new inventory flow is obtained. The transportation

cost decreases from 104.0 to 92.0, while the inventory cost changes from 69.1 to 63.5. Thus, the total cost

after applying GIP is 155.5 against 173.1 before.

4.3. General optimization framework: improved B&C algorithm

In this section, we describe how to embed the FIP and GIP into the B&C algorithm presented in Section 3.

Due to its limitation to handle large instances in the IRP scope, our purpose is to help B&C not only to find

better solutions; in many situations, B&C is not even capable of finding a first feasible solution. Whenever a

new best solution is found, either by FIP or by the B&C, GIP is applied in order to improve it by performing

insertions, removals, and swaps of customers on existing routes. After preliminary experiments, we apply

GIP only once a new best solution found, since the computational time required for GIP can significantly

impact the global processing time. We provide a pseudocode for the improved B&C in Algorithm 2.

5. Computational experiments

In this section, we provide an extensive analysis of our algorithms by solving three different IRPs from the

literature, which still have many open instances. First, we solve the classical IRP and its multi-vehicle

(MIRP) case. Due to the flexibility of our method, we also evaluate its performance over the MDIRP,

introduced by Bertazzi et al. [7], and the 2E-MDIRP, proposed by Guimarães et al. [18]. Our algorithms

were coded in C++ using Gurobi 8.1.0, running in CentOS Linux operating system. After a tuning phase,

we set the MIP model for inventory flow on the second stage of FIP to be solved up to optimality, while

GIP is executed according to the number of customers as follows:

• IRP and MIRP: 360 s if |C| ≤ 50, 600 s otherwise.
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3 0.08 200 150 100 50 100 100 0

4 0.05 100 0 50 100 50 50 0

5 0.08 120 40 60 80 60 60 0

6 0.06 80 60 40 20 40 40 0

7 0.10 280 140 140 20 20 140 120 0

8 0.09 200 100 100 0 100 100 0

9 0.14 200 100 100 100 100 100 0

10 0.09 120 60 60 60 60 60 0

11 0.05 140 70 70 70 70 70 0

12 0.06 120 60 60 10 10 60 50 0
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14 0.07 180 90 90 90 90 90 0

%& '&
()&

( *&
+('&

(,- '&
(.-/& )&

(.- *&
+(.-

 

Figure 2: A numerical example for GIP

9

Mechanisms for Feasibility and Improvement for Inventory-Routing Problems 

CIRRELT-2020-12



Algorithm 2 Pseudocode of the improved B&C algorithm

1: At the root node, generate (1)−(14), except (9), and all associated valid inequalities.

2: while (Processing Time < Time Limit) and (there is node to evaluate) do

3: Select one node from the B&C tree.

4: Solve the LP relaxation of the node, yielding SLP .

5: while Solution SLP contains subtours do

6: Add violated subtour elimination constraints.

7: end while

8: if Solution SLP is integer then

9: Apply FIP to SLP , yielding SFIP ;

10: if f(SFIP ) < f(SBEST ) or SBEST = ∅ then
11: SBEST ← SFIP ;

12: Apply GIP to SFIP , yielding SGIP

13: if f(SGIP ) < f(SBEST ) then

14: SBEST ← SGIP ;

15: end if

16: end if

17: else

18: Branch on a fractional variable.

19: end if

20: end while

21: return SBEST ;
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• MDIRP: 360 s if |C| ≤ 30, 480 s otherwise.

• 2E-MDIRP: 360 s if |C| ≤ 50, 480 s otherwise.

5.1. Instance sets

We have considered a small and a large set of instances from the IRP for the single-vehicle case, introduced

by Archetti et al. [4] and Archetti et al. [3], respectively, and adapted to the MIRP by Coelho and Laporte

[11]. The first set considers a total of 160 small size instances, in which the number of customers ranges

from C = {5, 10, . . . , 50} when |T | = 3, and C = {5, 10, ..., 30} when |T | = 6. The second one is more

challenging having a total of 60 large size instances with C ={50, 100, 200} and |T | = 6. Both sets consider

two classes of inventory costs, low and high. The fleet of homogeneous vehicles K = {1, 2, ..., 5}, totaling

(160 + 60)× 5 = 1100 instances.

Regarding to the MDIRP, we have evaluated the set introduced by Bertazzi et al. [7], consisting of C =

{5, 10, . . . , 50}, a fleet of |K| = 3, with |T | = {3, 6}. The number of depots ranges from 2 to 6, according to

the number of customers, for a total of 100 instances.

Finally, we also have performed an analysis of our methods over the instances of a new variant of IRP in a

more complex structure. The 2E-MDIRP [18] is defined over a two-echelon supply chain, formed by input

suppliers and plants on the first echelon, and by plants and customers on the second one. The problem takes

into account input pickups, delivery decisions, and inventory management over a planning horizon. The set

of instances for this problem consists of four combinations on the first echelon, being one supplier-one plant,

two suppliers-two plants, three supplier-two plants, and two suppliers-three plants. The set of customers is

C = {5, 10, 25, 50}, with two combinations of fleet, |K| = 1 and |K| = 3, two classes of inventory costs, and

two inventory policies, totaling 512 instances.

All instances and detailed results are available from https://www.leandro-coelho.com/local-search-for-feasibil

ity-and-improvement-for-irps/.

5.2. Benchmark algorithms

We have compared our improved B&C with state-of-the-art algorithms, both exact and heuristics, that have

also been evaluated on the same datasets. The first exact algorithm for the IRP was a B&C introduced by

Archetti et al. [4]. Later, Coelho and Laporte [12] present a B&C for the MIRP, which incorporates a solution

improvement mechanism. In Adulyasak et al. [1], another B&C and new valid inequalities are presented,

addressed to the multi-vehicle production-routing problem, where the MIRP is a particular case. In the same

work, the authors also developed a matheuristic algorithm based on the adaptive large neighborhood search
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(ALNS) mechanism. Desaulniers et al. [14] proposed a B&PC with a new set of cutting planes, and evaluated

the algorithm over the set of small instances. More recently, Avella et al. [6] presented an IRP reformulation

derived from a single-period substructure. The authors defined a generic family of valid inequalities and

performed computational experiments only for 50 customers with three periods and 30 customers with six

periods from the small set. Regarding heuristic and matheuristic procedures, Archetti et al. [3] designed

a hybrid algorithm for the single-vehicle IRP, that combines a tabu search (TS) scheme with MIP models.

Later, Archetti et al. [5] extended the matheuristic to the MIRP case. The most recent heuristic for the IRP

was proposed by Chitsaz et al. [8], under a unified formulation for the assembly routing problem, where the

MIRP is a related case. The authors proposed a three-phase decomposition matheuristic. Experiments on

large-scale multi-vehicle instances outperform state-of-the-art heuristics for the MIRP.

Regarding the MDIRP, Bertazzi et al. [7] proposed a B&C algorithm and a three-phase matheuristic based

on clustering, routing, and optimization. For the 2E-MDIRP, Guimarães et al. [18] compare a B&C against

a matheuristic where ALNS handles the delivery routes, while delivery and pickup quantities, and improve-

ments are solved exactly via MIP subproblems. In both problems, the matheuristics outperformed the B&C

algorithms.

Table 1 provides the benchmark algorithms with their respective hardware specifications, solver versions,

problems solved, and running times.

Table 1: Benchmark algorithms

Reference Problem Method Algorithm CPU Threads T(s) Solver

Archetti et al. [4] IRP Exact B&C Pentium IV 2.8 GHz Default 7200 CPLEX 9.0

Archetti et al. [3] IRP Heuristic TS + MIP Intel Dual Core 1.86 GHz Default 3600 CPLEX 10.1

Archetti et al. [5] IRP Matheuristic Multi-phase MIP + TS Xeon W3680 3.33 GHz 8 3000 CPLEX 12.5

Chitsaz et al. [8] IRP Matheuristic 3-phase decomp. Xeon X5650 2.67 GHz 1 43200 CPLEX 12.6

Coelho and Laporte [12] IRP Exact B&C Xeon 2.66 GHz 6
43200∗

CPLEX 12.3
86400∗∗

Desaulniers et al. [14] IRP Exact B&PC Intel Core i7-2600 3.4 GHz 1 7200 CPLEX 12.2

Avella et al. [6] IRP Exact B&C Intel Core i7-2620 2.7 GHz 1 3600 Xpress 7.6

Adulyasak et al. [1] IRP
Exact B&C

Duo CPU PC 2.10 GHz Default 43200 CPLEX 12.3
Heuristic ALNS

Bertazzi et al. [7] MDIRP
Exact B&C

Intel Core i7-6500U 2.50 GHz Default 21700 CPLEX 12.6.1
Matheuristic 3-phase matheur.

Guimarães et al. [18] 2E-MDIRP
Exact B&C

Intel Core i5-6200U 2.40 GHz Default 7200 Gurobi 7.0.2
Matheuristic ALNS + MIP

This paper

IRP

Exact Improved B&C Xeon CPU E5-2630 v2 2.60 GHz 6 7200 Gurobi 8.1.0MDIRP

2E-MDIRP

Notes: ∗ for small instances of Archetti et al. [4], ∗∗ for large instances of Archetti et al. [3].
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5.3. Preliminary results

We start our analysis by assessing the impact of the FIP and GIP on the B&C. To this end, we consider

a subset of 15 instances from each problem, being five small, five medium and five large ones, totaling 45

instances. Table 2 presents the number of solutions found by the algorithms (SF), optimals proven (OPT),

and the average results for: upper bounds (UB), lower bounds (LB), optimality gap, and processing time.

The impact of the FIP and GIP jointly embedded into the B&C is highlighted by SF, OPT, the quality of

the UBs, and average gaps, without compromising the processing time.

Table 2: General comparison of methods for the MIRP with |K| = 5, MDIRP and 2E-MDIRP

Method SF OPT UB UB
∗

LB GAP (%) T (s)

B&C 31 19 - 7212.3 10714.5 - 4630.1

B&C + FIP 45 19 12901.4 7114.5 10697.7 10.2 4638.7

B&C + GIP 45 20 12146.3 7117.0 10689.9 7.1 4591.9

B&C + FIP + GIP 45 22 12052.3 7066.6 10668.6 6.4 4551.1

* Where B&C found a solution.

5.4. Detailed results for the IRP and the MIRP

We first present in Table 3 the list of papers, instances, and configurations used so far in the literature.

Then, in Table 4 we present the results for the small instances of Archetti et al. [4]. We provide the number

of instances (#), the number of times that the corresponding algorithm found the best-known solution

(BKS), the number of times that the BKS was exclusively found by the algorithm (EBKS) (among all exact

algorithms), the number of optimal solutions found (OPT), and the average upper bound UB. We highlight

that our algorithm dominates the B&C and the B&PC up to |K| = 4. Although the B&PC was more

effective in proving optimality when |K| = 5, our algorithm obtained more EBKS, and decreased the UB by

almost 10% compared to the B&PC. In general, our improved B&C has found 129 new BKSs for the whole

set of 800 instances.

Since the B&C algorithms of Adulyasak et al. [1] and Avella et al. [6] have performed experiments on only

a subset small instances of Archetti et al. [4] (see Table 3), we present the comparison on Tables 5 and 6.

Among these subsets, 80 instances have been solved by Avella et al. [6] and Adulyasak et al. [1]. Besides

that, the exact algorithms of Coelho and Laporte [12] and Desaulniers et al. [14] also have solved these

subsets. All of these results have been considered in the BKS and EBKS computation. Specifically, Table

5 shows the comparison of results against Adulyasak et al. [1], in which our improved B&C dominates the

results in terms of UB, obtains 31 exclusive BKS against only 7, and provides two new optimal solutions.
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Table 3: Instance set for the IRP and the MIRP

Reference Type |C| |K| |T |

Archetti et al. [4] Small 5 to 50 1 3, 6

Archetti et al. [3]
Small 5 to 50 1 3, 6

Large 50, 100, 200 1 6

Archetti et al. [5]
Small 5 to 50 2 to 5 3, 6

Large 50, 100, 200 2 to 5 6

Coelho and Laporte [12]

Small 5 to 50 1 to 5 3, 6

Large 50, 100 1, 2, 3 6

Large 200 1 6

Desaulniers et al. [14] Small 5 to 50 2 to 5 3, 6

Adulyasak et al. [1] Small
5 to 25 2, 3 3, 6

30 to 50 3, 4 3, 6

Avella et al. [6] Small
50 2 to 5 3

15 to 30 2 to 5 6

Chitsaz et al. [8]
Small 5 to 50 1 to 5 3, 6

Large 50, 100, 200 1 to 5 6

This paper
Small 5 to 50 1 to 5 3, 6

Large 50, 100, 200 1 to 5 6
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Table 4: Comparison with exact algorithms over small instances Archetti et al. [4]

Reference Statistics |K| = 1 |K| = 2 |K| = 3 |K| = 4 |K| = 5 Total

Archetti et al. [4] - B&C

# 160 - - - - 160

BKS∗ 160 - - - - 160

EBKS∗ 0 - - - - 0

OPT 160 - - - - 160

UB 7319.0 - - - - -

Coelho and Laporte [12] - B&C

# 160 160 160 160 160 800

BKS∗ 160 156 122 88 58 584

EBKS∗ 0 0 4 9 1 14

OPT 160 152 112 76 52 552

UB 7319.0 7875.9 8641.5 10148.0 11478.5 -

Desaulniers et al. [14] - B&PC

# - 160 160 160 160 640

BKS∗ - 140 108 93 98 439

EBKS∗ - 0 1 9 27 37

OPT - 75 77 84 90 326

UB - 7969.5 8705.8 9793.4 10972.9 -

This paper

# 160 160 160 160 160 800

BKS 160 160 147 132 127 726

EBKS 0 3 27 43 56 129

OPT 160 155 119 82 61 577

UB 7319.0 7875.1 8601.9 9382.0 10092.2 -

* Among Adulyasak et al. [1], Archetti et al. [4], Avella et al. [6], Coelho and Laporte [12], Desaulniers et al. [14].
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It is important to mention that Adulyasak et al. [1] have run their B&C for 43200s, six times more than us.

Table 6 presents the comparison against Avella et al. [6], in which our algorithm obtains 112 exclusive BKS

and proved 60 optimal solutions, against only 3 and 14, respectively.

Table 5: Comparison with Adulyasak et al. [1] over a subset of small instances Archetti et al. [4]

Reference Statistics |K| = 2 |K| = 3 |K| = 4 Total

Adulyasak et al. [1] - B&C

# 100 150 50 300

BKS∗ 100 124 22 244

EBKS∗ 0 4 3 7

OPT 100 117 20 237

UB 6833.6 8125.3 9604.5 -

This paper

# 100 150 50 300

BKS∗ 100 138 35 273

EBKS∗ 0 18 13 31

OPT 100 119 18 237

UB 6833.6 8112.7 9525.4 -

* Among Avella et al. [6], Coelho and Laporte [12], Desaulniers et al. [14].

Table 6: Comparison with Avella et al. [6] over a subset of small instances Archetti et al. [4]

Reference Statistics |K| = 2 |K| = 3 |K| = 4 |K| = 5 Total

Avella et al. [6] - B&C

# 50 50 50 50 200

BKS∗ 22 2 2 1 27

EBKS∗ 0 0 2 1 3

OPT 14 0 0 0 14

UB 11927.6 13249.3 14675.1 16151.4 -

This paper

# 50 50 50 50 200

BKS∗ 50 41 40 46 177

EBKS∗ 3 26 38 45 112

OPT 45 15 0 0 60

UB 11801.2 12901.0 14126.4 15411.6 -

* Among Adulyasak et al. [1], Coelho and Laporte [12], Desaulniers et al. [14].

To the best of our knowledge, only Coelho and Laporte [12] have solved the large-scale instances of Archetti

et al. [3] exactly, by running their B&C for up to 86400s. In this sense, Table 7 presents the results, in which

we report the same instances evaluated by the authors (40 instances when |K| = 2 and |K| = 3). It is possible

to observe that our algorithm outperformed the competition in all statistics, even though the running time

of our method was only 7200s, or 8.3% of theirs. Our improved B&C has substantially improved the UB,

especially for |K| = 2 and |K| = 3. We also highlight that our method has proven optimality for instance

absH6high5n100. It is the first time that an instance with 100 customers and six periods has a proven

optimal solution.
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Furthermore, our algorithm was the first method to solve instances for the classes with |K| = 4 and |K| = 5

exactly, having provided LB for all of them, even though the results have not been compared due to the

absence of any competing method. These results appear online.

Table 7: Comparison with exact algorithms over large instances Archetti et al. [3]

Reference Statistics |K| = 1 |K| = 2 |K| = 3 Total

Coelho and Laporte [12] - B&C

# 60 40 40 140

BKS 20 1 0 21

EBKS 1 1 0 2

OPT 17 0 0 17

UB 45994.7 45774.0 63651.3 -

This paper

# 60 40 40 140

BKS 59 39 40 138

EBKS 40 39 40 119

OPT 21 0 0 21

UB 40482.6 29186.5 32100.0 -

Overall, we have proven nine and four new optimal solutions among 181 and 283 open small and large

instances, respectively. Table 8 details these results, and also highlights the limitation of the exact methods

in proving optimal solutions for the IRP.

Table 8: Total of new optimal solutions found by our algorithm for instances of the IRP

|K|

Small set [4] Large set [3]

Previously New Previously New

Open Optimal Open Optimal

1 0 0 43 4

2 7 3 60 0

3 41 4 60 0

4 64 1 60 0

5 69 1 60 0

Total 181 9 283 4

Since FIP and GIP operate fundamentally at the UB level, we compare our improved B&C with the best

heuristic and matheuristic algorithms available in the literature [1, 3, 5, 8]. Tables 9 and 10 detail the results

for small and large size instances, respectively. We highlight that whenever one of the exact algorithms

[1, 4, 6, 12, 14] has solved an instance, its result is considered in the BKS, UB, and EBKS computation.

Regarding approximate methods, the BKS row shows the number of times that at least one of them was

able to achieve the best-known solution, while exclusive BKS highlights when BKS was provided by one
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of the approximated algorithms and not reached by our improved B&C. The results on Table 9 show that

our algorithm is very competitive for the set of small size instances, equivalent or better in 704 out of 800

instances, and has provided 108 new BKS. Regarding large size set, the results on Table 10 show that our

method was very competitive up to |K| = 2. Even in more complex cases, with |K| = 5, our method was

able to promote improvements, finding one new BKS. In general, our algorithm has improved the solutions

for 70 instances of a set of 300, i.e., 23.3 % of the large size cases.

Table 9: Comparison with exact, heuristic, and matheuristic algorithms over small instances Archetti et al. [4]

Reference Statistics |K| = 1 |K| = 2 |K| = 3 |K| = 4 |K| = 5 Total

All methods

# 160 160 160 160 160 800

BKS 160 157 136 126 113 692

EBKS 0 0 16 38 40 94

Best UB 7319.0 7875.6 8613.4 9389.0 10105.5 -

This paper

# 160 160 160 160 160 800

BKS 160 160 144 122 118 704

EBKS 0 3 24 34 47 108

UB 7319.0 7875.1 8601.9 9382.0 10092.2 -

Table 10: Comparison with exact, heuristic, and matheuristic algorithms over large instances of Archetti et al. [3]

Reference Statistics |K| = 1 |K| = 2 |K| = 3 |K| = 4 |K| = 5 Total

All methods

# 60 60 60 60 60 300

BKS 35 28 51 57 59 230

EBKS 16 28 51 57 59 211

Best UB 40448.1 42007.1 43207.4 44698.5 46312.0 -

This paper

# 60 60 60 60 60 300

BKS 44 32 9 3 1 89

EBKS 25 32 9 3 1 70

UB 40482.6 42845.3 46370.0 51157.1 55392.7 -

5.5. Results for the MDIRP

In the second part of the experiments, we provide new exact solutions for the MDIRP. Since the problem

was recently introduced by Bertazzi et al. [7], there is only one B&C and one matheuristic available in

the literature. In Table 11, we present the average results, grouped according to the number of customers,

totaling 10 instances per row. For all of groups, our method obtains significant improvements, having

proven 38 optimal against 11 from the literature in much shorter computational time. Our method was able

to improve the solution values for 73 instances, outperforming by 7.18% the best UB obtained between the

B&C and matheuristic available for this problem.
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Table 11: Results for the MDIRP, |T | = 3 and |T | = 6

|C|
B&C [7] Matheuristic [7] Best This Paper ∆% Best

BKS OPT UB T (s) BKS UB T (s) UB [7] BKS New BKS OPT UB GAP (%) T (s) UB [7]

5 8 6 2426.1 9796.8 9 2425.7 9.8 2425.7 10 1 10 2422.0 0.0 917.8 -0.15

10 3 3 3783.7 15648.3 4 3625.0 168.3 3625.0 9 6 5 3468.3 1.6 3637.8 -4.32

15 2 2 6275.0 20115.8 3 5853.1 1316.3 5841.7 8 6 5 5521.6 1.6 4288.5 -5.48

20 0 0 7774.4 21700.0 2 6599.0 1134.3 6590.2 8 8 5 6110.2 5.4 4293.3 -7.28

25 0 0 7768.4 21700.0 2 6839.0 1406.4 6839.0 8 8 6 6153.6 3.0 5419.8 -10.02

30 0 0 8375.7 21700.0 0 7455.9 1851.7 7455.9 10 10 3 6659.4 5.8 6140.2 -10.68

35 0 0 9442.9 21700.0 3 8344.3 294.3 8344.3 7 7 2 7697.6 6.4 6208.2 -7.75

40 0 0 9450.7 21700.0 1 8853.5 1358.6 8853.5 9 9 0 8005.2 10.1 7200.0 -9.58

45 0 0 9223.2 21700.0 1 8805.1 709.1 8786.8 9 9 2 8004.9 11.0 6929.8 -8.90

50 0 0 10644.2 21700.0 1 9868.7 2017.2 9868.7 9 9 0 9112.5 18.4 7200.0 -7.66

Avg 7516.4 19746.1 6866.9 1026.6 6863.1 6315.5 6.3 5223.5 -7.18

Total 13 11 26 87 73 38

5.6. Results for the 2E-MDIRP

Finally, we extend the experiments to one of the newest problems on the IRP context. Table 12 summarizes

the results for the 2E-MDIRP with the instances grouped according to the inventory policy and the number

of customers, totaling 32 instances per row. Considering only the instances where the B&C [18] found a

solution, our method was substantially better, reducing the average UB from 4964.5 to 4780.1, or 3.73%.

It is also interesting to note that our improved B&C is very robust when the deliveries are more strict,

as in the OU policy. Especially for these cases when OU is imposed on deliveries (ML-OU and OU-OU),

our algorithm was able to prove optimal solutions for instances with up to 50 customers, outperforming the

ALNS matheuristic proposed by Guimarães et al. [18] in several cases. In general, our exact method provides

102 new BKS among 512 instances, i.e., for almost 20% of the instances.

5.7. Contribution of FIP and GIP to the quality of solutions

Here we assess the contribution of FIP and GIP concerning the quality of the solutions obtained by our

algorithm. Since our improved B&C has a mechanism that provides an initial solution, we measure, for each

instance tested, the improvement generated by each procedure. We also measure the computational time

taken by the FIP and GIP routines. Table 13 shows these results. Of all the improvement obtained by our

improved B&C with respect to its initial solution, FIP accounts for most of the improvement (between 37%

and 59%), while the processing time required corresponds to an average of 8% of the total, corroborating

the initial idea that infeasible solutions are potentially good and can streamline the search strategy. As GIP

depends on existing routes, its contribution to improvement ends up being more significant in problems with

more vehicles. Finally, we highlight that the role of B&C in the overall optimization accounts for 25% of
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Table 12: Results for the 2E-MDIRP

Policy |C|
B&C [18] Matheuristic [18] Best This paper ∆% Best

BKS OPT UB
∗

GAP
∗

T (s) BKS UB T (s) UB [18] BKS New BKS OPT UB
∗

GAP
∗

(%) UB GAP T (s) UB [18]

ML-ML

5 32 32 3475.2 0.0 57.5 32 3475.2 142.6 3475.2 32 0 32 3475.2 0.0 3475.2 0.0 3.8 0.00

10 26 26 4704.5 4.0 1430.7 28 4659.4 444.8 4658.9 31 2 30 4655.8 0.4 4655.8 0.4 657.9 -0.07

25 17 14 4743.8 3.4 4502.2 23 5434.7 481.1 5433.5 31 7 26 4687.8 0.0 5401.5 2.2 1602.5 -0.59

50 8 8 6098.9 6.4 5519.8 18 7853.3 766.0 7853.3 28 14 18 5732.9 0.0 7817.8 4.8 4224.6 -0.45

ML-OU

5 32 32 3648.2 0.0 228.3 32 3648.2 158.2 3648.2 32 0 32 3648.2 0.0 3648.2 0.0 3.5 0.00

10 26 26 5179.3 6.1 1472.4 31 4986.7 676.8 4986.4 30 0 30 4990.1 0.6 4990.1 0.6 781.4 0.07

25 12 11 5262.6 11.2 4854.7 17 5968.4 587.1 5968.1 29 14 26 4934.6 0.0 5954.5 3.1 2102.2 -0.23

50 0 0 6392.9 11.9 7200.0 21 8786.3 1382.7 8786.3 19 11 12 5861.3 0.0 8885.3 8.8 5164.5 1.13

OU-ML

5 32 32 3534.8 0.0 53.3 31 3535.0 51.0 3534.8 32 0 32 3534.8 0.0 3534.8 0.0 4.0 0.00

10 27 26 4812.8 3.9 1417.3 27 4775.0 334.8 4774.7 32 3 30 4769.0 0.3 4769.0 0.3 642.8 -0.12

25 13 14 4957.1 4.3 4550.7 23 5641.3 522.6 5641.0 30 8 26 4884.1 0.0 5592.6 2.0 1594.3 -0.86

50 9 8 6034.0 3.1 5497.3 18 8358.6 798.8 8358.6 27 14 17 5930.7 0.0 8344.8 6.1 4303.3 -0.17

OU-OU

5 32 32 3708.0 0.0 174.7 32 3708.0 44.3 3708.0 32 0 32 3708.0 0.0 3708.0 0.0 3.1 0.00

10 26 26 5311.7 6.1 1500.7 29 5109.6 461.4 5108.6 32 1 30 5107.2 1.1 5107.2 1.1 774.2 -0.03

25 11 11 5538.1 12.1 4877.5 19 6159.8 769.6 6159.1 30 11 26 5097.7 0.0 6132.2 3.1 2060.7 -0.44

50 0 0 6029.8 14.9 7200.0 15 9278.0 1584.8 9278.0 23 17 11 5464.4 0.0 9355.7 9.3 5266.1 0.84

Avg 4964.5 5.5 3158.5 5711.1 575.4 5710.8 4780.1 0.1 5710.8 2.6 1824.3 -0.06

Total 303 298 396 470 102 410

* Where B&C found a solution.

the average improvement, while the processing time required approximately 75% of the entire computational

experiment.

Table 13: Impact % of GIP, FIP, and B&C in improving the initial solution

Instances %UBFIP %UBGIP %UBB&C %TFIP (s) %TGIP (s) %TB&C(s)

IRP, |K| = 1 59.52 12.72 27.76 24.17 17.37 58.46

IRP, |K| = 2 48.85 23.47 27.68 8.2 22.13 69.67

IRP, |K| = 3 38.36 36.78 24.86 3.14 17.07 79.79

IRP, |K| = 4 41.39 39.62 18.99 2.53 17.33 80.14

IRP, |K| = 5 39.25 41.95 18.80 2.11 14.45 83.44

MDIRP 37.34 23.20 39.46 1.88 6.42 91.70

2E-MDIRP 58.19 18.19 23.62 13.85 19.26 66.89

Avg. 46.13 27.99 25.88 7.98 16.29 75.73

6. Conclusions

In this paper, we have presented two mechanisms to promote feasibility and improvement for the IRP and

its richer variants. The first of these mechanisms, which we call FIP, allows to recover or complete a partial

solution, turning it into a feasible one. Moreover, it improves a solution by disregarding dominated routes

while it optimizes the inventory flow for the associated set of new routes. The second mechanism, called GIP,

aims to explore a given solution, building a neighborhood that depends on the existing routes, generating a

search space much smaller than of all possible routes, and fully exploring it exactly. These mechanisms are
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flexible enough to be adapted to other optimization methods, such as heuristics and matheuristics, and were

evaluated within the framework of a traditional B&C, which we call improved B&C.

Our algorithm was tested on the classic instances of the single- and multi-vehicle IRP and two richer variants,

the MDIRP and the 2E-MDIRP. On the small benchmark set of Archetti et al. [4], consisting of 800 instances,

our improved B&C obtained 726 BKS and 129 exclusive ones (not found by any other exact algorithm from

the literature), in addition to proving 577 optimal solutions, the largest number among all the exact methods

compared. Similarly, when comparing our algorithm on the 300 large size instances of Archetti et al. [3],

the results of our method greatly outperform the competition in only a fraction of the run time. Regarding

heuristic and matheuristic algorithms, our improved B&C was able to reach 704 BKS and 108 exclusive ones

on the small instances of Archetti et al. [4], in addition to obtaining 70 new BKS on the large instances of

Archetti et al. [3].

Our improved B&C was also compared on the 100 instances of MDIRP proposed by Bertazzi et al. [7] against

a B&C and a three-phase matheuristic, obtaining about 73% new BKS, and a 7.18 % reduction in the value

of the objective function. We also have solved the 512 instances of 2E-MDIRP introduced by Guimarães

et al. [18], obtaining 470 BKS, 102 new BKS and 410 optimal solutions, significantly outperforming the

existing B&C and the matheuristics.

Our methods proved to be competitive and flexible enough to address the IRP and some of its variants, high-

lighting the remarkable contribution of the two mechanisms proposed in this paper. As future research, one

can evaluate the performance of these mechanisms within other methods, such as heuristics and matheuris-

tics. In addition, one can develop strategies for making fractional solutions feasible within the traditional

B&C framework, in order to explore and exploit each node solved within the search tree.
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[24] Schenekemberg, C.M., Scarpin, C.T., Pecora Jr., J.E., Guimarães, T.A., Coelho, L.C., 2020. The
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