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Abstract. Some of the most important optimization problems faced by railway operators 
arise from the management of their locomotive fleet. In this paper, we study a general 
version of the locomotive assignment problem encountered at the tactical level by one of 
the largest railroads in North America: the Canadian National Railway Company (CN). We 
present a modeling framework with two integer linear programming formulations and 
contribute to the state of the art by allowing to decide each train's operating mode 
(distributed power or not) over the whole (weekly) planning horizon without partitioning it 
into smaller time windows. Given the difficulty to solve the problem, one of the formulations 
is enhanced through various refinements such as constraint relaxations, preprocessing and 
fixed cost approximations. We thus achieve a significant reduction in the required 
computational time to solve instances of realistic size. We also present two versions of a 
Benders decomposition-based algorithm to obtain feasible solutions. On average, it allows 
to reduce the associated computational time by two hours. Results from an extensive 
computational study and a case study with data provided by CN confirm the potential 
benefits of the model and solution approach. 
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1 Introduction

Locomotive planning plays a crucial role in the overall performance of railway compa-
nies. The high cost of locomotives and the large number of them required to satisfy
train schedules make of the locomotive fleet one of their most valuable assets, generally
representing an investment in the order of billions of dollars. Therefore, optimization
tools that help in the locomotive planning process are potentially highly valuable. Al-
though previous studies have shown significant potential savings, many railway com-
panies still rely on human experience to solve the complex decision-making problems
related to locomotive planning. Moreover, proper management can have significant
social and environmental impacts. For example, the railway industry represents one of
the most important means of transportation in North America. In Canada only, over
900,000 tons of freight were transported on a daily basis in 2017 [19]. In this paper
we focus on a tactical locomotive planning problem faced by one of the largest railway
companies in North America, the Canadian National Railway Company (CN).

The Operations Research (OR) literature on locomotive fleet management distin-
guishes two main problem types that match the decision process of most railways,
namely, a tactical and an operational optimization problem. The need to resort to a
sequential planning approach is a consequence of both the complexity of the problems
and the types of decisions to be made. At the tactical stage, it has been referred to
as the Locomotive Assignment Problem (LAP) [21] whereas at the operational level it
is usually known as the Locomotive Routing Problem (LRP) [22]. In brief, the LAP
consists of determining the number and types of locomotives assigned to each train of a
given schedule so that power requirements and flow balance of locomotives at stations
are met while minimizing an objective function. The typical train schedule is a weekly
plan to be repeated over a three or four-month period. The goal in the LAP is to
obtain a guideline on how to assign locomotive types to trains and reposition them in
the network so that the plan is repeated every week. Then, the LRP is solved weekly
to determine the actual sequence of trains to be operated by each specific locomotive
while honoring other constraints and minimizing the cost.

In railway transportation, especially for freight in North America, typically there
is more than one locomotive assigned to operate each train either because the demand
for horse power (HP) cannot be satisfied otherwise or because operating main-line
(ML) trains that are usually long and heavy on long distances or specific corridors
with difficult geographic conditions require reliable consists. A consist is defined as a
group of locomotives traveling together. More importantly, in recent years, CN and
many other railway operators have started moving from the conventional mode where
all the active locomotives travel together at the head of the train to distributed power
(DP), where locomotives can be interspersed throughout the length of the train. DP
is a relatively recent technology [10] which has yielded several patents in the last two
decades. However, it also brings an extra level of complexity to the planning problem.
On the one hand, DP reduces the in-train forces permitting an increase in the length
and weight of the train. It also reduces fuel consumption, wear on various components
and the possibility of derailment. On the other hand, setting up and separating the
locomotives that travel on DP mode is more time consuming and not all locomotives
possess the right equipment to be used in this mode. Thus, in this article, we study a
general version of a tactical LAP denoted LAP-DP. We continue this section with an
overview of related work followed by a statement of our contributions.
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1.1 Literature Review

Several articles in the broader context of locomotive scheduling have been published
dating back to the mid 1970’s. Here we mention those that we consider the most
relevant ones for this paper mainly based on the level of planning but we refer the
reader to the survey papers [9] and [17] for a more complete review of the literature.
We note that the problem names and their definitions may vary in related articles, not
necessarily following the classification discussed here.

One of the first works addressing the LAP with a locomotive fleet composed of
different locomotive types was that of Florian et al. [12]. In this case, consists can
be formed of one or more locomotive types to meet HP requirements. The authors
proposed a multicommodity network flow-based model and a Benders decomposition
algorithm to solve the problem. Their model was later generalized by Ziarati et al.
[23] to include other operational constraints in what they denoted as an LAP at the
operational strategic level requiring no repetitiveness of the solution. [23] proposed a
solution method for full size instances on CN data from 1995 (approx. 2,000 trains per
week and 1,200 locomotives) based on dividing the time horizon into a set of rolling
and overlapping 1-day time windows. Every time slice is optimized using a branch-
and-bound procedure in which the Linear Programing (LP) relaxations are solved with
a Dantzig-Wolfe decomposition. The authors also considered maintenance constraints
falling into the category of what we denote as the LRP. In a subsequent paper, [24]
presented an improved solution methodology denoted branch-first, cut-second which
significantly reduces the LP relaxation gap and the overall computing time.

Cordeau et al. [7, 8] presented exact algorithms based on Benders decomposition to
handle the simultaneous assignment of locomotives and cars of passenger transporta-
tion for Via Rail Canada. Ahuja et al. [2] and Vaidyanathan et al. [21] proposed
ILP formulations for a tactical version of the LAP considering several realistic char-
acteristics in collaboration with CSX Transportation. Their formulations are based
on a space-time network representation and can be described under the umbrella of
multicommodity network design problems with integer flows. [2] proved that the LAP
is an NP-hard problem which in turn implies that the LAP-DP also belongs to this
class of problems. The authors also present heuristic methods to solve the models
mainly by removing fixed-charge variables and solving the 1-day version repeatedly
over the full week. Their full size instances contain approximately 3,300 trains and
3,300 locomotives among five locomotive types.

Vaidyanathan et al. [21] included additional operational constraints and proposed
an improved ILP formulation based on assigning only predefined consists. This idea
followed from the important observation that since an integral number of locomotives
must be assigned, it is very unlikely that there is a consist satisfying exactly the train
HP [24]. In reality, the function of HP over the set of consists is not continuous but
a stepwise function. More importantly, these steps are typically of a few hundreds of
HP which in turn implies a significant gap between the LP relaxation and the ILP
solution. Moreover, several side constraints can be implicitly handled in the predefined
consists. Vaidyanathan et al. [21] discuss the benefits of having a pure consist-based
formulation for the LAP where both active and non-active locomotives travel in the
network as consists. Later, Piu et al. [16] proposed an optimization model to define
the initial set of consists and Jaumard and Tian [13] proposed a column generation
approach for a similar variant of the LAP.
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More recently, Powel et al. [18] and Bouzaiene-Ayari et al. [6] presented an
approach based on Approximate Dynamic Programming (ADP) to solve locomotive
scheduling problems for Norfolk Southern. The authors proposed three optimization
models distinguished mainly by the level of detail that define the set of locomotives
which is tightly related with the level of planning. They refer to this family of models as
PLASMA (Princeton Locomotive and Shop MAnagement system). First, they consider
a strategic variant denoted as single commodity formulation (PLASMA/SC) where all
locomotives are assumed to be of the same type. Then, they consider a multicommodity
formulation with four locomotive types (PLASMA/MC) and finally a multi-attribute
version in which each locomotive is identified individually (PLASMA/MA). Note that
the PLAMA/MC and PLASMA/MA versions are similar to what we denote the LAP
and LRP, respectively. One of the important contributions of Bouzaiene-Ayari et al.
[6] was to include and efficiently handle several sources of uncertainty, especially those
relating to time delays. However, as the authors point out, ADP seems to be well suited
to handle high levels of detail, including uncertainty, but is less skilled at managing a
global vision of flows around the network over time. This means that ADP is possibly
not the best approach to deal with repeatable solutions, i.e., matching ending with
beginning inventories, which is our focus.

1.2 Contributions

To the best of our knowledge, deciding of the operating mode (DP or conventional) has
not been included in the optimization models proposed in the literature nor any benefit
(e.g., reduction in the HP required) that depends on the type of consist. Also, we note
that there is no solution methodology of a general and realistic version of an LAP
in which one considers repetitiveness in the solution without partitioning the train
schedule into smaller time windows. This cyclic behavior is an important modeling
aspect when following a sequential planning approach to facilitate the implementation
of the subsequent problem solution. Furthermore, depending on the train schedule,
trains may operate only a few days per week which can yield suboptimal solutions
when solving a daily problem. Thus, the main contributions of this article are the
following.

– We introduce a general version of an LAP denoted as LAP-DP in which the mode
of operation of the trains is part of the decision process. Under this umbrella
we consider the benefits in the HP required depending on consist configuration
and we show how it greatly impacts the objective function value. Additionally,
we incorporate other real-life considerations in the model such as repositioning
of inactive locomotives at intermediate stations and consist busting which are
explained in detail in the following sections.

– We present two Integer Linear Programming (ILP) formulations to model the
LAP-DP and we develop various enhancements on one of them to improve the
computational performance when solved with a general-purpose solver. Among
other ideas, we propose constraint relaxations, approximation of fixed costs and
criteria to select predefined consists available to be assigned. With the enhanced
formulation we obtain good solutions, compared to actual operations, for real-size
instances of the problem within a time limit of 6 hours. Without these refinements
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and proper implementation of the modeling framework it is not possible to even
obtain feasible solutions within this computing time limit.

– We also develop two versions of an algorithm based on Benders decomposition [4]
to obtain feasible solutions in reasonable time and test different variants of these
algorithms to assess their performance. On average, there is a time improvement
of almost two hours to find the first feasible solution in comparison with the
enhanced formulation for the full-size instances. Moreover, the results indicate
that the Benders-based algorithms are less dependent on the number of threads
used in the experiments.

– We present results and insights from a case study based on real data and guidance
provided by CN for ML freight trains as well as local and yard services requiring
planned locomotive power. All the solutions obtained with the model indicate
significant potential savings in comparison with the actual operations.

– We perform an extensive computational study to assess the performance of the
formulations on realistic instances. Through a sensitivity analysis on various
parameters of the models, we assess the characteristics of the solutions as well as
the performance of the algorithms. The results show that there is an important
impact on both solutions and algorithmic performance when emphasizing certain
parameters of the objective function and some constraints.

1.3 Paper Structure

The remainder of the paper is organized as follows. In Section 2 we describe the
LAP-DP in detail and in Section 3 we present the modeling framework along with two
ILP formulations. In Section 4 we describe the algorithmic refinements on one of the
formulations and two algorithms based on Benders decomposition for the LAP-DP. In
Section 5 we present the computational experiments and the case study and conclusions
follow in Section 6.

2 Problem Description

At the tactical level, the goal is to obtain a cyclic solution that provides a guideline
for the subsequent levels of planning. Thus, it becomes unnecessary and rather coun-
terproductive to determine the routes of individual locomotives at this stage because
their operational conditions and initial positions in the network will vary from week to
week. In addition, the train schedule may suffer small changes every week and, more
importantly, there are decisions associated with individual locomotives that would be
difficult or impossible to comply with when planning three months in advance. Instead,
the problem is modeled by aggregating locomotives into significant types, i.e., assuming
that locomotives with similar specifications and costs are actually indistinguishable. In
this context, it is important to emphasize that the LAP can only be implemented in
practice jointly with an LRP solution.

In particular, the LAP-DP consists of determining the optimal assignment of lo-
comotive types to trains and the choice of operating mode while satisfying power re-
quirements and flow balance for a given 7-day train schedule. The force required to
pull a train is often expressed in terms of HP which can be met by selecting a set of
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locomotives, possibly of different types. Hence, the main output of the LAP-DP is an
assignment of consists to trains.

2.1 Problem Data

The input of the LAP-DP mainly consists of a weekly train schedule with the corre-
sponding HP demand values and a set of available locomotives partitioned into types.
Let K be a set of locomotive types and AT the set of train legs indexed by l ∈ AT .

Trains legs: Each train leg l ∈ AT is defined by a type, origin and destination sta-
tions, a length, a tonnage tl, times of departure and arrival, and a parameter
βl called Horse Power to Tonnage (HPT). The train type determines whether a
train operates in the mainline network, which typically implies heavy, long dis-
tance trains, or if it is a local or yard service. The HPT is based on geographical
and operational conditions and it allows to approximate how much HP is needed
to pull the tonnage of the train.

Locomotives: Associated with each locomotive type k ∈ K are the number of avail-
able locomotives fk, the HP hk, the weight of a locomotive wk, a binary parameter
dpk indicating whether it is DP equipped, the number of axles λk and an indicator
that determines whether it generates DC or AC power. Let B and D be the sets
of locomotive types that generate AC and DC power, respectively.

Network: Information on the rail network is assumed to be available such as each
train route Rl, the railroad distance r(i, j) between stations i and j and power
change stations, which are predefined points in the network where some trains
may stop for a consist change.

Costs: We consider fuel consumption costs which depend on the locomotive type, the
train and the diesel cost. Also, we consider a track maintenance cost associated
with the usage of the railroad. There is an ownership cost gk that corresponds
to the weekly cost of using a locomotive of type k. Finally, there are crew costs
that depend on the duration of the train as well as the train type.

2.2 Power Requirements

One of the main constraints of any LAP is to assign sufficient locomotives of the
right types so that one ensures the HP required to pull each train. The typical HP
approximation for a given train leg l is done using βltl. However, an important aspect
that may yield significant savings and is not being considered using this approximation
is that the HPT changes when a train is operated under DP or when the assigned
consist is formed of AC locomotives only. Therefore, a more precise approximation of
the HP required is

HPl =


βltl if conventional mode

βAl tl if conventional mode and all AC locomotives

(βl − θl)tl if DP mode

(βAl − θl)tl if DP mode and all AC locomotives,

(1)
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where βAl and θl model the values of HPT if only AC locomotives are assigned and the
discount on HPT for using DP, respectively.

Another aspect to consider is the power change stations where trains may modify
consists. These are well-defined stations in the schedule since it is known where the
HPT varies considerably from one part of the route to the next. One way to include
this feature is by splitting the original train by modifying the origin-destination (OD)
into the corresponding parts at power change stations as if they were separate trains
in a preprocessing stage.

2.3 Consist Busting and Train-to-Train Connections

Consist busting is an important decision in locomotive scheduling which plays a major
role in the objective function of existing models, especially for those at the operational
level. We say that a consist is busted if, after arriving at its destination station, the
locomotives are separated and become available individually. Otherwise, when the
arriving consist is assigned without changes to a departing train, we refer to it as a
train-to-train connection. In Section 5.2 we describe in detail how we handle train-to-
train connections.

2.4 Flow Balance and Power Availability

An important aspect in locomotive planning is ensuring that there are sufficient loco-
motives of each desired type at each station to satisfy the train schedule. However,
the network is usually unbalanced because some stations require more HP than they
receive through the arriving trains or vice-versa. Stations are called sources when the
total HP of departing trains exceeds that of arriving trains and sinks in the opposite
situation. Therefore, locomotives must be repositioned by other means than as active
power on scheduled trains. This can be done in two ways: (i) deadheading (DH), which
indicates that locomotives travel using the scheduled trains but are not pulling, and (ii)
light traveling, which consists of sending groups of locomotives where only the leading
one is active and they do not have additional railcars attached. Note that DH is less
costly but in many cases the only or most rapid way of repositioning locomotives is
through light traveling.

An additional feature included in the LAP-DP, that to the best of our knowledge
has not been addressed before, is to allow extra DH. What we denote as “extra” DH
is common in practice and is formed of two parts. First, when there is an active train-
to-train connection the non-active locomotives are allowed to stop or be added at the
connecting station. Second, DH of locomotives that occurs between pairs of stations
other than the origin and destination pair of each scheduled train, i.e., intermediate
stations in the train route. Allowing DH locomotives to be dropped off and picked up
in the middle of the train route at predefined stations has a significant impact in the
solution and computing time.

2.5 Additional Constraints

Several side constraints and preferences are considered in the LAP-DP to better capture
the requirements that arise in practice. For example, limiting the number of (active)
locomotives and the number of active axles per train (al) as well as avoiding mixes of AC
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with DC locomotives. Some of these requirements are desirable but not mandatory. We
can also impose that certain trains operate under DP or conventional mode depending
on the length and weight of the train and we promote certain characteristics in the
solution by means of weights in the objective function. Other common features in
locomotive planning such as the use of foreign power (leasing locomotives from other
railways), train delays and maintenance constraints are treated at the operational level.

3 Modeling Framework

We model the LAP-DP via a space-time network that represents the physical railroad
and the train schedule simultaneously. Time units are in minutes and each locomotive
type is considered a commodity to be routed on the network. LetG = (N,A) be a graph
with N the set of nodes and A the set of arcs. Each node i ∈ N is associated with three
attributes, namely, station number, time and type, whereas each arc a ∈ A represents
an activity such as a train leg, a waiting period, or repositioning of locomotives, among
others. As in a network flow problem [3], the flow of a particular commodity on an arc
represents the assignment of this locomotive type to the corresponding activity. We
note that most of the notation used throughout this article is inherited from airline
planning problems and from previous work on the LAP.Note that we refer indistinctly
to a train arc and a train leg. Tables 1 and 2 summarize the main notation for
parameters and sets used throughout the paper.

Table 1: Summary of main parameters

hk, λk, wk Horsepower, number of axles and weight of locomotives of type k

dpk Binary parameter indicating if locomotives of type k are DP equipped

fk Number of available locomotives of type k

tl Tonnage of train l ∈ AT

βl, β
A
l Standard and AC-only HPT for train l ∈ AT

mA,mT ,mD,mDH Maximum number of locomotives (active, total, DP, DH) per train

r(i, j) Railroad distance between stations i and j

gk Weekly ownership cost for a locomotive of type k

ckl Per unit cost of assigning an active locomotive of type k to train l

dkl Per unit cost of assigning a non-active locomotive of type k on arc l

θl Discount on the train HPT for operating on DP

al Maximum number of active axles for train l ∈ AT

ρck Number of locomotives of type k in consist c

3.1 Space-time Network

Figure 1 depicts an example of a space-time network with four trains represented with
the bold arcs and four different stations. The dashed and bold-dotted arcs correspond
to the cyclic behavior of the solution, light travel and extra DH arcs, respectively. We
also show examples of train-to-train arcs in the figure but we omit the representation
of all extra DH arcs to simplify the diagram.
The set of nodes is partitioned into arrival (NA), departure (ND) and ground nodes
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Table 2: Summary of sets

K Set of locomotive types or commodities

N , A Sets of nodes and arcs in the space-time network

NA, ND Sets of arrival and departure nodes

NG = NI ∪NR ∪NE ∪NDP Set of ground nodes (initial, grd-arr, grd-dept and DP)

AT Set of train arcs

AG, ADP and AL Sets of inter-ground, DP and light-travel arcs

AC = AR ∪ AE ∪ AQ Sets of arrival-ground, ground-departure, and train-to-train arcs

ADH Set of extra deadheading arcs

I[i], O[i] Sets of inbound and outbound arcs for each i ∈ N
S Set of arcs that cross the checkpoint

B, D Sets of locomotive types that have AC (or DC) power

Rl Set of stations in the route followed by train l

E(l, i, j) ⊆ ADH Extra DH arcs available between stations i and j in Rl

Cl Set of predefined feasible consists for train l

CDP Set of predefined consists using DP mode

DP node

grd-dept node grd-arrival node

departure node arrival node

initial node

Station 1

Station 2

Station 3

Station 4

Train 1

Train 2

Train 3 Train 4

tr-to-tr

tr-to-tr

Extra DH arc

Figure 1: Example of space-time network on four trains and four stations
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(NG). A train arc goes from a departure to an arrival node and the corresponding
train information defines the station numbers and times for these nodes. Ground
nodes are used to represent the events of locomotives when they are not assigned to
a train, i.e., they are at a station. The set of ground nodes is further partitioned into
ground-arrival NR, ground-departure NE , ground-initial NI and DP NDP nodes. For
each arrival node there is an arrival-ground node and for each departure node there
is a ground-departure node. Each one of them has the same station number as its
corresponding arrival or departure node. Each arrival-ground node has the time as
its associated arrival node plus an input parameter that models the time for consist
busting. For ground-departure nodes a value is subtracted from the departure time
to model the time of creating a consist. A similar procedure is followed to create DP
nodes. However, we should note that not every train will be allowed to operate on DP
mode. Finally, we have one initial ground node at time zero for each station.

In the set of arcs we consider train arcs AT , DP arcs ADP , arrival-ground AR,
ground-departure (AE) and train-to-train (AQ) connection arcs (AC = AR∪AE ∪AQ).
Moreover, for each station we sort by time the ground nodes and create an inter-
ground arc between each sequential ground node forming the set AG of inter-ground
arcs. After sorting the nodes, the last ground node of each station is connected with
the corresponding initial ground node to model the cyclic behavior of the LAP-DP.

The set of extra DH arcs ADH consists of two types of arcs: first, those that are not
train arcs and outbound a departure node and arrive in an appropriate ground node
of an intermediate station of the train route satisfying the travel time. Second, those
that depart from an appropriate ground node of an intermediate station and finish
at the arrival node. Note that using this construction we do not permit all possible
cases of partial DH, only those that depart from or arrive to the associated origin or
destination station of the train. We also limit the number of extra DH arcs by creating
only those to or from intermediate stations with few in or out scheduled trains since
they are more likely to need extra DH.

Finally, when an arc crosses the checkpoint, e.g., the arrival time is greater than
the time horizon limit, we modify its destination and define the time attribute of the
node such that it becomes the extra minutes after the checkpoint that is initially past.
The set S is formed by all the arcs crossing the checkpoint as well as the cycle arcs.

3.2 Generating Light Traveling Arcs

Light travel arcs play a major role in the network representation when solving the
LAP-DP. Including all possibilities of light travel arcs is not desired because the size
of the network would increase considerably. The goal is then to select a suitable subset
of light travel arcs for which we follow a similar approach as that of [2]. In particular,
we determine origin and destination stations of light travel arcs and their frequency by
establishing the flow of HP in the network without considering the time component.
We thus solve a minimum cost flow problem [3] where the supply or demand of each
node is given by an approximation of the total inbound HP minus the total outbound
HP. Nodes with positive supply values represent power sinks and stations with negative
supply values are power sources. We define the objective value coefficient for arc (i, j)
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as

eij =


r(i, j) if nOpij ≤ 2

r(i, j)α if nOpij ∈ (2, α)

r(i, j)α2 otherwise,

where α is an input parameter and nOpij is the number of scheduled trains to operate
from station i to station j. With this definition we discourage the flow on arcs in the
space network when there are more than a given number of trains that operate an OD
pair assuming that those locomotives can be deadheaded. This partly accounts for not
saturating OD pairs using light travel arcs. Note that if long distance light travel is
not desirable, as in our case study, arcs with a distance above a threshold value can be
removed.

Finally, we create light travel arcs between a pair of stations if the corresponding
solution flow is above a given minimum threshold value. We also have an input param-
eter to establish how many light travel arcs are created for such pairs. To avoid the
creation of extra nodes in the space-time network, we generate light travel arcs con-
veniently using the current set of ground nodes. In particular, we use ground-arrival
nodes as origins without affecting the representation of the model because it is then
when locomotives become available to be sent elsewhere. In practice, it is possible that
the locomotives are not sent exactly at that time as long as it is ensured that they
arrive to their destination at the required time. Similarly, for destination nodes we
choose the first ground node that is available after the corresponding travel time. At
that time it is when the locomotives are possibly needed and can be made available.

3.3 A Consist-and-Locomotive Flow-Based Formulation

A common way of modeling an LAP is through integer flows traveling in the space-time
network that represent the number of locomotives of each type on each arc. Previous
works [e.g., 2] have shown that the performance of this type of formulation is very poor
in terms of computing time. We present a new Locomotive-Based Formulation (LBF)
for the particular case of the LAP-DP in the Online Appendix. However, preliminary
computational experiments confirmed the slow performance of this type of formulation
when solved with a general-purpose solver.

Another approach to model the problem is to consider a predefined set of feasible
consists C and to decide through binary variables whether a consist is assigned to a
train or not [21]. In addition, we must also incorporate the operating mode in the
decision. Let Cl ⊆ C be the subset of feasible consists for train leg l, including DP and
conventional consists, and ρck be the number of locomotives of type k in consist c ∈ Cl.

Also, consider the subset CDP of consists that operate on DP and its complement CDP ,
the set of consists on conventional mode. As mentioned before, there are numerous
benefits to using a formulation based on consists instead of locomotive flows. For
example, we use the sets Cl to implicitly take into account the HP requirements for
each train and the benefits of using AC-only or DP mode, equivalently to equation
(1). Moreover, several side constraints that appear in the LBF can be handled in the
definition of Cl.

Let xcl be a binary variable taking value 1 if consist c is assigned to arc l ∈ AT ∪
AC ∪ ADP and 0 otherwise, and let ykl be the number of non-active locomotives of
type k assigned to arc l ∈ A. Note that since DP consists have to be busted at arrival
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stations, we still need to define the y variables as locomotive flows instead of consists of
non-active locomotives. Therefore, we propose a Consist-and-Locomotive Flow-based
formulation (CLF) that is more flexible than a pure consist-based approach in dealing
with the repositioning of locomotives and therefore likely to benefit more from extra
DH arcs. Also, let zl = 1 if arc l ∈ AC ∪ AL is used and 0 otherwise. Finally, ul are
variables to control a soft constraint that determines the total number of active axles
per train.

We denote by ckl the operational cost of assigning an active locomotive of type k
to train l, which is a function of the track maintenance and fuel consumption costs.
The costs dkl vary depending on the arc l, e.g., if l ∈ AT ∪ADH , dkl corresponds to the
cost of deadheading a locomotive of type k using arc l whereas if l ∈ AL, dkl represents
the unit cost of light traveling a locomotive of type k on arc l. Fixed costs p and bl
represent the cost of activating an arc in the network, which in this case model the
fixed costs of busting and light travel, respectively. In the case of light travel arcs it
corresponds to the associated crew and fuel costs that depend on l. The fixed cost p
of busting a consist as well as the penalties and preferences are more subjective and
depend on how much weight the user wants to place on certain characteristics of the
solution. Then, let x be the vector of decision variables, the total cost TotCLF (x) can
be written as

TotCLF(x) =
∑
k∈K

∑
l∈AT

ckl
∑
c∈Cl

ρckx
c
l +

∑
k∈K

∑
l∈AC∪ADP

dkl (ykl +
∑
c∈Cl

ρckx
c
l )

+
∑
k∈K

∑
l∈AT∪ADH∪AG∪AL

dkl y
k
l +

∑
k∈K

∑
l∈S

gk(ykl +
∑
c∈Cl

ρckx
c
l ) +

∑
l∈AR

pzl +
∑
l∈AL

blzl

+
∑
l∈AT

ul + PCLF (x),

where PCLF (x) is a function associated with weights for penalties and preferences of
solution features such as mix AC-DC consists and DP, among others. Then, given
the sets I[i] and O[i] of inbound and outbound arcs of node i ∈ N , respectively, and
E(l, i, j) the set of extra DH arcs between stations i and j associated with train route
Rl, the CLF can be stated as
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minimize TotCLF(x) (2)

subject to
∑
c∈Cl

xcl = 1 ∀ l ∈ AT (3)

∑
l∈I[i]

xcl =
∑
l∈O[i]

xcl ∀ i ∈ NA ∪ND, c ∈ Cl (4a)

∑
l∈I[i]

ykl =
∑
l∈O[i]

ykl ∀ i ∈ NA ∪ND ∪NI , k ∈ K (4b)

∑
l∈I[i]

(ykl +
∑
c∈Cl

ρckx
c
l ) =

∑
l∈O[i]

ykl ∀ i ∈ NR, k ∈ K (4c)

∑
l∈I[i]

ykl =
∑
l∈O[i]

(ykl +
∑
c∈Cl

ρckx
c
l ) ∀ i ∈ NE ∪NDP , k ∈ K (4d)

∑
k∈K

∑
l∗∈E(l,i,j)

ykl∗ +
∑
k∈K

∑
c∈Cl

ρckx
c
l ≤ mT ∀ l ∈ AT , i, j ∈ Rl (5)
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∑
k∈K

(ykl +
∑
c∈Cl

ρckx
c
l ) ≤ mT zl ∀ l ∈ AC (6)

∑
k∈K

(ykl +
∑
c∈Cl

ρckx
c
l ) ≤ mT

∑
c∈Cl∗∩CDP

xcl∗ ∀ l = (i, j) ∈ ADP , l
∗ ∈ AT ∩O[j] (7)

∑
k∈K

ykl ≤ mT zl ∀ l ∈ AL (8)∑
l∈O[i]:l∈AQ

zl ≤ 1 ∀ i ∈ NA (9)

∑
l∈I[i]:l∈AQ

zl ≤ 1 ∀ i ∈ ND (10)

∑
k∈K

∑
c∈Cl

ρckx
c
l ≥ 2zl ∀ l = (i, j) ∈ AQ, j ∈ ND (11)

zl ≤ 1−
∑

c∈Cl∩CDP

xcl∗ ∀ l ∈ AQ ∩O[j], l∗ = (i, j) ∈ AT (12)

∑
c∈Cl∩CDP

xcl ≤ 1−
∑

l∗∈AQ∩I[j]

zl∗ ∀ l = (i, j) ∈ AE (13)

∑
l∈I[i]:l /∈AE

(zl +
∑

c∈Cl∩CDP

xcl ) ≤ 1 ∀ i ∈ ND (14)

zl∗ ≤ 1−
∑

c∈Cl∩CDP

xcl ∀ l∗ = (i, j) ∈ AE , l ∈ ADP ∩ I[j] (15)

∑
c∈Cl

∑
k∈K

λkρckx
c
l − ul ≤ al ∀l ∈ AT (16)

∑
l∈S

(ykl +
∑
c∈Cl

ρckx
c
l ) ≤ fk ∀ k ∈ K (17)

xcl ∈ Z+ ∀ l ∈ AT ∪AC ∪ADP , c ∈ Cl (18)

ul ∈ Z+ ∀ l ∈ AT (19)

zl ∈ {0, 1} ∀l ∈ AC ∪AL. (20)

ykl ∈ Z+ ∀ l ∈ A, k ∈ K, (21)

where mT is the maximum number of locomotives allowed on any train. Constraints (3)
ensure that the horsepower requirement for every train is met. Note that depending
on the selection of DP mode or AC-only consists, the HPT of the train may vary,
thus affecting the overall HP required handled with Cl. Equations (4a)–(4d) are flow
conservation constraints and take into account when locomotives become inactive at
stations. Constraints (5) limit the maximum number of locomotives per train. Note
that when the set E(l, i, j) = {l} we are in the particular case of no extra DH at
intermediate stations. The sets of constraints (6)–(8) link the flow variables with
the binary variables and limit the maximum number of locomotives on AC , AL and
ADP , respectively. Constraints (9) and (10) establish that at most one train-to-train
connection is allowed at each train arrival or train departure node while (11) guarantee
that a train-to-train connection can only be used for consists of size greater than one.
Constraints (12) consider that when a train operates on DP mode, a train-to-train
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connection at the arrival station is not possible. Similarly, constraints (13) ensure that
if a train-to-train connection occurs at a train-departure node, the DP mode cannot
be used on that train and vice-versa. Note that in (13) we do not include the variable
associated with ground-departure arcs, this means that both a ground-departure and
a train-to-train arc could be active which allows to add DH locomotives in a train-to-
train connection. Constraints (14) guarantee that each train either operates on DP or
conventional mode. The set of constraints (15) ensures that if there is a train-to-train
connection, no new active locomotives can be added to the consist. Constraints (16)
control the maximum number of active axles per train and constraints (17) impose the
number of available locomotives by type. In addition, other operational requirements
are included by fixing variables or through the preprocessing of sets Cl.

Note that if we include all possible consists in C, the optimal solution value obtained
with the CLF would be the same as that of the LBF. Moreover, some terms of the
LBF can be transformed into those of the CLF by using a simple transformation of
the x variables and the appropriate use of the sets Cl, B, D and CDP . Also, note that
although the xcl variables model the assigned active consist on a train, they are defined
on a larger set which becomes useful when modeling extra DH through train-to-train
connections.

4 Solution Methodology

As mentioned before, we rely on the CLF which significantly reduces the computational
burden in comparison with the LBF. Nevertheless, the difficulty of solving the model
without partitioning the problem into daily subproblems remains very high. Hence,
we now discuss several enhancements to the CLF that exploit the problem definition
and its structure. We also present two Benders-based algorithms to obtain feasible
solutions.

4.1 Algorithmic Refinements of the CLF Formulation

In addition to the considerations for creating the space-time network we propose sev-
eral refinements on the CLF that have an important impact on the overall model
performance.

4.1.1 Dominated Consists

The idea of a dominated consist takes into account that the operator uses as few
locomotives as possible satisfying the train requirements. For instance, if we have five
locomotive types and consists c1 = (2, 0, 0, 0, 0) and c2 = (3, 0, 0, 0, 0), assuming that
both are capable of providing the HP required (i.e., c1, c2 ∈ Cl), there is no reason for
choosing c2 over c1 for train l ∈ AT unless that is the only feasible consist or possibly
by other operational exceptions. For example, in an enforced train-to-train connection,
one of the connecting trains may appear to be overpowered since the HP required based
on tonnage and HPT typically does not match the one of the other connecting train.
However, apart from these types of exceptions there is no reason for overpowering
a train since we may reposition locomotives by DH. This is also an implicit rule of
operations that we can exploit in the modeling process. Another example occurs when
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we have c1 = (0, 1, 1, 0, 0) and c2 = (0, 2, 2, 0, 0). In those cases we say that consist c2

is dominated by c1. In general we have the following definition.

Definition 1 Let l ∈ AT and c1 = (c1
1, . . . , c

1
|K|), c

2 = (c2
1, . . . , c

2
|K|) ∈ Cl with the

sets of indices S1 = {j ∈ K : c1
j 6= 0} and S2 = {j ∈ K : c2

j 6= 0} representing the

locomotive types in the consists. We say that c1 dominates c2 if

a) c1 and c2 are formed by the same locomotive types (S1 = S2) and c1
j = c1

i for all

i, j ∈ S1 and c2
j = c2

i for all i, j ∈ S2 and

b) c1
j < c2

j for all j ∈ S1.

Thus, we can reduce the size of the sets Cl by removing dominated consists when
l ∈ AT is not part of a forced train-to-train connection (or possibly other exceptions)
without affecting the optimal solution. More importantly, we can introduce the concept
of a consist type which takes one step further the transition from the LBF to the CLF
into a consist-type assignment. This means that in the set of consists C we can define
all possible variations of a consist type without increasing the number of variables.
This facilitates the search for feasible and better solutions.

4.1.2 Deadheading Constraints

As explained in Section 3.1, we select some extra DH arcs. In particular, we determine
which stations are more likely to need repositioning of locomotives using a threshold
value on the number of trains that arrive and depart from each station. If a station has
few trains arriving, we allow extra DH arcs to that station and similarly with departing
trains.

Now, since DH is being minimized in the objective function, and because of loco-
motive availability over time in the network, we noticed that in most cases constraints
(5) are not tight. Moreover, since the number of active locomotives is determined in
the consist definition, these constraints are actually limiting the number of DH locomo-
tives, which could be handled in a post-processing step. For instance, we could inspect
the solution and determine if the number of DH locomotives can exceptionally exceed
the limit for a specific train or if some of those locomotives should be sent in another
train or as light travel. Nevertheless, we do not remove all DH constraints but rewrite
them as ∑

k∈K

∑
l∗∈E(l,o[l],j)

ykl∗ ≤ mDH ∀ l ∈ AT , j ∈ Rl (22)

∑
k∈K

∑
l∗∈E(l,i,d[l])

ykl∗ ≤ mDH ∀ l ∈ AT , i ∈ Rl, (23)

where o[l] and d[l] are the origin and destination stations of train l ∈ AT and mDH

is the maximum number of DH locomotives allowed on each train. We proceed in a
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similar way with constraints (6) and (7) and rewrite them as∑
c∈Cl

xcl ≤ zl ∀ l ∈ AC (24)

∑
k∈K

ykl ≤ mDHzl ∀ l ∈ AC (25)

xcl ≤ xcl∗ ∀c ∈ Cl ∩ CDP , l = (i, j) ∈ AT , l
∗ ∈ ADP ∩ I[i]

(26)

xcl = 0 ∀c ∈ Cl ∩ CDP , l ∈ ADP (27)∑
k∈K

ykl ≤ mDH
∑

c∈Cl∗∩CDP

xcl∗ ∀ l = (i, j) ∈ ADP , l
∗ ∈ AT ∩O[j]. (28)

4.1.3 Approximating Light Travel Fixed Costs

In both formulations proposed there are binary variables that represent the activation
of arcs. In particular, the fixed cost associated with zl for l ∈ AL corresponds to the
crew cost plus the fuel cost, both of which depend on the duration and distance of the
light travel train. However, it is well-known that having fixed-charged variables, i.e.,
a network design version, makes the problem harder to solve than the associated pure
network flow variant.

Preliminary computational experiments show that when using these costs the so-
lutions present a large number of active light travel arcs. This behavior is undesirable
but can be explained by the fact that ownership and operational costs represent most
of the objective function value as shown in Section 5. Therefore, the model chooses
to open several light travel arcs if that means using fewer locomotives. One way of
partly mitigating this without including more capacity constraints is to consider a fake
penalty cost on light travel arcs.

We therefore propose to substitute fixed costs associated with light travel arcs by
adding an approximate value of crew and fuel costs in the variable costs d. In practice
this would represent paying the approximate crew and fuel costs for each locomotive
that is sent in a light travel train. For our purpose this also serves as a penalty cost to
discourage the usage of light travel trains. However, once we remove these fixed-charge
costs it is possible that the model yields more than one light travel train between a
pair of stations, which could be merged in a post processing step. Yet another way of
limiting the total number of light travel arcs is by adding the constraint∑

l∈AL

zl ≤ mli,

where mli is the maximum number of light travel trains allowed in the network.

4.1.4 Removing Variables and Constraints

In this case, we remove variables from the model either by substitution or by fixing
them to certain values given the problem structure or specific operational requirements.
Initially, we could replace the binary variables zl since

zl =
∑
c∈C

xcl ∀ l ∈ AC .
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However, preliminary computational experiments showed that the most beneficial sub-
stitution occurs when we only consider l ∈ AR. Moreover, we add the redundant
constraints ∑

l∈O[i]

∑
c∈Cl

xcl = 1 ∀i ∈ NA. (29)

We also remove variables that were initially defined for all consists in the set of
connecting arcs. For example, xcl = 0 for l ∈ AC and c ∈ CDP or for l ∈ ADP we

set xcl = 0 for c ∈ Cl ∩ CDP . Another case occurs for the DH variables in outposts
trains. An outpost is a local train that departs from and arrives at the same station.
Therefore, we can set ykl = 0 for all k ∈ K if o[l] = d[l] for l ∈ AT . Note that we can
still allow for partial DH to intermediate stations and when we approximate costs for
light travel arcs we can set zl = 1 for all l ∈ AL.

4.2 Benders Decomposition

Benders decomposition is a well-known partitioning method applicable to mixed integer
programs [4]. It decomposes the original formulation into two simpler ones: an integer
master problem and a linear subproblem. The main idea is to reformulate the problem
by projecting out the set of complicating variables to obtain a formulation with fewer
variables but with a large number of constraints called Benders cuts. Usually only a
small subset of these constraints are active in an optimal solution, a natural approach
is therefore to generate them on the fly. A modern implementation of the algorithm
considers the Benders reformulation within a standard branch-and-cut framework, in
which Benders cuts are separated not only at integer solutions but also at fractional
ones at the nodes of a single enumeration tree. The increased attention that this
method has attracted in the last few years is noteworthy yielding numerous successful
implementations in various fields of OR [e.g., 1, 11, 20, 15].

Our motivation for applying Benders decomposition to the CLF lies mainly in the
problem structure. Indeed, in the formulation we can distinguish two types of variables:
those that correspond to the activation of arcs and assignment of consists (z and x), and
those that represent the repositioning of non-active locomotives (y). In other words, we
can think of the master problem as an assignment generator whose solution is validated
with the subproblem where we determine through repositioning of locomotives if the
given assignment is feasible and optimal.

Once we fix the x, z and u variables, the formulation becomes a multi-commodity
network flow problem on the y variables which are required to be integer. Thus, for
fixed values x̄, z̄ and ū, using the sets of capacity constraints (22)–(28), the CLF
reduces to
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minimize
∑

l∈AC∪ADP

∑
k∈K

dkl y
k
l +

∑
l∈AT∪AG∪AL

dkl y
k
l +

∑
k∈K

∑
l∈S

gkykl (30)

subject to
∑
l∈I[i]

ykl =
∑
l∈O[i]

ykl ∀ i ∈ NA ∪ND ∪NI , k ∈ K (31a)

∑
l∈O[i]

ykl −
∑
l∈I[i]

ykl =
∑
k∈K

∑
c∈Cl

ρckx̄
c
l ∀ i ∈ NR, k ∈ K (31b)

∑
l∈I[i]

ykl −
∑
l∈O[i]

ykl =
∑
k∈K

∑
c∈Cl

ρckx̄
c
l ∀ i ∈ NE ∪NDP , k ∈ K (31c)

∑
k∈K

ykl ≤ mDH z̄l ∀ l ∈ AE ∪AQ (32)∑
k∈K

ykl ≤ mT z̄l ∀ l ∈ AL (33)∑
k∈K

ykl ≤ mDH
∑

c∈Cl∗∩CDP

x̄cl∗ ∀ l = (i, j) ∈ ADP , l
∗ ∈ AT ∩O[j] (34)

∑
l∈S

ykl ≤ fk −
∑
l∈S

∑
c∈Cl

x̄cl ∀ k ∈ K (35)

∑
k∈K

∑
l∗∈E(l,o[l],j)

ykl∗ ≤ mDH ∀ l ∈ AT , j ∈ Rl (36)

∑
k∈K

∑
l∗∈E(l,i,d[l])

ykl∗ ≤ mDH ∀ l ∈ AT , i ∈ Rl (37)

ykl ∈ Z+ ∀ l ∈ A, k ∈ K. (38)

However, the decomposition procedure requires finding the values of the dual vari-
ables of constraints (31a)–(37) to generate Benders cuts. We relax the integrality
requirement of constraints (38) to define the primal subproblem (SP) but in general, it
does not have the integrality property. Moreover, the integer version of the SP may be
infeasible even when its LP relaxation is feasible. In this case the generated Benders
cut might fail to remove the infeasible integer programming solution. One way to deal
with this would be to use ad-hoc combinatorial feasibility cuts. However, we present
a different approach in the next section. For the moment, let ∆ be the set of feasible
points of the dual subproblem, and P∆ and R∆ be the sets of extreme points and
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extreme rays of ∆, respectively. The Benders reformulation master problem (MP) is

minimize η +
∑
k∈K

∑
l∈AT

ckl
∑
c∈Cl

ρckx
c
l +

∑
k∈K

∑
l∈AC∪ADP

dkl
∑
c∈Cl

ρckx
c
l +

∑
k∈K

∑
l∈S

gk
∑
c∈Cl

ρckx
c
l+∑

l∈AR

pzl +
∑
l∈AL

blzl +
∑
l∈AT

ul + PCLF (x) (39)

subject to (3), (4a), (9)− (16), (18)− (20)

0 ≥
∑
k∈K

 ∑
i∈NE∪NDP

∑
l∈O[i]

∑
cinCl

ρckx
c
lπ

k
i −

∑
i∈NR

∑
l∈I[i]

∑
c∈Cl

ρckx
c
lπ

k
i

−
∑

l∈AE∪AQ

mDHzl −
∑
k∈K

∑
c∈Cl

ρckx
c
l

ωl −
∑
l∈AL

mT zlωl −
∑

l∈ADP

mDH
∑

c∈Cl∗∩CDP

x̄cl∗ωl−

∑
k∈K

fk −∑
l∈S

∑
c∈Cl

xclβk

− ∑
l∈AT

∑
j∈Rl

mDHβjl +
∑
i∈Rl

mDHβil

 ∀ δ ∈ R∆

(40)

η ≥
∑
k∈K

 ∑
i∈NE∪NDP

∑
l∈O[i]

∑
cinCl

ρckx
c
lπ

k
i −

∑
i∈NR

∑
l∈I[i]

∑
c∈Cl

ρckx
c
lπ

k
i

−
∑

l∈AE∪AQ

mDHzl −
∑
k∈K

∑
c∈Cl

ρckx
c
l

ωl −
∑
l∈AL

mT zlωl −
∑

l∈ADP

mDH
∑

c∈Cl∗∩CDP

x̄cl∗ωl−

∑
k∈K

fk −∑
l∈S

∑
c∈Cl

xclβk

− ∑
l∈AT

∑
j∈Rl

mDHβjl +
∑
i∈Rl

mDHβil

 ∀δ ∈ P∆,

(41)

where δ = (π, β, ω) is a vector of dual variables in ∆ and η is an additional decision
variable representing a lower bound on the cost of the subproblem. Constraints (40)
and (41) are the Benders feasibility and optimality cuts, respectively.

4.3 Finding Feasible Solutions

Despite all the model enhancements it remains challenging to find feasible solutions
for full-size instances of the LAP-DP. Therefore, we exploit the Benders decomposition
structure to develop an algorithm that reduces the computing time to find feasible
solutions of the CLF. This may have an impact on the branch-and-bound procedure
by providing an upper bound to prune nodes but also serve as an alternative approach
for solving the model.

First, note that using a similar flow of argumentation as in Section 4.1.2 we can
relax constraints (32)–(34), (36) and (37) and replace each set of these capacity con-
straints by |K| of them, one per locomotive type. We are thus limiting the number
of DH locomotives by type and not the total number of them on each arc. The re-
sulting problem is then decomposable into |K| independent problems. Moreover, in
the particular case where E(l, i, j) = {l} for all l ∈ AT and i = o[l] and j = d[l], the
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feasibility of the resulting LP subproblem implies the feasibility of the integer counter-
part [see Proposition 1 in 7]. For the general case in which extra DH is permitted at
intermediate stations, we check the feasibility of the ILP when the solution of the LP
is not integral. In the computational experiments, only in very rare occasions do we
have to validate the feasibility of the ILP. Another approach is to completely ignore
the extra DH capacity constraints so that the resulting LP has the feasibility property
and reintroduce them at a postprocessing stage.

4.3.1 Surrogate Constraints

The large number of feasibility cuts is caused by the lack of information in the re-
stricted MP which no longer has all the constraints. The restricted MP is in a sense
myopic because constraints (17) that limit the number of available locomotives are not
considered. Therefore, each assignment that does not satisfy the locomotive availabil-
ity constraints in the SP needs a feasibility cut. This issue can be partly managed
by using surrogate constraints in the restricted MP. In addition to constraints (29) we
propose the following families of valid inequalities:

xcl = 0 ∀ c ∈ Cl ∩ CDP , l ∈ AE ∪AQ (42)∑
l∈Γq

∑
c∈Cl

ρkcx
c
l ≤ fk ∀k ∈ K, q ∈ NE , (43)

where Γq = {(i, j) ∈ A : time of i < time of q < time of j} ∪ Sq, with Sq ⊆ S the set
of arcs in S that cross the time of node q ∈ NE . Constraints (43) impose a bound
on the maximum number of locomotives per type that can be used simultaneously at
every moment at which a ground-departure node is defined. Since we want to focus on
finding feasible solutions we can make these constraints tighter by subtracting a number
γ from the right hand side at the expense of possibly losing the optimal solution. To
determine the largest value of γ that keeps the set of feasible solutions not empty, we
solve the auxiliary problem (AXP):

maximize γ (44)

subject to (3)− (21)∑
l∈Γq

∑
c∈Cl

ρkcx
c
l ≤ fk − γ ∀ q ∈ NE , k ∈ K (45)

γ ∈ Z+. (46)

The computational difficulty of solving this ILP is comparable to that of the original
model. Therefore, we approximate the value of γ by solving the corresponding LP
relaxation. With the solution at hand we can further tighten the value of γ by making
it dependent on k ∈ K, e.g., γk and we solve a similar problem for each k with γk ≥ γ.

4.3.2 Two-step Approach (T-SA)

We build up a solution in two steps for full-size instances. In the first step we find a
feasible solution for ML trains only. In the second step we fix the consist assignment
found in the first step and solve for the remaining set of trains. More generally, we first
find a feasible solution for larger trains only and then fix that and solve for the entire
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schedule. In both steps we solve the corresponding AXP to approximate the values
of γ and include the associated inequalities. However, since the space-time network
is different if we isolate ML trains, we construct the space-time network based on the
complete instance and modify constraints (3) so that active consists are only assigned
to ML trains in the first step. In addition, we incorporate those light travel arcs that
would be generated for ML trains but are not yet in the network.

4.3.3 Extra Light Travel Approach (ELT)

One of the most notorious benefits of using a Benders decomposition approach is the
reduction in memory requirements given that Benders cuts are generated on the fly.
We also note that in practice several locomotives are shared or repositioned between
stations that are near by depending on the requirements of the train schedule. We
exploit these two observations and incorporate all possible light travel arcs between
pairs of stations that are within a given distance. Then, we change the objective
function of the SP to minimize the total number of locomotives that travel in these
new light travel arcs. Furthermore, we include a threshold on the optimal solution
value of the new SP which deems when an assignment is feasible or not. In other
words, if there are too many locomotives being repositioned using the new light travel
arcs, we cut off that assignment as in the standard form. Otherwise, if there are a few
locomotives using those arcs we consider the assignment feasible.

5 Computational Experiments

We have conducted an extensive computational study based on real instances to assess
the empirical performance of the ILP formulations, the algorithmic refinements and
the variants of the Benders decomposition described in Section 4. We also present
a sensitivity analysis that exposes significant variations in the solutions obtained as
well as in the algorithmic performance when different parameters of the models are
modified. All versions of the algorithms were coded in C and run on an Intel Gold
6148 Skylake processor at 2.4 GHz with 20 threads and 48 GB of memory under a Linux
environment on the Compute Canada servers. The algorithms were implemented using
the CPLEX 12.9 callable library in multi-thread version unless otherwise stated. For
solving the optimization problem on the space (only) network to generate light travel
arcs we use the network optimizer of CPLEX, which takes less than two seconds to
solve to optimality for a full size instance of approximately 350 stations and 4,000
trains.

The results of the LBF formulation are omitted since the solver was not able to find
feasible solutions for any full-size instance within the time limit of six hours. Also, for
presentation purposes, we show summarized results of the experiments.

5.1 Benchmark Instances

We have performed our experiments based on 20 instances that mimic historical data
provided by CN. It is important to mention that, given the size of the network as
well as the real-life factor involved in the data, there was a challenge in going from
the raw data to a cleaner version that allows to work with the optimization models.
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Nonetheless, the solutions obtained have been validated by CN to ensure that after
this data cleaning process they remain valid.

In particular, the rail network has over 1,400 stations out of which roughly 350
appear as an origin or destination of a train in the schedule. A typical weekly train
schedule has approximately 1,600 ML trains and 4,000 in total. CN operates the largest
rail network in Canada and the only transcontinental network in North America with
over 20,000 miles of railroads. Moreover, there are 2,127 available locomotives of 23
models that are merged into five locomotive types as described in Table 3. For the
experiments we reduce the number of available locomotives by 3% to partly account
for those that are not available because of maintenance or that appear in the fleet
inventory as being in long-term storage.

Table 3: Composition of Locomotive Fleet

Type DC-AC HP DP eq. Axles fk

1 AC 4400 yes 6 309

2 DC 4300 yes 6 460

3 DC 4300 no 6 530

4 DC 3200 no 4 323

5 DC 2000 no 4 505

Moreover, we consider 10 different scenarios (weeks) and for each one we create two
instances, one corresponding to ML trains only and another for the full set of trains.
For each scenario, the former is a subset of the latter which in addition contains local
and yard services that require locomotive planning. Moreover, we take the maximum
values of HPT and tonnage operated on the train route as the defining HPT βl and
tonnage requirement tl, respectively. In this way we obtain more robust solutions
since we are solving pessimistic scenarios. It is important to note that there were
significant challenges in the processing of the data as well as in the generation of valid
scenarios. Finally, we note that the typical space-time network on a full-size instance
has approximately 20, 000 nodes and 45, 000 arcs while the number of variables and
constraints is usually in the few hundreds of thousands.

5.2 Computational Considerations

We now briefly describe some refinements on the space-time network and the formu-
lation that improve the computational performance which are more specific to CN’s
requirements. However, most of these features can be translated into a more general
framework.

For example, we do not allow every train to operate on DP mode as mentioned
in Section 3.1. Indeed, certain trains are set by default on conventional mode unless
the train is longer or heavier than some threshold values given by the user. Therefore,
only for trains that are allowed to operate on DP, we create an associated DP node.
Moreover, when a train is heavier or longer than these threshold values to be operating
on conventional mode, we enforce those trains on DP mode by choosing CDP = ∅.
Also, low HP locomotive types are not allowed to operate ML trains mainly because
of reliability.
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Another important refinement when solving the model is to judiciously generate
possible train-to-train connection arcs instead of generating all possibilities in the space-
time network. First, since in reality in most cases the locomotives arrive at their
destination and are kept together until one or more of them are needed elsewhere, the
decision of having a train-to-train connection is more valuable when the time between
the arriving and departing trains is relatively short. Second, since we are solving
the planning problem at the tactical level, deciding which consists are busted or kept
together is only meaningful and likely to be followed by the LRP only for certain pairs
of trains. In particular, we consider the following types of train-to-train connections.

– Connections that must be enforced because the connecting trains appear as two
trains in the schedule when physically they are the same one operating on different
codes. This usually happens between a ML train and a transfer or local service.
These connections are given as an input to the model by setting zl = 1 for the
corresponding l ∈ AQ.

– Trains that go back-and-forth between two stations having to decide whether to
leave the consist unchanged (and attached to the wagons) or to use the locomo-
tives elsewhere. We allow a time window of 8 hours between the arriving train
and the departing one for creating the possible connection.

– A more general case that only requires a minimum and a maximum time be-
tween the arriving and departing trains. However, recall that trains operating
on DP mode cannot follow train-to-train connections since the locomotives are
interspersed through the train.

Finally, we note that after several efforts on developing an exact algorithm based
on Benders decomposition such as using Pareto-optimal cuts [14], separating fractional
solutions [7], lifting Benders cuts [5], among others, it appeared to converge slower than
solving the enhanced model. The two main apparent reasons for this performance are
the need to include a huge number of feasibility cuts before finding an initial solution
and the weakness of most optimality cuts which implies a large number of them required
to improve marginally the optimality gap. In Section 4.3, we show how to partly handle
the first case but, in our opinion, this method remains to be further investigated for
the LAP-DP, especially for extensions of the problem such as a stochastic version.

5.3 Analysis of Algorithmic Refinements

We now present computational results obtained when assessing the performance of the
proposed strategies to enhance the CLF formulation as well as that of the Benders-
based algorithms for finding feasible solutions. First, we test the algorithmic enhance-
ments on the CLF formulation using two instances which correspond to one scenario.
We selected one representative scenario for these tests given the computational time
required to solve each instance. Then, we select the best variant of the various imple-
mentations of the CLF formulation and test its performance on the full set of instances.
This version, on the full set, is also compared with the Benders-based algorithms.

We impose a time limit of 21,600 seconds (6 hours) and consider the default config-
uration of CPLEX. Although several variants on the CPLEX parameters were tested
on a larger set of instances, such as branching priorities, probing and feasibility em-
phasis, it appears that on average the default configuration is best suited for the ILP
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formulations. In the following tables we report upper bound (UB), the number of
branch-and-bound nodes explored in the enumeration tree (BB), number of locomo-
tives used in the solution (Locos), the percentage of optimality gap at the end of the
time limit (Gap), the number of solutions found (N.Sols) and the time in seconds when
the first solution is found (1stSol).

We first evaluate the benefit of using consist types in the set C. In particular, we
test the performance of the CLF formulation using four different sets C with 12, 20, 40
and 55 predefined consists, respectively. The results are presented in Table 4. The sets
Cons12 and Cons20 are formed by consists that are relevant for feasibility purposes
and that are commonly found in practice. In both of these cases half of the consists are
defined to be on DP mode. Cons40 has 12 consists that are DP and 28 conventional.
Ten DP consists belong to two consist types, namely (a, 0, 0, 0, 0) and (0, a, 0, 0, 0) with
2 ≤ a ≤ 6. Of the remaining 28 conventional consists, 24 belong to 6 different consist
types and 4 are a combination of the others. Cons55 is built in a similar way and thus
Cons40 and Cons55 are formed of dominated consists. This means that although there
are more consists in the initial set C, those that are made available for each train Cl

are only a few but closer to the actual HP requirement. We also highlight the fact that
in practice at CN in a typical week they use a few hundreds of different consists.

We observe that for the full-size instance, it takes more than one hour more to find
the first solution of Cons12 compared to Cons40. Moreover, with Cons20 it was not
possible to find a feasible solution within the time limit. Also, although the optimality
gap of the Cons40 version is 2.5% more than that of the Cons12 version, the upper
bound of the Cons40 version is improved by 19%. This is reflected in the significant
reduction in the number of locomotives used from one version to the other and the
impact is similar in the ML trains instance. However, in the ML case the optimality
gap is also reduced from Cons12 to Cons40. In addition, for ML trains the solution
obtained with Cons20 appears to be in between the other two versions. This confirms
the importance of considering consist types and consist selection in C. Moreover, this
highlights the relevance of proper consist definition so that the solution can be easily
repeated with fewer consists compared with the current practice which uses more than
one hundred different consists in one week. In what follows Cons40 is the default set
of consists used for the experiments.

Table 4: Comparison of Model Performance Under Different Sets of Consists

All ML

Set UB BB Locos DH Gap(%) N.Sols 1stSol UB BB Locos DH Gap(%) N.Sols 1stSol

Cons12 18163357 11643 1750 2147 2.05 11 12028 13926580 123733 1115 880 2.98 180 3349

Cons20 - 9612 - - - 0 - 11984968 130298 953 770 4.26 159 3191

Cons40 14684483 4871 1329 1769 4.59 6 8101 11126320 121150 881 706 1.52 116 3337

Cons55 14570585 13887934 1346 1865 4.69 15 4196 11086444 10936623 880 677 1.35 214 3676

Another variant that we have computationally assessed is solving the CLF under
different configurations of DH constraints. In Table 5 we present the summary of the
results. Observe that not including extra DH arcs in the full-size instance yields no
feasible solution within the time limit. Moreover, we can see from the ML instance
that including extra DH arcs has a major impact on the solution quality by reducing
by more than 9% the total number of used locomotives. Also, the substitution of the
original DH constraints by (22) – (28) appears to be benefitial for the solver to find
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Table 5: Comparison of Model Performance with Modifications on DH Constraints

All ML

Extra DH Constraints BB Locos DH Gap(%) N. Sols 1stSol BB Locos DH Gap(%) N. Sols 1stSol

No
(2) – (21) 21009 - - - 0 - 205183 936 421 2.56 221 2510

(22) – (28) 23993 - - - 0 - 175704 973 453 6.22 255 2230

yes
(2) – (21) 4933 1353 1816 5.29 6 7820 99983 882 699 1.32 202 4605

(22) – (28) 4871 1329 1769 4.59 6 8101 121150 881 706 1.52 116 3337

better solutions in the same computing time, improving by 0.8% the optimality gap in
the full-size instance which translates into using 14 locomotives less. Thus, we consider
extra DH as the default configuration.

We also assess the effect of approximating fixed costs for light travel arcs and that
of the size of the set of train-to-train connection arcs. Table 6 shows the results of
our experiments. We can see that with fixed costs on light travel arcs, even with
the refinements above, it is not possible to obtain feasible solutions within the time
limit. Also, observe that when a small number of train-to-train connections is allowed
the quality of the solutions improves and the time to find the first feasible solution is
reduced. In this case, we change the number of train-to-train connections by increasing
the time window of the general type of connections as explained in Section 5.2. In
the rows denoted “Small” we take a time window of one hour, whereas in the rows
denoted “Large” we create connection arcs that are within 8 hours between arrival and
departure trains. Thus, our default version includes approximate costs for light travel
and a small set AQ.

Table 6: Comparison of Model Performance with Modifications on AL costs and AQ

All ML

Costs AL AQ BB Locos DH Gap(%) N. Sols 1stSol BB Locos DH Gap(%) N. Sols 1stSol

Fixed
costs

Large 1376 - - - 0 - 106109 879 570 2.10 182 6751

Small 6525 - - - 0 - 127057 882 549 2.17 230 4384

Approximate
Large 3348 1353 1789 5.59 2 9799 92349 882 736 1.50 176 5738

Small 4871 1329 1769 4.59 6 8101 121150 881 706 1.52 116 3337

We now present the results obtained on the full set of instances using the enhanced
version of the CLF formulation. In addition, we evaluate the impact of using fewer
threads with the general purpose-solver. The results are presented in Table 7 where we
indicate the number of instances for which at least one feasible solution was found in the
row denoted “Sol. Found”. We use the notation n/m to indicate that for n instances
out of m a feasible solution was found. Similarly, we count the number of instances
in which the solver runs out of memory denoted with MEM. The remaining values
correspond to the average values which are computed on the instances with feasible
solutions found for each column. Observe that for the case of all trains, the model only
finds feasible solutions for three out of ten instances and five out of ten when executed
on four threads. Moreover, when executed using one thread, a feasible solution was
found for only one instance. We therefore omit this case from the table. When executed
on 20 threads we have 9/10 and 10/10 depending on whether constraints (22) – (28)
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are considered or not. Also, note that for all ML instances on 20 threads the solver
runs out of memory after exploring a large number of nodes in the enumeration tree.

Table 7: Summary of Results for the enhanced CLF on 20 Instances

All Trains ML Trains

CLF CLF with (22)-(28) CLF CLF with (22)-(28)

4 threads 20 threads 4 threads 20 threads 4 threads 20 threads 4 threads 20 threads

Sol. Found 3/10 9/10 5/10 10/10 10/10 10/10 10/10 10/10

MEM 0/10 0/10 0/10 0/10 0/10 6/10 0/10 10/10

BB 2350 4456 2485 4285 44499 103330 42405 104146

GAP 6.55 5.70 5.51 5.22 7.77 1.79 3.03 1.76

Locos 1457 1386 1397 1384 1013 936 949 935

N.Sols 3 5 3 8 104 174 80 136

DH 1936 1830 1925 1857 1062 801 855.5 810

DP 924 907 907 910 916 955 941 949

Table 8: Summary of Results for the Benders-based Algorithms on 20 Instances

All Trains ML Trains

T-SA ELT ELT

1 thread 20 threads 1 thread 20 threads 1 thread 20 threads

Sol.Found 9/10 6/10 4/10 5/10 10/10 10/10

MEM 0/10 0/10 0/10 0/10 0/10 6/10

BB 2524 3597 3399 3664 105973 96331

GAP 5.26 5.02 4.98 3.92 1.33 1.40

Locos 1328 1319 1342 1280 897 872

N.Sols 6 11 9 13 190 180

DH 1686 1678 1790 1575 739 669

DP 912 910 889 909 964 981

Finally, in Table 8 we present the summary of results obtained for the Benders-
based algorithms. Observe that the performance of the T-SA using the single-thread
mode is similar to that of the CLF using 20 threads. Moreover, comparing both single-
thread versions, the T-SA obtained feasible solutions for nine out of ten instances
whereas the CLF was only able to obtain feasible solutions for one instance. Also,
the solution obtained with T-SA in single-thread mode uses 58 fewer locomotives than
the one obtained with the CLF with 20 threads. However, when using the T-SA in
multi-thread mode there is a reduction in the number of instances for which a feasible
solution is found. This can be explained by the fact that the overall decomposition
algorithm is dependent on the order in which optimality and feasibility cuts are added
to the master problem. A more careful parallel implementation of the algorithm could
provide even better results.
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Furthermore, in both the T-SA and the ELT, the first feasible solution found occurs
within two hours of CPU time for the full-size instances and within three minutes for
the ML instances, whenever a solution is found. Contrary to this, in the CLF the time
to find a first solution is within 4 hours and 30 minutes for full size and ML instances,
respectively.

5.4 Analysis of Solutions and Case Study

We now analyze the model sensitivity and provide insights on the solutions of one
scenario when certain input parameters are modified. In this section we only consider
the best version of the CLF defined as in the previous section, i.e., the best variant of
the enhanced CLF. In some cases, we also compare the solutions obtained with those
of the railway company. However, we must be careful when comparing these solutions
because the LAP-DP solution is at the tactical level while the historical data used
for comparison corresponds to actual operations. A more fair comparison would be
done between a combined solution of the LAP-DP with the corresponding LRP-DP
and the actual operations. But even then, some characteristics such as repetitiveness
of the LAP-DP solution or the implicit handling of preferences are difficult to compare
with the historical data. Nevertheless, for assessing the quality of solutions obtained
in terms of main costs and given the scope of this paper we use certain statistics from
actual operations as benchmark.

In particular, we consider the following values from actual operations. For the all-
trains scenario in discussion, the total number of locomotives used was 1,850 including
200 foreign power locomotives. The numbers of DH locomotives and light travel trains
as well as the percentages of trains operated on DP, AC-DC and AC-only consists
were roughly 950, 25, 7%, 10% and 9%, respectively. It is important to highlight
that the solutions obtained with the model are expected to have more repositioning of
locomotives in comparison with actual operations for two main reasons. First, in the
actual operations there is no enforcement of the cyclic behavior of the solution which
means that the assignment cannot be repeated every week during a season. Second,
since we handle foreign power at the operational level depending on the information
available at the beginning of the week, it is likely that the LRP-DP yields a solution
with fewer locomotives being repositioned. In other words, some light travel trains or
DH locomotives would be replaced by foreign power at the operational solution if the
trade-off is cost-beneficial.

We first show the impact on the solutions when considering DP in the modeling
process. As explained before, in certain cases DP is mandatory because the train is
too long or too heavy to be operated on conventional mode but we will assume for this
comparison that we can omit this requirement. Table 9 summarizes the results obtained
for one scenario under four different configurations: not considering any benefit for
using DP or AC-only consists in the HPT, considering AC-only consist benefits, both
benefits with the default set-up time for DP, and both benefits with a large time for
setting up a DP consist. Observe that solving the model with DP appears to be more
difficult but it can provide a significant reduction in the number of locomotives used
and deadheaded. In particular, even when we consider a large time to set up DP, there
is a potential reduction of 6% on the number of used locomotives when including DP
and AC-only benefits versus a conventional approach. Moreover, note that the increase
in the percentages of DP trains and AC-only consists in comparison with the actual
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operations is more than 15% in both cases.

Table 9: Comparison of Solutions for one Scenario Under DP Configurations

DP βA
l DP tm BB UB Locos DH Gap(%) N.Sols Used AL TrtoTr(%) AC-only (%) DP(%)

All

no no default 4880 16134418 1450 2034 3.81 10 258 29.5 23.9 0.0

no yes default 4811 15492700 1399 1946 4.17 10 273 29.4 22.3 0.0

yes yes double 4923 14901091 1364 1719 4.73 13 272 21.6 24.8 22.3

yes yes default 4871 14684483 1329 1769 4.59 6 295 22.4 24.6 23.2

ML

no no default 88938 12750905 1013 876 1.76 208 220 25.6 36.5 0.0

no yes default 92469 11987380 948 840 1.68 197 220 25.2 37.6 0.0

yes yes double 88176 11342541 901 730 2.03 187 228 8.9 39.6 58.0

yes yes default 121150 11126320 881 706 1.52 116 201 10.0 40.8 59.6

Depending on the willingness of the decision maker to emphasize on certain features
of the locomotive plan, the cost composition of the objective function value may be
modified. In this study, we have assumed a cost configuration in which most of the
weight is given to the total number of used locomotives. All the previous solutions
described above considered such configuration. Figure 2 shows two different configu-
rations. The right hand side graphic depicts this default version (V0). Observe that
66% of the solution value corresponds to ownership costs and 23% is associated with
the operations of active locomotives. The left hand side graphic of Figure 2 depicts the
cost composition of the solution value obtained when the ownership cost is modified to
be 1/10 of its original value. Then, the highest weight lies on the operations of active
locomotives with 60% of the total cost while the ownership cost is reduced to account
for 19%. This shows an example of how railroads can use the model to quantify cost
trade-offs.
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Figure 2: Composition of Costs in the Objective Function Value
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In Table 10 we further extend the analysis on cost configurations by considering
five different versions denoted V1 to V5 in addition to the default one. Moreover, we
compare these versions with the values of actual operations denoted with AO. Version
V1 takes zero value for ownership cost, i.e., all the weight in the objective function
is on the other costs. Version V2 corresponds to the 1/10 of ownership cost variant
described above. In versions V3, V4 and V5 we take the same ownership cost as in V2
but include different penalty costs on DH locomotives and in V5 we use fixed costs on
light travel arcs.

Note that in version V1 there is an increase in the number of locomotives used
compared to the other versions because there are no ownership costs. However, it
provides insights on what is the minimum number of light traveling trains that satisfy
the requirements. Also, as we increase the penalty costs for DH locomotives in version
V2 to V5, the model chooses to use less DH at the expense of using more locomotives
and more light travel trains. Recall that in the approximation of light travel costs we
implicitly include a penalty value for discouraging the use of light traveling. This is the
reason for the increase in light travel trains in V5 of the ML instance. Also observe that
in all version the percentage of DP trains is maintained consistently. One important
observation is that the default version V0 showed to be the one for which the solver
needed the most CPU time to find a feasible solution as well as to close the optimality
gap, this is one reason for selecting it as the default configuration as it appeared to be
the most computationally challenging.

Table 10: Comparison of Solutions with different Cost Configurations

Version BB Gap(%) Locos Used AL TrtoTr(%) AC-only(%) DC-only (%) DP(%) DH

All

V0 4871 4.59 1329 295 22.4 24.1 75.9 22.7 1769

V1 8028 0.56 1751 35 37.9 17.0 83.0 22.5 1834

V2 1649 2.01 1487 53 33.0 19.9 80.1 22.7 1848

V3 2074 1.97 1477 52 31.7 18.6 81.4 22.7 1655

V4 1529 2.72 1529 60 30.2 19.2 80.8 23.7 1563

V5 1950 - - - - - - - -

AO - - 1850 25 - 9.0 81.0 7.0 950

ML

V0 121150 1.52 881 201 10.0 40.8 59.2 59.6 706

V1 83378 0.05 1279 38 12.2 33.2 66.8 56.4 1137

V2 40177 0.54 998 49 10.8 37.4 62.6 58.6 987

V3 49298 0.37 1009 44 11.4 36.2 63.8 58.8 925

V4 44885 0.73 1026 52 12.2 35.8 64.2 60.6 899

V5 30908 0.68 906 367 11.4 40.5 59.5 59.6 486

Observe from Table 10 that for all six versions, the solutions consistently require
fewer locomotives than the ones used in AO, even if the ownership costs (V1) are set
to zero. Moreover, in all versions we have defined the set of feasible consists in such
a way that there are no AC-DC consists. That is, we have completely removed the
10% of mixed consists from the solution of actual operations. This in practice is a
soft constraint and can be easily relaxed by including AC-DC consists in the set Cl

with penalty values in the objective function. Also, the solutions obtained with the
model show that the percentages of AC-only and DP consists increase significantly
in comparison with those of AO. As mentioned before, the trade-off occurs with the
expected increase in repositioning of locomotives between the solutions of the CLF and
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the actual operations. This can be explained with the cyclic behavior requirements of
the model and the foreign power modeling part that will be treated at the LRP-DP
level.

Table 11: Comparison of Solutions with different Configurations for Extra DH

Extra DH Thr BB Gap(%) Locos Used AL Used AQ(%) AC-only (%) DC-only (%) DP(%) DH

All

no NA 23993 - - - - - - - -

yes 10 4871 4.59 1329 295 22.4 24.1 75.9 22.7 1769

yes 30 4025 4.70 1296 228 21.3 24.1 75.9 22.7 1995

yes 200 4806 4.25 1272 212 20.0 25.2 74.8 23.2 2231

ML

no NA 175704 6.22 973 328 8.7 36.5 63.5 54.6 453

yes 10 121150 1.52 881 201 10.0 40.8 59.2 59.6 706

yes 30 111197 1.09 859 190 8.7 42.3 57.7 59.9 796

yes 200 104781 0.95 856 179 8.3 41.2 58.8 60.3 797

Another parameter that we evaluate is the number of extra DH arcs. Recall that we
control how extra DH arcs are created depending on a threshold value on the number
of inbound or outbound trains at each intermediate station of a train route. This value
is denoted as Thr in Table 11. Thus, given the cost configuration of the model as we
increase the possibility of DH, the solution tends to have more DH locomotives in order
to reduce the number of locomotives used. However, this can be modified according to
the planning preferences and requirements.

Finally, the model can also be used to identify trade-offs when modifying the size
of the locomotive fleet. For example, managers can receive insights on which types of
locomotives should be bought. In Table 12 we show two examples when +/- 20% of
locomotives are available. On the one hand, as the locomotive fleet becomes larger the
enhanced model is easier to solve which can be exploited in a solution method based
on Lagrangean Relaxation. On the other hand, when the locomotive fleet is tight
to satisfy train requirements the proposed Benders approach can be used to obtain
feasible solutions faster.

Table 12: Comparison of Solutions Considering Different Fleet Size

Fleet Size BB UB Locos DH Gap(%) N.Sols Used AL DP(%)

All

default 4871 14684483 1329 1769 4.59 6 295 23.23

-20% 7950 NA NA NA NA 0 NA NA

+20% 5129 14439899 1308 1735 3.52 18 250 24.98

ML

default 121150 11126320 881 706 1.52 116 201 59.58

-20% 96300 11333270 898 718 2.10 135 214 53.07

+20% 115418 11028619 872 697 1.15 144 202 60.07

6 Conclusions

The purpose of this study was to introduce, model and solve a general tactical-level
version of the LAP in which the operation mode of the trains is part of the decision
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process. In the problem definition we also incorporated several real-life aspects based
on the requirements and discussions with the Canadian National Railway Company,
one of the largest railway companies in North America. To model the problem we
presented two ILP formulations that were computationally tested on realistic instances.
The results of extensive computational experiments confirm the efficiency of various
enhancements on the CLF model when solved with a general-purpose solver yielding
good solutions in reasonable time. Moreover the two versions of the Benders-based
algorithm showed to significantly reduce the CPU time to obtain a first solution. Also,
the decomposition structure seems well-suited for problem extensions, in particular
those including uncertainty in the parameters.

We also discussed the results obtained with the model and solution approach using
different input parameters. Notoriously, even with an optimality gap of over 4%, the
enhanced model provided solutions, under certain costs configurations, where approxi-
mately 25% fewer locomotives are required than those used in actual operations. This
major reduction is a trade-off with the increase in repositioning locomotives in the net-
work but also is partly explained by the fact that we are comparing at different levels
of decision. Thus, care should be taken to avoid misleading conclusions on solutions
that could be more difficult to comply with at the operational level, especially after
when studying other extensions of the problem that will be the object of subsequent
research, for example, concerning uncertainty. Nevertheless, given the results presented
in this article, we believe that the proposed model is well-suited to provide insights on
locomotive planning and that the potential for cost reduction is very significant.
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A Appendix: A Locomotive Flow-Based For-

mulation

Let xkl be the number of active locomotives of type k assigned to arc l ∈ AT ∪AC∪ADP

and ykl be the number of non-active locomotives of type k assigned to arc l ∈ A. Also,
let zl = 1 if arc l ∈ AC ∪ AL is used and 0 otherwise. Similarly, vl = 1 if train l
operates on DP mode or equivalently if the associated DP arc l ∈ ADP is used in the
solution. Binary variables acl and dcl take value 1 if train l ∈ AT is operated with a
consist formed of only AC or DC locomotives, respectively. Finally, ul are variables
to control a soft constraint that determines the total number of active axles per train.
Note that although the xkl variables model the active locomotives on a train, they
are defined on a larger set. This definition becomes useful when modeling extra DH
through train-to-train connections.

Now, let x be the vector of decision variables, the total cost Tot(x) can be written
as

Tot(x) =
∑
k∈K

∑
l∈AT

ckl x
k
l +

∑
k∈K

∑
l∈AC∪ADP

dkl (xkl + ykl ) +
∑
k∈K

∑
l∈S

gk(xkl + ykl )

+
∑
k∈K

∑
l∈AT∪ADH∪AG∪AL

dkl y
k
l +

∑
l∈AR

pzl +
∑
l∈AL

blzl +
∑
l∈AT

ul + P (x),

where P (x) is a function associated with weights for penalties and preferences of solu-
tion features such as mix AC-DC consists and DP among others. The operational cost
of assigning an active locomotive of type k to train l is denoted ckl and is modeled as
a function of the track maintenance and fuel consumption costs. On the other hand,
dkl varies depending on the arc l. For example, if l ∈ AT ∪ ADH , dkl corresponds to
the cost of DH a locomotive of type k using arc l whereas if l ∈ AL, dkl represents the
unitary cost of light traveling a locomotive of type k on arc l. Fixed costs p and bl
represent the cost of activating an arc in the network. In the case of light travel arcs it
corresponds to the associated crew and fuel costs. The fixed cost p of busting a consist
as well as the penalties and preferences are more subjective and depend on how much
weight the user wants to place on certain characteristics of the solution. Given the sets
I[i] and O[i] of inbound and outbound arcs of node i ∈ N , respectively and E(l, i, j)
the set of extra DH arcs between stations i and j associated with train route Rl, the
Locomotive Flow-Based Formulation (LBF) can be expressed as
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minimize Tot(x) (47)

subject to
∑
k∈K

hkxkl ≥ βltl(1− acl)+βAl tlacl − tlθlvl ∀ l ∈ AT (48)∑
l∈I[i]

xkl =
∑
l∈O[i]

xkl ∀ i ∈ NA ∪ND, k ∈ K (49a)

∑
l∈I[i]

ykl =
∑
l∈O[i]

ykl ∀ i ∈ NA ∪ND ∪NI , k ∈ K (49b)

∑
l∈I[i]

(xkl + ykl ) =
∑
l∈O[i]

ykl ∀ i ∈ NR, k ∈ K (49c)

∑
l∈I[i]

ykl =
∑
l∈O[i]

(xkl + ykl ) ∀ i ∈ NE ∪NDP , k ∈ K (49d)

∑
k∈K

xkl∗ ≤ mDvl +mA(1− vl) ∀ l∗ = (i, j) ∈ AT , l ∈ ADP ∩ I[i] (50)∑
k∈K

xkl +
∑
k∈K

∑
l∗∈E(l,i,j)

ykl∗ ≤ mT ∀ l ∈ AT , i, j ∈ Rl (51)

∑
k∈K

(xkl + ykl ) ≤ mT zl ∀ l ∈ AC (52)∑
k∈K

ykl ≤ mT zl ∀ l ∈ AL (53)∑
k∈K

(xkl + ykl ) ≤ mT vl ∀ l ∈ ADP (54)∑
l∈O[i]:l∈AQ

zl ≤ 1 ∀ i ∈ NA (55)

∑
l∈I[i]:l∈AQ

zl ≤ 1 ∀ i ∈ ND (56)

∑
k∈K

xkl ≥ 2zl ∀ k ∈ K, l ∈ AQ (57)

zl ≤ 1− vl∗ ∀ (i, j) ∈ AT , l ∈ AQ ∩O[j], l∗ ∈ ADP ∩ I[i]
(58)∑

l∈I[i]:l /∈AE

vl + zl ≤ 1 ∀ i ∈ ND (59)

zl∗ ≤ 1− vl ∀ l∗ = (i, j) ∈ AE , l ∈ ADP ∩ I[j] (60)∑
k∈K

xkl ≤ mA(1−
∑

l∗∈AQ:l∗∈I[j]

zl∗) ∀ l = (i, j) ∈ AE (61)
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∑
k∈K

λkxkl − ul ≤ al ∀ l ∈ AT (62)∑
l∈S

(xkl + ykl ) ≤ fk ∀ k ∈ K (63)∑
k∈K:dpk=1

xkl ≥ 2vl ∀ k ∈ K, l ∈ ADP (64)

dcl ≤ 1− (1/mA)
∑
k∈AC

xkl ∀ l ∈ AT (65)

acl ≤ 1− (1/mA)
∑

k∈DC

xkl ∀ l ∈ AT (66)

acl + dcl ≤ 1 ∀ l ∈ AT (67)

xkl ∈ Z+ ∀ l ∈ AT ∪AC ∪ADP , k ∈ K (68)

ykl ∈ Z+ ∀ l ∈ A, k ∈ K (69)

zl ∈ {0, 1} ∀ l ∈ AC ∪AL (70)

vl ∈ {0, 1} ∀ l ∈ ADP , (71)

acl, dcl ∈ {0, 1} ∀ l ∈ AT , (72)

where mA, mT and mD are the maximum number of active, total and DP locomo-
tives allowed on each train. Constraints (48) ensure that the horsepower requirement
for every train is met. Note that depending on the selection of DP mode or AC-only
consists the HPT of the train may vary affecting the overall HP required and thus
the number of locomotives assigned. Equations (49a)–(49d) are flow conservation con-
straints. Constraints (50) limit the maximum number of pulling locomotives allowed
per train for both DP and conventional modes while constraints (51) limit the max-
imum number of total locomotives per train. Note that when the set E(l, i, j) = {l}
we are in the particular case of no extra DH at intermediate stations. The sets of
constraints (52), (53) and (54) link the flow variables with the binary variables and
limit the maximum number of locomotives on AC , AL and ADP , respectively. Con-
straints (55) and (56) establish that at most one train-to-train connection is allowed
at each train arrival or train departure node while (57) guarantee that a train-to-train
connection is only used for reusing consists i.e. only for consists of size greater than
one. Constraints (58) consider that when a train operates on DP mode, a train-to-train
connection at the arrival station is not possible. Similarly, constraints (59) ensure that
if a train-to-train connection occurs at a train-departure node, the DP mode cannot
be used on that train and vice-versa. Note that in (59) we do not include the variable
associated with ground-departure arcs. This means that both a ground-departure and
a train-to-train arc could be active, which allows to add DH locomotives in a train-
to-train connection. On the other hand, constraints (60) guarantee that each train
either operates on DP or conventional mode. The set of constraints (61) ensures that
if there is a train-to-train connection no new active locomotives can be added to the
consist. Constraints (62) control the maximum number of active axles per train and
constraints (63) impose the number of available locomotives by type. Constraints (64)
ensure that at least two DP equipped locomotives are assigned if the train runs on DP
mode and finally, constraints (65) to (67) describe the use of AC-only, DC-only and
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mixed DC-AC consists.
In addition, other operational requirements are included by fixing variables. For

example, we set xkl = 0 if train l is a mainline train (l ∈ ML) and locomotive type
k belongs to the set of low HP locomotives. That is, low HP types are not allowed
to operate mainline trains mainly because of reliability. Also, as mentioned before we
force some train-to-train connections given by a set of rules provided by the railway.
This is accomplished by setting zl = 1 for the corresponding l ∈ AQ. Finally, when a
train is heavier or longer than threshold values to be operating on conventional mode,
we enforce those trains on DP mode by setting vl = 1.
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