

 CIRRELT-2020-02

Tabu Search for a Parallel-Machine
Scheduling Problem with Job
Rejection, Inventory Penalties and
Periodic Maintenance

Hanane Krim
Nicolas Zufferey
Jean-Yves Potvin
Rachid Benmansour
David Duvivier

January 2020

Tabu Search for a Parallel-Machine Scheduling Problem with Job
Rejection, Inventory Penalties and Periodic Maintenance

Hanane Krim1, Nicolas Zufferey2,3, Jean-Yves Potvin3,4, Rachid Benmansour1,5,
David Duvivier1

1. Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (LAMIH)
UMR CNRS 8201, Université Polytechnique Hauts-de-France, 59313 Valenciennes Cedex 9,
France

2. Geneva School of Economics and Management,Université de Genève, 1211 Genève 4, Suisse
3. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
4. Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128,

succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7
5. Institut National de Statistique et d’Économie Appliquée (INSEA), Laboratoire SI2M, Rabat, Maroc

Abstract. We consider a bicriteria scheduling problem on two parallel, non identical

machines with a periodic preventive maintenance policy. The two objectives considered

involve minimization of job rejection costs and weighted sum of completion times. They are

handled through a lexicographic approach, due to a natural hierarchy among the two

objectives in the applications considered. The contributions of this paper are first to develop

a mixed integer linear program model for the problem and, second, to introduce two new

metaheuristics based on tabu search. Computational results on test instances of different

sizes are reported to empirically demonstrate the effectiveness of the proposed

metaheuristics.

Keywords. Parallel machine scheduling, job rejection, periodic maintenance, lexicographic

optimization, tabu search.

Acknowledgements. This research work has been carried out under the ELSAT 2020

project supported by the European Union with the European Regional Development Fund,

the French State, and the Hauts de France Region Council. The authors gratefully

acknowledge the support of these institutions. The present research work has also been

carried out in the context of the LIA (International Associate Laboratory) ROI-TML

(Operational Research and Computer Science in Transportation, Mobility and Logistics)

between LAMIH UMR 8201 (France) and CIRRELT (Canada). The authors gratefully

acknowledge the support of these laboratories and related institutions.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Yves.Potvin@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2020

© Krim, Zufferey, Potvin, Benmansour, Duvivier and CIRRELT, 2020

1 Introduction

Scheduling problems have been extensively studied in the literature under the assumption that all jobs

have to be processed. However, in many practical cases, one may wish or may be forced to postpone the

processing of some jobs, although at some cost. Accordingly, a decision has to be made about jobs that

will be accepted and those that will be rejected to produce a good schedule. Nowadays, this situation

is observed in several companies with a weekly planning (e.g., pharmaceutical products, luxury watches,

fast moving consumer goods). Typically, rejected jobs will get a larger weight or priority the next

week. At the same time, the parallel-machine scheduling problem has been extensively studied due to

its practical applications in various manufacturing systems such as printed circuit board manufacturing,

group technology cells, injection molding processes, etc. However, few studies have been done in the

context of parallel-machine scheduling with job rejection.

Maintenance is another aspect closely connected to production scheduling in real manufacturing settings.

One of the most common assumptions in the scheduling literature is that the machines or processors are

always available but, in practice, they may have to be stopped due to failures or preventive maintenance.

In particular, the importance of preventive maintenance (PM) has been gradually recognized by decision

makers as a mean to avoid machine failures. Preventive maintenance is performed when the machines

are idle and, consequently, represents a source of machine unavailability. Tradeoffs to be found between

preventive maintenance and production activities have led researchers to investigate different ways of

jointly scheduling both activities. Production is expected to be more efficient and revenues to increase

when preventive maintenance is well managed.

In this regard, we address a scheduling problem (P) with two parallel and non-identical machines (it is

formally a 2-Parallel Machines problem with Periodic Maintenance, Job Rejection and Weighted sum of

Completion Times). In this problem, the two machines must undergo periodic preventive maintenance

over the scheduling horizon. Solution quality is measured with two criteria. The first one is the total

cost of rejected jobs and the second one is the weighted sum of job completion times. In the latter case,

the weights can stand for the holding or inventory cost of the corresponding jobs as well as their priority

level (importance, urgency). A strategy based on Lexicographic Optimization (LO) is proposed to deal

with this multi-objective problem. In LO, the decision maker establishes beforehand a priority order

among the optimization objectives, where each higher-level objective is infinitely more important than

any lower-level objective. LO is a convenient approach to address multiobjective problems in practice, as

reported in (Zykina, 2004; Ehrgott, 2005; Thevenin et al., 2017b; Prats et al., 2010; Solnon et al., 2008;

T’kindt and Billaut, 2006).

The remainder of this paper is organized as follows. A literature review dealing with order acceptance

and scheduling, job rejection, periodic maintenance and multi-availability constraints is proposed in

Section 2. Next, a Mixed Integer Linear Program (MILP) for problem (P) is presented in Section 3. The

greedy constructive heuristic and the two metaheuristics based on tabu search are described in Sections 4

and 5, respectively, whereas Section 6 reports computational results. Finally, Section 7 ends the paper

with a conclusion and some perspectives for the future.

1

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

2 Literature review

Based on the three-field notation α | β | γ known as the Graham triplet (Graham et al., 1979), our

problem (P) can be denoted as P2 | pm |
∑n

j=1 uj ,
∑n

j=1 wjCj . The first field (α) means that there

are two parallel machines. The second field (β) indicates that a periodic preventive maintenance (pm)

must be performed on each machine. Finally, the last field (γ) represents the objective functions (see

the notation used in Section 3). To the best of our knowledge, problem (P) has never been studied in

the literature. Nonetheless, Subsections 2.1 to 2.4 will review works that are related to this problem.

Subsections 2.1 and 2.2 are dedicated to the order acceptance and scheduling literature and to the

scheduling problem with job rejection literature, respectively. In both cases, the same problematic

issue is addressed, namely job scheduling when the production capacity does not allow all jobs to be

scheduled. This situation leads to the rejection (resp. acceptance) of some of them, which is penalized

(resp. rewarded) in the objective function. Subsections 2.3 and 2.4 focus on the maintenance and on the

lexicographic optimization aspects in the context of job scheduling.

2.1 Order acceptance and scheduling

A taxonomy and a general review on order acceptance and scheduling (OAS) can be found in (Slotnick,

2011). This problem is to jointly decide about job acceptance and the scheduling of accepted jobs.

Different problem characteristics and problem-solving methodologies, starting from this basic scheme,

have been proposed in the literature. In the following, papers dealing with a single machine and different

objective functions are reviewed, followed by a discussion on problems with two or more machines.

2.1.1 Single machine

Oğuz et al. (2010) consider the single-machine scheduling problem where job acceptance depends on

the release date, due date, deadline, processing time, sequence-dependent setup time and revenue. The

main objective is the maximization of the total revenue. The authors propose a MILP and also develop

three heuristic algorithms to solve their problem. Based on the same objective function, Bahriye et al.

(2012) propose a tabu search to solve a problem that considers sequence-dependent setup times and

tardiness penalties. Nobibon and Leus (2011) generalize two existing problems defined in a single-

machine environment, that is, the order acceptance and scheduling problem with weighted-tardiness

penalties reported in (Slotnick and Morton, 2007) and the total weighted tardiness scheduling problem

reported in (Potts and Van Wassenhove, 1985). The generalized problem reduces to the latter when the

pool of firm planned orders is empty and all jobs can potentially be rejected. To solve their generalized

problem, the authors propose a MILP and two exact branch-and-bound algorithms. They report solving

instances with up to 50 jobs in less than two hours. In (Thevenin et al., 2016), the authors address a

production scheduling problem in a single-machine environment with earliness and tardiness penalties,

sequence-dependent setup times and costs. The objective function includes setup costs, job rejection

penalties and weighted tardiness penalties. The authors propose various methods to solve this problem,

ranging from a basic greedy algorithm to sophisticated metaheuristics (e.g., tabu search, adaptive memory

2

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

algorithm). In another work by the same authors (Thevenin et al., 2015), sequence-dependent setup times

and setup costs between jobs of different families, release dates, deadlines and job rejection are taken into

account. They propose and compare a constructive heuristic, local search methods, and population-based

algorithms. Recent papers dealing with OAS in a single-machine environment take into account machine

availability constraints, as in (Zhong et al., 2014). Here, the authors propose a pseudo-polynomial

algorithm for fixed time intervals between two consecutive PMs.

2.1.2 Multiple machines

In (Ou and Zhong, 2017), the authors study the OAS problem for n jobs on m parallel machines where the

number of rejected jobs should not exceed a given limit L. The objective is to minimize the completion

time of the last scheduled job plus the total cost of rejected jobs. For the special case of a single machine,

they present an exact algorithm of complexity O(n·log(n)). For m machines, they first propose a heuristic

of complexity O(n · log(n)) with a worst-case bound of 2− 1
m . They also develop a heuristic based on LP-

relaxation and bin-packing techniques. The OAS with two machines in a flow shop is considered in (Wang

et al., 2013). The authors present a heuristic and a branch-and-bound algorithm based on dominance

rules and relaxation techniques. Their objective is to maximize the total net profit of accepted jobs,

where the latter is the revenue minus the weighted tardiness. In (Wang et al., 2015), the authors solve

a scheduling problem with two parallel machines with two heuristics and an exact algorithm, using

some properties of optimal solutions to maximize the total profit. In another environment with parallel

machines, Jiang et al. (2017) study the OAS problem with batch delivery in a supply chain consisting of

a manufacturer and a customer. The objective is to minimize the weighted sum of the maximum lead

times of accepted jobs and the total delivery cost. To solve the problem, two approximation algorithms

are proposed. Finally, Emami et al. (2016) report a MILP model and a Lagrangian relaxation algorithm

to solve an OAS problem with the objective of maximizing the total profit.

2.2 Scheduling problem with job rejection

The scheduling problem with job rejection has been studied in different contexts, as indicated in a recent

survey (Shabtay et al., 2013) and motivated by industrial applications (Thevenin et al., 2017a), although

mostly for single-machine problems.

In (Li and Chen, 2017), the authors consider the scheduling problem with job rejection and a maintenance

activity that becomes less effective over time. The main objective is to determine the timing of the

maintenance activity and the sequence of accepted jobs to minimize the scheduling cost of accepted jobs

plus the total cost of rejected jobs. The authors provide polynomial time algorithms for this problem.

Shabtay et al. (2012) propose a bicriteria analysis of a large class of single-machine scheduling problems

with a common property, namely, the consideration of rejection costs plus other additional criteria

(makespan, sum and variation of completion times, earliness and tardiness costs).

Since scheduling with rejection is mostly studied in bicriteria contexts (Shabtay et al., 2013), concepts

3

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

from the theory of bicriteria scheduling are commonly used when dealing with such problems. Below, we

review papers addressing the weighted sum of completion times and the total cost of rejected jobs. Cao

et al. (2006) first prove that the problem for a single machine is NP-hard. A few years later, a pseudo-

polynomial algorithm and a Fully Polynomial Time Approximation Scheme (FPTAS) for multiple parallel

machines are proposed by Zhang et al. (2009). Engels et al. (2003) also report more general techniques

such as linear programming relaxations. In (Moghaddam et al., 2012), the authors study a single-

machine scheduling problem with job rejection, while considering again minimization of the weighted

sum of completion times plus the total cost of rejected jobs. They propose a mathematical formulation

and three different bi-objective simulated annealing algorithms to estimate the Pareto-optimal front for

large-size instances. The authors in (Zhong et al., 2017) study a scheduling problem on two parallel

machines with release times and job rejection. The objective is to minimize the makespan of accepted

jobs plus the total cost of rejected jobs. They develop a (1.5 + ε)-approximation algorithm to solve the

problem. Ou et al. (2015) consider m parallel machines in a context where job rejection is allowed. The

objective is to minimize the makespan plus the total cost of rejected jobs. They develop a heuristic

of complexity O(n · log(n) + n/ε) to solve the problem with a worst-case bound of 1.5 + ε. With the

same goal, Zhong and Ou (2017) present a 2-approximation algorithm with a complexity of O(n · log(n))

by making use of specific data structures. The authors also propose a PTAS to solve the problem. In

(Ma and Yuan, 2016), the authors consider that the information about each job, including processing

time, release date, weight and rejection cost, is not known in advance. They develop a technique named

Greedy-Interval-Rejection to produce good solutions. Finally, the authors in (Agnetis and Mosheiov,

2017) consider the minimization of the makespan in a flow shop with position-dependent job processing

times and job rejection. A polynomial time procedure is proposed to solve this problem.

2.3 Periodic maintenance and multi-availability constraints

The authors in (Kaabi and Harrath, 2014) have written a comprehensive survey about scheduling in

parallel-machine environments in the presence of availability constraints (which can be induced, in par-

ticular, by maintenance activities). Sun and Li (2010) consider two problems. In the first problem, they

minimize the makespan on two parallel machines when maintenance activities are performed periodi-

cally. In the second problem, maintenance activities are determined jointly with job scheduling, while

minimizing the sum of the job completion times. They introduce an algorithm of complexity O(n2) and

show that the classical Shortest Processing Time algorithm (SPT) is efficient for the second problem

with a worst-case bound less than or equal to 1 + 2 · σ, where σ = t/T , and T is the maximum contin-

uous working time for each machine and t is the time required to perform each maintenance activity.

Li et al. (2017) investigate a parallel-machine scheduling problem where each machine must undergo

periodic maintenance. The authors propose two mathematical programming models and two heuristic

approaches to address instances of large size. In (Qi et al., 2015), the authors investigate a scheduling

problem on a single machine with maintenance, in which the starting time of the maintenance is given

in advance but its duration depends on the previous machine load.

4

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

2.4 Multiobjective scheduling problem using lexicographic optimization

LO is particularly relevant for industrial applications, as highlighted by Gallay and Zufferey (2018). LO is

widely used in control engineering and scheduling applications (T’kindt and Billaut, 2006; Aggelogiannaki

and Sarimveis, 2006; Kerrigan and Maciejowski, 2002; Ocampo-Martinez et al., 2008; Respen et al.,

2016). In a work closely related to ours, the authors in (Thevenin et al., 2017b) model a parallel-

machine scheduling problem with job incompatibility through an extension of the graph coloring problem.

Different objectives like makespan, number of job preemptions and total time spent by the jobs in

the production shop are considered and addressed through LO. A mathematical model, two greedy

constructive algorithms, two tabu search methods and an adaptive memory algorithm are proposed to

solve the problem.

3 Mathematical model

In the following, we first introduce some notation and a brief description of our problem. This is followed

by the MILP.

3.1 Formal description of problem (P)

Let J be a set of n independent jobs to be scheduled on two parallel, non identical machines Mi,

i ∈ I = {1, 2}, over a planning horizon of five days (i.e., 7200 minutes). Accordingly, we define d̃ = 7200

minutes as the common deadline for all jobs in set J . If a job cannot be feasibly scheduled during the

current week, it is then postponed to the next week and a rejection cost is incurred. A feasible solution

S of problem (P) is illustrated in Figure 1. It is made of two schedules on machines M1 and M2, with

the corresponding sets JS and JS of accepted and rejected jobs, respectively. Each machine Mi must

undergo a PM at intervals that cannot exceed Ti minutes. In other words, the interval between the end

time of a given PM and the start time of the next PM cannot exceed Ti minutes. The jobs scheduled

between two consecutive PMs define a block, where Bi
k is the kth block on machine Mi scheduled between

the (k − 1)th and kth PMs (the 0th and last PMs are the start and end of the schedule, respectively).

The scheduling of a PM activity on each machine Mi is flexible and can actually occur before Ti minutes

have elapsed, if it is not possible to avoid it or if it is beneficial to do so. Accordingly, the time length of

a block is variable, although it can never exceed Ti for machine Mi. The duration of a PM activity on

machine Mi is denoted by δi. As illustrated in Figure 1, there is no idle time in a schedule between two

consecutive jobs or between a job and a PM.

Each job j ∈ J is characterized by a known processing time pj , a rejection cost uj and a weight wj =

hj + bj which is the sum of its inventory cost hj and its priority level bj . It should also be noted that

no preemption is allowed. The two machines are non identical in the sense that PMs must be done

more frequently on M2. Thus, the maximum time interval T2 between two consecutive PMs is smaller

than T1. A feasible solution S of problem (P) is evaluated first through objective f1, which is the total

5

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Figure 1: Feasible solution of problem (P)

rejection cost of the jobs in JS , and second through objective f2, which is the weighted sum of the

completion times of the jobs in JS . With regard to f2, the WSPT (Weighted Shortest Processing Time)

rule introduced in (Smith, 1956) is particularly important, because it optimally solves the 1 ||
∑n

j=1 wjCj

scheduling problem, which minimizes the weighted sum of completion times on a single machine without

side constraints. The WSPT rule states that the jobs should be scheduled in decreasing order of the

wj/pj ratios. This rule will be exploited in our algorithms, although in a heuristic way since we have

two machines with some operational constraints.

3.2 Model

The mathematical programming formulation of problem (P) is presented below. It involves five different

types of decision variables.

Cj : completion time of job j ∈ J

mi
k : start time of the kth PM on machine Mi

xilj =

1 if job l is scheduled before job j on machine Mi

0 otherwise

zij =

1 if job j is scheduled on machine Mi

0 if job j is rejected

yijk =

1 if job j is scheduled in block k on machine Mi

0 otherwise

6

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

For the sake of the MILP formulation, two dummy jobs 0 and n + 1 are added to the model with

completion times C0 = Cn+1 = 0. Accordingly, we define the set J+ = J ∪ {0, n + 1}. We also have

m1
0 = m2

0 = 0. Note finally that M is an arbitrary large number.

Due to the lexicographic ordering of the two objectives, problem (P) can be solved optimally in two steps

with an exact solver. A first model is solved with the objective of minimizing f1 (while ignoring f2).

Next, a second model is solved with the objective of minimizing f2 (with the constraint of not exceeding

the optimal value found for f1).

The first model is the following:

min (f1) =
n∑

j=1

uj(1− (z1j + z2j)) (1)

0 ≤ mi
k ≤ mi

k−1 + Ti + δi ∀k ∈ J, ∀i ∈ I (2)

mi
k ≥ (d̃− δi)⇒ (mi

k = 0) ∀k ∈ J, ∀i ∈ I (3)

Cj ≤ mi
b +M(1− yijb) ∀i ∈ I, ∀j ∈ J, b = 2, . . . , n (4)

Cj − pjyijb ≥ mi
b−1 + δi −M(1− yijb) ∀i ∈ I, ∀j ∈ J, b = 2, . . . , n (5)

n+1∑
j=1,k 6=j

xikj = zik i ∈ I, k = 0, . . . , n (6)

n∑
k=0,k 6=j

xikj = zij ∀i ∈ I, j = 1, . . . , n+ 1 (7)

x1kj + x2kj ≤ 1 k = 0, . . . , n j = 1, . . . n+ 1 (8)

Cj ≥ pj(z1j + z2j) ∀j ∈ J, ∀i ∈ I (9)

Cj ≤ d̃(z1j + z2j) ∀j ∈ J, ∀i ∈ I (10)

Ck ≤ Cj − pjxikj + d̃(1− xikj) ∀i ∈ I, k = 0, . . . , n j = 1, . . . , n+ 1 (11)
n∑

j=1

pjy
i
jb ≤ Ti ∀b ∈ J, ∀i ∈ I (12)

n∑
b=1

yijb = zij ∀j ∈ J, ∀i ∈ I (13)

y1jb + y2jb ≤ 1 ∀(j, b) ∈ J × J (14)

z1j + z2j ≤ 1 ∀j ∈ J (15)

zik + zij ≥ 2(xikj + xijk) ∀(k, j) ∈ J × J, ∀i ∈ I (16)

C0 = Cn+1 = m1
0 = m2

0 = 0 (17)

xikj , y
i
jb, z

i
j ∈ {0, 1} ∀(b, j, k) ∈ J × J × J, ∀i ∈ I (18)

Equation (1) corresponds to the first objective function considered in this work. Constraints (2) allow

to compute the starting time of the kth PM on each machine Mi. When d̃ is reached, constraints (3) set

to zero the start time of the kth PM on each machine Mi. Constraints (4) and (5) forbid a scheduled job

7

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

and a PM activity to overlap. Constraints (6) indicate that every job assigned to machine Mi, including

the dummy job 0, should have a successor. Constraints (7) state that if a job j is assigned to machine

Mi, at least one job should immediately follow, which includes the dummy job n + 1. Constraints (8)

state that two jobs scheduled consecutively should be assigned to the same machine. Constraints (9)

and (10) define bounds on the completion time of each scheduled job (if a job is rejected, its completion

time is set to 0). Constraints (11) indicate that two jobs scheduled on the same machine cannot overlap.

Constraints (12) state that the sum of processing times of all jobs between two consecutive maintenance

activities must be less than or equal to Ti. Since the number of blocks on each machine Mi is at most

the number of jobs assigned to Mi, constraints (13) computes the number of accepted jobs in each block

Bi
k. Constraints (14) enforce each accepted job j to be scheduled either on M1 or M2 but not both.

Similarly, constraints (15) allow accepted jobs to be scheduled in a block Bi
k of either machine M1 or

M2 but not both. Constraints (16) state that if two jobs l and j are scheduled on the same machine,

then l is scheduled either before or after j. Constraints (17) set the completion times of dummy jobs 0

and n+ 1, and the start time of the first PM on each machine to 0. Finally, constraints (18) define the

binary variables.

Let f?1 be the optimal value of f1 after solving the above model. In a second step, constraint f1 ≤ f?1 is

added to the model and the latter is solved with objective f2 only. In other words, the model below is

considered:

min (f2) =
n∑

j=1

wjCj (19)

s.t. Constraints (2− 18) (20)
n∑

j=1

uj(1− (z1j + z2j)) ≤ f?1 (21)

Equation (19) corresponds to the second objective, while constraint (21) bounds the value of the first

objective. The solution obtained at the end of this second step is the optimal solution of (P). We observed

that the CPLEX solver could only be used for small instances. More precisely, we were able to solve

instances with up to 25 jobs within approximately 16 hours of computation time. But CPLEX had to be

stopped after 24 hours of computation time, with a very large optimality gap, on instances with 40 jobs.

These results support the use of heuristics and metaheuristics for instances of larger, more realistic, size.

In the following, our problem-solving methodologies are presented, starting with the greedy heuristic to

generate a first feasible schedule, which is then improved with tabu search-based metaheuristics.

8

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

4 Greedy heuristic GrH

The greedy heuristic GrH calls a construction procedure which is aimed at producing a feasible schedule

of good quality from a given set of jobs. In particular, GrH calls the construction procedure within a

loop where the set of jobs is gradually reduced until all jobs can be scheduled, as it is explained below.

In each proposed procedure of this work, ties are broken randomly if no other information is provided.

4.1 Main procedure

We can see from the description in Algorithm 1 that GrH starts by calling the greedy construction

procedure (presented in Algorithm 2) with a set of jobs J ′, which is initially the set of all jobs J (steps 1

and 2). The construction procedure then returns a feasible solution S, which is associated with a set of

accepted jobs JS and a set of rejected jobs JS . If not all jobs in J ′ are accepted in solution S, we select

the |JS | jobs in J with the largest uj to obtain a smaller set J ′ (step 3a). The construction procedure is

then called again with the new J ′ (step 3b). If the solution S obtained does not contain all jobs in J ′,

we select again the |JS | jobs in J with the largest uj to obtain an even smaller set J ′ (step 3a again),

and the construction procedure is called with the latter (step 3b again). This is repeated until all jobs

in J ′ are accepted in the obtained solution S, that is, when JS = J ′. Thus, the aim of the loop (step

3) is to schedule as many jobs as possible with the largest rejection costs, since f1 is the main objective.

Next (step 4), we consider the rejected jobs in the last solution obtained and we try to add them at the

end of the schedule of machines M1 and M2. These jobs are considered one by one in decreasing order

of rejection costs. First, we check if the current job j can be added without exceeding the deadline d̃ (if

the addition of job j leads to exceeding the due time of the next PM, a PM must also be added before

job j). If job j is feasible on a single machine, it is added to this machine; if job j is feasible on both

machines, it is added to the machine with minimum completion time Cj (in order to account for f2); if

job j is not feasible on any machine, it is skipped.

Algorithm 1 GrH. Input: J . Output: S.

1. J ′ ←− J

2. S ←− Construction(J ′)

3. Repeat until JS = J ′:

(a) J ′ ←− subset of |JS | jobs j ∈ J with largest uj

(b) S ←− Construction(J ′)

4. For each job j ∈ JS (taken in decreasing order of uj), do:

(a) Try to add j at the end of schedule of M1 and M2, while programming a PM before j if
required

(b) If job j is feasible on one machine, add j to this machine

(c) If job j is feasible on both machines, add j to the machine with minimum Cj

9

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

4.2 Construction procedure

The construction procedure, described in Algorithm 2, produces a solution S from scratch in a greedy

way. Using the set J ′ of jobs provided in input, a new job j is selected and added, at each iteration, at

the end of the schedule of M1 or M2. This is repeated (step 3) as long as there are jobs which can be

added to the schedule of at least one machine without exceeding the deadline d̃ (if the addition of job j

leads to exceeding the due time of the next PM, a PM must also be added before job j). This feasibility

check is performed through calls to AssignFeasible, as described in Algorithm 3. AssignFeasible considers

the set of jobs provided in input and returns only the subset of feasible jobs. In the process, each feasible

job is tentatively assigned (but not scheduled) to a machine. If job j is feasible on a single machine, it is

added to this machine; if job j is feasible on both machines, it is added to the machine with minimum

completion time Cj (to account for f2).

In the construction procedure, the selection of the next job is done as follows. First (step 3a), we consider

the subset J ′1 ⊂ J ′ of the q1 (parameter < n) jobs with the largest wj/pj ratio, which is a good heuristic

rule with regard to objective f2. Second (steps 3b and 3c), we select the subset J ′2 ⊂ J ′1 containing the

q2 (parameter < q1) jobs with the smallest completion times Cj , as determined in AssignFeasible. For

each job j ∈ J ′2 (and its associated machine), we compute the slack time with the due time of the next

PM, and we finally select the job j? with the smallest slack time. The latter is then added (as well as a

PM before j?, if required) at the end of the schedule of its associated machine. It should be noted that

all jobs are considered in the first and second steps when the number of remaining jobs is smaller than

q1 and q2, respectively.

Algorithm 2 Construction. Input: J ′. Output: S.

1. S ←− ∅

2. J ′ ←− AssignFeasible(J ′)

3. While J ′ 6= ∅, do:

(a) Select subset J ′1 ⊂ J ′ (of size q1) of jobs j with largest ratio wj/pj (J ′ is selected if |J ′| < q1)

(b) Select subset J ′2 ⊂ J ′1 (of size q2) of jobs j with smallest recorded Cj (J ′1 is selected if |J ′1| < q2)

(c) Select j? ∈ J ′2 with smallest slack time with the next required PM on assigned machine

(d) Add j? at the end of schedule of assigned machine, while programming a PM before j? if
required

(e) J ′ ←− AssignFeasible(J ′\{j?})

10

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Algorithm 3 AssignFeasible. Input: J ′. Output: J ′.

1. For each job j ∈ J ′, do:

(a) Try to add j at the end of schedule of M1 and M2, while programming a PM before j if
required

(b) If j is feasible on a single machine, assign j to this machine and record Cj

(c) If j is feasible on both machines, assign j to the machine with minimum Cj and record Cj

(d) If j is not feasible on any machine, J ′ ←− J ′\{j}

5 Two tabu search metaheuristics TSMN and CTS

Introduced in (Glover, 1989), tabu search is a well-known metaheuristic for solving hard combinatorial

optimization problems (Gendreau and Potvin, 2019), with a great success in job scheduling (Respen

et al., 2016; Thevenin et al., 2016). Starting with some initial solution, a neighborhood of the current

solution is generated at each iteration through local modifications (moves). The best solution in the

neighborhood then becomes the new current solution, even if it does not provide an improvement. To

avoid cycling in the solution space, a tabu list is also defined to forbid certain moves. Since tabu lists are

not perfect filters, the tabu status of a move can always be revoked through aspiration criteria if there is

no risk of cycling. The tabu search terminates when a stopping criterion is satisfied. The best solution

found is returned at the end.

Two metaheuristics based on tabu search are proposed in this section. They are called Tabu Search

with Multiple Neighborhoods (TSMN) and Consistent Tabu Search (CTS). TSMN explores only feasible

solutions by exploiting different types of neighborhoods, whereas CTS admits moves leading to infeasible

solutions which will be immediately repaired to restore feasibility (consistency). These two metaheuristics

are now described.

5.1 Tabu search with multiple neighborhoods TSMN

TSMN improves the initial starting solution produced by the greedy heuristic GrH, while always main-

taining feasibility. As shown in Algorithm 4, TSMN has three different phases with different neighbor-

hood structures. The algorithm stops when ITSMN global iterations have been performed (step 2) and

the best-encountered solution S? is returned. The latter is updated after each step of Algorithm 4 with

respect to the lexicographic ranking f1 > f2.

Each global iteration corresponds to three consecutive tabu search phases. Phase 1 optimizes objective

f1, whereas the sequence of scheduled jobs obtained at the end of Phase 1 is modified in Phases 2 and

3 to optimize f2. In these two last phases, no scheduled job can be rejected, thus only the sequences of

jobs on the two machines are modified.

11

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

The neighborhood structures of the tabu search procedures exploit different types of moves for updating

the current solution (as explained below). The best non-tabu move – over a random proportion Pr of all

possible moves – is performed at each iteration of each tabu search procedure. The following values have

been tested for parameter Pr in our computational study: 0.25, 0.5, 0.75 and 1. Each modification to

the current solution needs to be correctly evaluated. It implies that jobs may have to be shifted to the

right or to the left (in the latter case, to fill any idle time between two consecutive jobs). However, this

is done only from the point of insertion of a new job to the end of the schedule, since nothing changes

before the insertion point.

When a move is performed, its reverse move is forbidden for tab iterations, where tab is an integer

randomly chosen in [5, 10] for Phases 1 and 3, and in [3, 7] for Phase 2 (these intervals were tuned after

preliminary experiments).TSMN comprises a standard criterion aspiration: The tabu status of a move is

revoked if it leads to a solution which is better than the best-encountered solution. There is no risk of

cycling in this case, since this new best solution has clearly not been previously visited. The stopping

criterion for each Phase l ∈ {1, 2, 3} corresponds to a maximum number of iterations, denoted as ITSMN
l .

The value for each parameter was determined through parameter sensitivity analysis, as explained in

Section 6.

Algorithm 4 TSMN. Input: J . Output: S?

1. S ←− GrH(J)

2. For t = 1 to ITSMN, do:

(a) Phase 1: S ←− Tabu(S; SWAP1; INSERT 1)

(b) Phase 2: S ←− Tabu(S; SWAP2)

(c) Phase 3: S ←− Tabu(S; SWAP3)

The neighborhood structures used in Phases 1, 2 and 3 of TSMN are the following:

Phase 1. The tabu search Tabu(S; SWAP1; INSERT 1) optimizes only f1 (rejection cost) using a

neighborhood structure based on SWAP1 and INSERT 1. More precisely, a move consists in sequentially

swapping two jobs j ∈ JS and j′ ∈ JS (SWAP1), and then, in trying to insert in the schedule jobs

j′′ ∈ JS with a large rejection cost (INSERT 1). In SWAP1, every pair of jobs j ∈ JS and j′ ∈ JS are

considered for exchange. That is, a scheduled job is rejected and replaced by a previously rejected job.

After each such potential exchange, the jobs j′′ ∈ JS are sorted in decreasing order of rejection cost

uj′′ . Then INSERT 1 considers the jobs in JS one by one for insertion in the schedule, with the goal

of inserting as many jobs as possible while keeping solution feasibility. Indeed, when a swap is applied

between j ∈ JS and j′ ∈ JS , the processing time pj′ can well be greater than pj , which may lead to

exceeding the deadline d̃ (if it occurs, such a swap move is ignored). Conversely, when pj′ is smaller than

pj , some idle time is created in the schedule and this flexibility can then be exploited by INSERT 1. Note

that each swap move is evaluated with regards to objective f1 after having performed the subsequent

insertion moves.

12

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Phase 2. The tabu searches in Phases 2 and 3 are aimed at improving the scheduling of accepted jobs,

as identified in Phase 1, with regard to objective f2. The neighborhood structure SWAP2 exchanges

every pair of blocks scheduled on the same machine only. Indeed, after some preliminary tests, we

discovered that swapping blocks between the two machines was not beneficial because the blocks are not

of the same size (T2 < T1). Consequently, the schedule of machine M2 often exceeded the deadline after

such a move, as illustrated in Figure 2 for the exchange of blocks B2
1 and B1

2 .

PM PM PM PM PM

PM PM PM

PM PM PM PM PM

PM PM PM

Figure 2: Infeasible solution after swapping two blocks between M1 and M2

Phase 3. The neighborhood structure in Phase 3 is based on SWAP3 moves where pairs of jobs,

scheduled on the same machine or not, are exchanged. We consider all possible swaps between two jobs

j and j′, except when j appears before j′ in the schedule of a given machine and wj′/pj′ < wj/pj (to

be in line with the WSPT rule). The goal here is to obtain a better scheduling of the jobs within the

blocks with regard to objective f2.

5.2 Consistent tabu search CTS

This tabu search is inspired from the work in (Zufferey and Vasquez, 2015), where satellite range schedul-

ing problems are addressed. As opposed to TSMN, infeasible neighbor solutions are considered but are

immediately repaired to restore feasibility. This approach leads to the design of a simpler algorithmic

scheme, as shown in Algorithm 5. There are two main phases in CTS, each based on a tabu search which

is aimed at optimizing one of the two objectives.

An initial solution S is first generated using the greedy heuristic GrH (step 1). A total number of

ICTS global iterations is then performed (step 2). First, objective function f1 is optimized in Phase 1

through insertion moves (based on the below-described INSERT 2 neighborhood structure). A maximum

number of ICTS
1 iterations is performed with this tabu search, but the procedure is repeated as long as

an improvement to the best-encountered solution is observed (step 2a). Next, f2 is optimized in Phase 2

13

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

with the SWAP4 neighborhood structure (step 2b), which is similar to the SWAP3 used in TSMN. This

tabu search is stopped after a maximum number of ICTS
2 iterations. As opposed to Phase 1, the procedure

is not repeated as long as an improvement to the best-encountered solution is observed, because f2 is a

secondary objective.

Like TSMN, a tabu tenure is associated with each move. In Phase 1, a rejected job is tabu for reinsertion

in the schedule for tab iterations, whereas the reverse swap move is tabu in Phase 2. In both cases, tab

is an integer randomly chosen in the interval [5, 10], based on preliminary experiments. The aspiration

criterion is the same as in TSMN. The neighborhood structures are now presented.

Phase 1. Objective f1 (rejection cost) is optimized using the neighborhood structure INSERT 2, where

every rejected job is considered for insertion at every position in the schedule of machines M1 and M2.

It is important to note that the insertion is enforced even if the deadline d̃ is exceeded. In such a case,

the tentative solution is immediately repaired by removing accepted jobs that are positioned from the

maintenance occurring just before j (or from the first job if there is no maintenance before j) to the end

of the schedule (the selection of such candidate jobs to be removed limits the impact of a job removal

on the solution structure, while facilitating the evaluation). More precisely, while the solution is not

feasible, we sequentially remove a job j′ from JS in increasing order of their rejection costs (i.e., focus

on f1), and we break ties with the smallest ratio wj′/pj′ (i.e., focus on f2).

Phase 2. Objective f2 (weighted sum of completion times) is optimized using the neighborhood struc-

ture SWAP4 (see SWAP3 in TSMN). When a swap leads to exceeding the deadline d̃ on a machine,

feasibility is restored as in Phase 1.

Algorithm 5 CTS. Input: J . Output: S?

1. S ←− GrH(J)

2. For t = 1 to ICTS, do:

(a) Repeat as long as S? is improved: Phase 1: S ←− Tabu(S; INSERT 2)

(b) Phase 2: S ←− Tabu(S; SWAP4)

6 Computational study

This section reports computational results obtained with the proposed algorithms. The generation of test

instances is first discussed in Subsection 6.1. Next, experiments conducted to determine the best value

for different parameters are described in Subsection 6.2. Finally, comparisons between TSMN and CTS

are reported and discussed in Subsection 6.3. All algorithms were coded in Java and the computational

experiments were performed on an i7 Intel Core at 2.50 GHz with 16 GB of RAM. The MIP solver is

CPLEX 12.7 coupled with Concert Technology for the Java interface.

14

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Given that f1 (rejection cost) is the main objective and subsumes f2 (weighted sum of completion times),

we will sometimes report only the values of f1 in the following results for brevity purposes. Also, to

allow a fair comparison between TSMN and CTS, their global iteration counters ITSMN and ICTS will be

replaced by a computation time limit of one hour. Since TSMN and CTS are both stochastic algorithms,

they are run 10 times on each instance and the best run is recorded (note by the way that the relative

standard deviation is smaller than 0.2).

Apart from the results in Subsection 6.2.1, which is about GrH, the solution values are reported as

improvement gaps (in percent) with respect to the solution values produced by GrH. Formally, GAP =

100× [(GrH − TS)/GrH], where TS is either TSMN or CTS, and the improvement is calculated either

with regard to objective f1 or f2, depending on the context.

6.1 Test instances

Since there are no available benchmark instances in the literature for problem (P), we carried out exper-

iments based on randomly generated data, inspired from a real case in the pharmaceutical industry, as

reported in (Zufferey et al., 2017).

The job processing time pj in minutes is uniformly distributed in the interval [30, 120] with an average of

75 minutes. Thus, if we do not consider the maintenance activities, it is possible to schedule, on average,

at most 96 jobs per machine over a scheduling horizon of 5 days (7200 minutes). For example, when

n = 200, at least 8 jobs will be rejected. Accordingly, we generated instances of size n ∈ {200, 210, 220}.
For each size, 10 instances were generated, for a total of 30 instances. Periodic preventive maintenance

is performed on the two machines after a maximum of Ti minutes of use, with T1 = 480 and T2 = 360.

The time required to perform a maintenance is set to 4% of Ti, which translates into δ1 = 20 minutes

and δ2 = 15 minutes.

The weight wj = bj + hj is uniformly distributed in the interval [20, 60]. That is, the priority bj is

randomly selected in the set {10, 20, 30}, whereas hj is uniformly distributed over the interval [10, 30].

Finally, uj is uniformly distributed over the interval [bjpj/2, 2bjpj], since the rejection cost of a job

depends on its priority and its processing time.

6.2 Parameter calibration

In this subsection, we examine the impact of different parameters on the proposed algorithms. To this

end, different values were tested for a given parameter, as it is explained below.

15

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

6.2.1 Parameters q1 and q2 of GrH

GrH was run with q1 ∈ {0.05n, 0.1n, 0.2n, 0.3n, 0.4n, 0.5n, n}, whereas q2 was set to q1
2 . Table 1 sum-

marizes the average value of f1 over the 10 instances for each size n and each q1 value. It shows that

GrH produces better solutions with smaller values of q1. For a better view of the results, the entries in

Table 2 provide the number of instances for which a given value of q1 produces the best solution. Based

on these results, the value 0.2n was selected.

q1 = 0.05n q1 = 0.1n q1 = 0.2n q1 = 0.3n q1 = 0.4n q1 = 0.5n q1 = n

n = 200 11270.5 11159.7 11462.8 11593 15200.2 16530.1 21020.6

n = 210 20970.5 21127.5 16530.1 18013.2 19292.3 20534.8 33035

n = 220 31037.5 31063.1 31365.5 33502 35590.3 38437.1 47697.5

Table 1: Average solution values of GrH based on f1 for different values of q1

q1 = 0.05n q1 = 0.1n q1 = 0.2n q1 = 0.3n q1 = 0.4n q1 = 0.5n q1 = n

n = 200 5/10 4/10 2/10 2/10 0/10 0/10 0/10
n = 210 4/10 1/10 6/10 2/10 0/10 0/10 0/10
n = 220 4/10 3/10 5/10 3/10 0/10 0/10 0/10

Table 2: Number of best solutions found by GrH based on f1 for different values of q1

6.2.2 Stopping criteria of TSMN and CTS

In TSMN, Phase l is stopped after ITSMN
l iterations, with l ∈ {1, 2, 3}. First, we tested

ITSMN
1 ∈ { n

10 ,
n
5 , n, 2n, 3n, 4n, 5n}. The gaps or improvements achieved on objective f1 are summarized

in Table 3 with the corresponding computation times in seconds. We observe that most of the opti-

mization takes place in the first n
10 iterations, whereas the gap does not change much after ITSMN

1 = 2n

iterations. It should also be noted that the computation time is around one minute when the largest

number of iterations 5n is performed. Based on these results, ITSMN
1 was set to 2n.

Since Phases 2 and 3 are aimed at optimizing f2, Table 4 shows the average gap values of objective

f2 at the end of Phase 3 for different values of ITSMN
3 , after fixing ITSMN

1 to 2n. Again, most of the

optimization takes place in the first n
10 iterations and the improvement is null or negligible after 3n

iterations. The computations times never exceed 90 seconds, even when the largest number of iterations

5n is performed. Based on these results, ITSMN
3 was set to 3n. It should be noted that ITSMN

2 was set

to n/5 given the relatively small size of the corresponding neighborhood, where blocks are moved rather

than individual jobs.

Since the two neighborhoods explored in CTS are similar to the ones in Phases 1 and 3 of TSMN, ICTS
1

and ICTS
2 were also set to 2n and 3n, respectively. Also, as previously mentioned, the global iteration

counters ITSMN and ICTS of TSMN and CTS, respectively, were replaced by a time limit of one hour.

16

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

f1 value Computation time (s)

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

n/10 25.66 19.62 18.41 0.67 1.26 3.79
n/5 25.70 19.66 18.48 0.81 2.10 22.47
n 25.71 19.76 18.50 2.96 13.50 28.27
2n 25.78 19.77 18.57 9.77 23.65 41.59
3n 25.78 19.77 18.68 13.29 35.78 41.90
4n 25.78 19.77 18.68 37.74 36.96 49.46
5n 25.78 19.77 18.68 41.84 51.02 64.66

Table 3: Average value of f1 with regard to ITSMN
1 and instance size n

f2 value Computation time (s)

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

n/10 38.57 37.68 40.53 5.42 7.44 8.16
n/5 38.63 37.75 40.57 9.89 12.64 10.35
n 38.65 37.84 40.57 18.35 21.22 22.85
2n 38.70 37.87 40.64 26.12 29.67 32.18
3n 38.71 37.90 40.67 30.05 31.87 39.05
4n 38.73 37.90 40.67 45.17 25.76 28.18
5n 38.75 37.90 40.67 58.16 65.55 86.24

Table 4: Average value of f2 with regard to ITSMN
3 and instance size n

6.2.3 Neighborhood size parameter PrN of TSMN and CTS

We ran Phases 1 and 3 of TSMN with PrN ∈ {1, 34 ,
1
2 ,

1
4}, where PrN is the fraction of the neighborhood

N explored. For these experiments, the number of iterations of TSMN in Phases 1, 2 and 3 was set to

2n, n/5 and 3n, respectively. Tables 5 and 6 summarize the results, considering that Phase 1 optimizes

f1 and Phase 3 optimizes f2.

From these results, we can easily see that high values of PrN are associated with better objective values,

although at a computational cost. For n = 220 in Table 5, for example, the average computation time

with PrN = 1 is 27.6 seconds, whereas it is only 7.18 seconds with PrN = 1
4 . On the other hand, the

average solution value is substantially better with PrN = 1.

PrN = 1 PrN = 3
4 PrN = 1

2 PrN = 1
4

n = 200
f1 25.68 25.50 25.29 24.77
Computation time (s) 9.77 3.87 1.46 0.97

n = 210
f1 19.71 19.58 19.55 18.98
Computation time (s) 23.66 10.80 6.68 2.70

n = 220
f1 18.56 18.23 18.21 18.12
Computation time (s) 27.60 16.37 8.30 7.18

Table 5: Comparison of f1 values for different instance sizes n and PrN values

17

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

PrN = 1 PrN = 3
4 PrN = 1

2 PrN = 1
4

n = 200
f2 39.95 38.88 38.65 38.64
Computation time (s) 28.05 28.97 22.71 11.74

n = 210
f2 38.67 38.17 38.01 38.00
Computation time (s) 30.28 31.16 19.95 11.17

n = 220
f2 41.94 40.73 40.62 40.56
Computation time (s) 38.46 30.76 17.45 13.18

Table 6: Comparison of f2 values for different instance sizes n and PrN values

Based on these results, and given the benefits obtained from a complete exploration of each neighborhood,

PrN was set to 1 in Phases 1 and 3. Furthermore, the whole neighborhood is also explored in Phase 2

of TSMN, due to its relatively small size. Based on the results obtained with TSMN, PrN was also set

to 1 in Phases 1 and 2 of CTS.

6.3 Results

This subsection reports the results obtained with TSMN and CTS. First, we analyze the impact of each

phase of TSMN. Second, we compare and discuss the final solutions produced by TSMN and CTS after

one hour of computation time.

6.3.1 Analysis of each phase of TSMN on f1 and f2

Table 7 reports the improvement reached in objectives f1 and f2 after the first pass through each phase

of TSMN. At this point, we must remember that Phase 1 is aimed at optimizing f1, whereas Phases 2

and 3 optimize f2. Thus, we report only the results for the corresponding objectives.

f1 f2

TSMN components n = 200 n = 210 n = 220 n = 200 n = 210 n = 220
Phase 1 25.25 17.04 18.21 - - -
Phase 2 - - - 15.52 13.43 17.97
Phase 3 - - - 38.52 37.50 40.65

Table 7: Impact of different phases of TSMN

Tables 8 and 9 summarize the average run times consumed by each phase of TSMN and CTS over one

hour of computation time. With regard to TSMN, Phase 3 is clearly the most time-consuming, since

pairs of accepted jobs are considered for exchange. Conversely, Phase 2 is the least time-consuming

because whole blocks of jobs are exchanged. With regard to CTS, Phase 1 must consider each job for

insertion at every possible position (even infeasible ones) in the schedule, which explains the substantial

amount of time required for evaluation and repair.

18

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

n = 200 n = 210 n = 220

Phase 2 7.032 6.97 7.27
Phase 3 3445.11 3433.04 3395.6

Table 8: Average computation time (in seconds) for each phase of TSMN

n = 200 n = 210 n = 220

Phase 1 2586.09 2400.14 2013.84
Phase 2 1031.75 1203.11 1588.30

Table 9: Average computation time (in seconds) for each phase of CTS

6.3.2 Comparison between TSMN and CTS

Table 10 compares TSMN and CTS with regard to objectives f1 and f2 on our test instances with

n = 200, 210 and 220 jobs. We note that TSMN produces significantly better solutions with regard to

objective f1, whereas CTS does slightly better for f2.

f1 f2

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

GAPTSMN 25.7 20.2 18.9 38.4 37.3 36.3
GAPCTS 22.9 16.5 11.0 40.9 38.7 37.7

Table 10: Comparison between TSMN and CTS

Table 11 shows the number of times that each method found the best solution, for each objective, over

the 10 test instances of each size. These results are in line with those reported in Table 10, although

it should be noted that the slight superiority on average of CTS over TSMN for objective f2 holds

on almost every instance. Since f1 is the main objective, though, we conclude that TSMN is the best

method on the considered set of instances.

TSMN CTS

n = 200
f1 10/10 0/10

f2 1/10 9/10

n = 210
f1 8/10 2/10

f2 0/10 10/10

n = 220
f1 9/10 1/10

f2 0/10 10/10

Table 11: Number of best solutions for TSMN and CTS for n = 200, 210 and 220 jobs

Table 12 reports the average number of rejected jobs for each method (including GrH) and for each

instance size. With TSMN, we observe an average improvement over GrH of 4.4, 3.3 and 10.2 jobs for

n = 200, 210 and 220, respectively. Furthermore, TSMN improves over CTS by allowing a reduction of

2.1, 1.4 and 5.3 jobs for n = 200, 210 and 220, respectively. It is important to remember here that the

19

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

number of rejected jobs is just a proxy for the true objective f1 (total cost of rejected jobs), but TSMN

still outperforms CTS here.

n = 200 n = 210 n = 220

GrH 24.9 39.5 51.5
TSMN 20.5 36.2 41.3
CTS 22.6 37.6 46.6

Table 12: Average number of rejected jobs

Finally, Figure 3 shows the evolution over time of objective f1 of the best solution for TSMN and CTS,

respectively. At time t = 0, the value shown is the one obtained with GrH. In the case of TSMN, there

is a noticeable improvement up to t = 30 minutes, after which the improvement is rather small. On the

other hand, CTS reaches a plateau at about t= 45 minutes.

Figure 3: Evolution over time of f1 for TSMN and CTS for each instance size

20

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

7 Conclusion and perspectives

In this work, we studied a parallel-machine scheduling problem with two non identical machines over

a weekly planning horizon, while considering periodic preventive maintenance. Two objectives were

considered and addressed with lexicographic optimization, namely, minimization of job rejection cost and

weighted sum of job completion times (which can be seen as an inventory penalty). We first introduced

a MILP formulation for the problem. Next, we developed a greedy heuristic and two tabu search-based

metaheuristics, denoted TSMN and CTS. Computational experiments were performed on randomly

generated data. They showed that TSMN outperforms CTS for the job rejection cost, which is the main

objective, whereas CTS did slightly better for the weighted sum of job completion times.

Various research axis are possible for the future. On the one hand, alternative problem-solving method-

ologies could be explored for problem (P), like the Adaptive Large Neighborhood Search (ALNS). On the

other hand, an extension of (P) could be studied, where several machines and/or optimization criteria

are involved. Finally, a stochastic variant of (P) can be investigated, where random machine breakdowns

can occur over time.

References

Aggelogiannaki, E. and Sarimveis, H. Multiobjective constrained MPC with simultaneous closed-loop

identification. International Journal of Adaptive Control and Signal Processing, 20(4):145–173, 2006.

Agnetis, A. and Mosheiov, G. Scheduling with job-rejection and position-dependent processing times on

proportionate flowshops. Optimization Letters, 11(4):885–892, 2017.

Bahriye, C., Ceyda, O., and Sibel, S. F. A tabu search algorithm for order acceptance and scheduling.

Computers & Operations Research, 39(6):1197–1205, 2012.

Cao, Z., Wang, Z., Zhang, Y., and Liu, S. On several scheduling problems with rejection or discretely

compressible processing times. Theory and Applications of Models of Computation, pages 90–98, 2006.

Ehrgott, M. Multicriteria Optimization, volume 491. Springer Science & Business Media, 2005.

Emami, S., Sabbagh, M., and Moslehi, G. A Lagrangian relaxation algorithm for order acceptance and

scheduling problem: a globalised robust optimisation approach. International Journal of Computer

Integrated Manufacturing, 29(5):535–560, 2016.

Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma, R., and Wein, J. Techniques for

scheduling with rejection. Journal of Algorithms, 49(1):175–191, 2003.

Gallay, O. and Zufferey, N. Metaheuristics for lexicographic optimization in industry. In Proceedings of

the 19th EU/ME Workshop on Metaheuristics for Industry (EU/ME 2018), 2018.

Gendreau, M. and Potvin, J.-Y. Handbook of Metaheuristics, volume 146 of International Series in

Operations Research & Management Science. Springer, 2019.

Glover, F. Tabu search - Part I. ORSA Journal on Computing, 1(3):190–206, 1989.

21

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. Optimization and approximation in

deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326, 1979.

Jiang, D., Tan, J., and Li, B. Order acceptance and scheduling with batch delivery. Computers &

Industrial Engineering, 107:100–104, 2017.

Kaabi, J. and Harrath, Y. A survey of parallel machine scheduling under availability constraints. Inter-

national Journal of Computer and Information Technology, 3(2):238–245, 2014.

Kerrigan, E. C. and Maciejowski, J. M. Designing model predictive controllers with prioritised constraints

and objectives. In Proceedings of IEEE International Symposium on Computer Aided Control System

Design, pages 33–38. IEEE, 2002.

Li, G., Liu, M., Sethi, S. P., and Xu, D. Parallel-machine scheduling with machine-dependent mainte-

nance periodic recycles. International Journal of Production Economics, 186:1–7, 2017.

Li, S.-S. and Chen, R.-X. Scheduling with rejection and a deteriorating maintenance activity on a single

machine. Asia-Pacific Journal of Operational Research, 34(2), 2017.

Ma, R. and Yuan, J.-J. Online scheduling with rejection to minimize the total weighted completion time

plus the total rejection cost on parallel machines. Journal of the Operations Research Society of China,

4(1):111–119, 2016.

Moghaddam, A., Amodeo, L., Yalaoui, F., and Karimi, B. Single machine scheduling with rejection:

Minimizing total weighted completion time and rejection cost. International Journal of Applied Evo-

lutionary Computation, 3(2):42–61, 2012.

Nobibon, F. T. and Leus, R. Exact algorithms for a generalization of the order acceptance and scheduling

problem in a single-machine environment. Computers & Operations Research, 38(1):367–378, 2011.

Ocampo-Martinez, C., Ingimundarson, A., Puig, V., and Quevedo, J. Objective prioritization using lexi-

cographic minimizers for MPC of sewer networks. IEEE Transactions on Control Systems Technology,

16(1):113–121, 2008.

Oğuz, C., Sibel, S. F., and Bilgintürk, Y. Z. Order acceptance and scheduling decisions in make-to-order

systems. International Journal of Production Economics, 125(1):200–211, 2010.

Ou, J. and Zhong, X. Order acceptance and scheduling with consideration of service level. Annals of

Operations Research, 248(1-2):429–447, 2017.

Ou, J., Zhong, X., and Wang, G. An improved heuristic for parallel machine scheduling with rejection.

European Journal of Operational Research, 241(3):653–661, 2015.

Potts, C. N. and Van Wassenhove, L. N. A branch and bound algorithm for the total weighted tardiness

problem. Operations Research, 33(2):363–377, 1985.

Prats, X., Puig, V., Quevedo, J., and Nejjari, F. Lexicographic optimisation for optimal departure

aircraft trajectories. Aerospace Science and Technology, 14(1):26–37, 2010.

Qi, Y., Wan, L., and Yan, Z. Scheduling jobs with maintenance subject to load-dependent duration on

a single machine. Mathematical Problems in Engineering, 2015, 2015.

22

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Respen, J., Zufferey, N., and Amaldi, E. Metaheuristics for a Job Scheduling Problem with Smoothing

Costs Relevant for the Car Industry. Networks, 67 (3):246 – 261, 2016.

Shabtay, D., Gaspar, N., and Yedidsion, L. A bicriteria approach to scheduling a single machine with

job rejection and positional penalties. Journal of Combinatorial Optimization, 23(4):395–424, 2012.

Shabtay, D., Gaspar, N., and Kaspi, M. A survey on offline scheduling with rejection. Journal of

Scheduling, 16(1):3–28, 2013.

Slotnick, S. A. Order acceptance and scheduling: A taxonomy and review. European Journal of Opera-

tional Research, 212(1):1–11, 2011.

Slotnick, S. A. and Morton, T. E. Order acceptance with weighted tardiness. Computers & Operations

Research, 34(10):3029–3042, 2007.

Smith, W. E. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3(1-2):

59–66, 1956.

Solnon, C., Cung, V. D., Nguyen, A., and Artigues, C. The car sequencing problem: Overview of

state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem. European

Journal of Operational Research, 191(3):912–927, 2008.

Sun, K. and Li, H. Scheduling problems with multiple maintenance activities and non-preemptive jobs

on two identical parallel machines. International Journal of Production Economics, 124(1):151–158,

2010.

Thevenin, S., Zufferey, N., and Widmer, M. Metaheuristics for a scheduling problem with rejection and

tardiness penalties. Journal of Scheduling, 18(1):89–105, 2015.

Thevenin, S., Zufferey, N., and Widmer, M. Order acceptance and scheduling with earliness and tardiness

penalties. Journal of Heuristics, 22(6):849–890, 2016.

Thevenin, S., Zufferey, N., and Glardon, R. Model and Metaheuristics for a Scheduling Problem In-

tegrating Procurement, Sale and Distribution. Annals of Operations Research, 259 (1):437 – 460,

2017a.

Thevenin, S., Zufferey, N., and Potvin, J.-Y. Makespan minimisation for a parallel machine scheduling

problem with preemption and job incompatibility. International Journal of Production Research, 55

(6):1588–1606, 2017b.

T’kindt, V. and Billaut, J.-C. Multicriteria Scheduling: Theory, Models and Algorithms. Springer Science

& Business Media, 2006.

Wang, X., Xingzi, X., and Cheng, T. Order acceptance and scheduling in a two-machine flowshop.

International Journal of Production Economics, 141(1):366–376, 2013.

Wang, X., Huang, G., Hu, X., and Cheng, T. E. Order acceptance and scheduling on two identical

parallel machines. Journal of the Operational Research Society, 66(10):1755–1767, 2015.

Zhang, S.-X., Cao, Z., and Zhang, Y. Scheduling with rejection to minimize the total weighted completion

time. volume 9, pages 111–114. International Symposium on Operations Research and Its Applications,

2009.

23

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

Zhong, X. and Ou, J. Parallel machine scheduling with restricted job rejection. Theoretical Computer

Science, 690:1–11, 2017.

Zhong, X., Ou, J., and Wang, G. Order acceptance and scheduling with machine availability constraints.

European Journal of Operational Research, 232(3):435–441, 2014.

Zhong, X., Pan, Z., and Jiang, D. Scheduling with release times and rejection on two parallel machines.

Journal of Combinatorial Optimization, 33(3):934–944, 2017.

Zufferey, N. and Vasquez, M. A generalized consistent neighborhood search for satellite range scheduling

problems. RAIRO-Operations Research, 49(1):99–121, 2015.

Zufferey, N., Molin, D. D., Glardon, R., and Tsagkalidis, C. Handbook of Research on Applied Optimiza-

tion Methodologies in Manufacturing Systems, chapter A Simulation-Optimization Approach for the

Production of Components for a Pharmaceutical Company (ISBN: 978-1-52252-944-6). IGI Global,

2017.

Zykina, A. V. A lexicographic optimization algorithm. Automation and Remote Control, 65(3):363–368,

2004.

24

Tabu Search for a Parallel-Machine Scheduling Problem with Job Rejection, Inventory Penalties and Periodic Maintenance

CIRRELT-2020-02

	CIRRELT-2020-02-abstract.pdf
	Bibliothèque et Archives Canada, 2020

