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Abstract. Facility location decision is strategic: the construction of a new facility is typically 

costly and the impact of the decision is long-lasting. Environmental changes, such as 

population shift and natural disasters, may cause today's optimal decision to perform poorly 

in the future. Thus, it is important to consider potential uncertainties in the design phase, 

while explicitly taking into account the possible customer reassignments as recourse 

decisions in the execution phase. This paper studies a robust fixed-charge location problem 

under uncertain demand and facility disruptions. To model this problem, we adopt a two-

stage robust optimization framework, where the first-stage location decision is made `here-

and-now' and the second-stage allocation decision can be deferred until the uncertainty 

information is revealed. We develop a column-and-constraint generation algorithm to solve 

the models exactly, and use the affine policy (AP) to generate approximate solutions. We 

further develop two solution methods for the models based on the AP. We conduct 

extensive numerical tests to study the impact of uncertainties on solution configuration and 

algorithm efficiency. The performance of the robust models is also measured against that 

of the two-stage stochastic programming model.  
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1 Introduction

Facility location is an important aspect of strategic planning for both private companies and public
sectors. Whether a manufacturer building a new plant, or a city planner choosing locations for public
facilities, planners are often challenged by difficult resource allocation decisions (Owen and Daskin
1998). The construction and acquisition of a new facility is typically a costly and time-consuming
process. Therefore, once a new facility is built, it is expected to remain in operation for several
years. However, environmental changes, such as population shift and transportation infrastructure
issues, may turn today’s optimal decision into tomorrow’s poor performance. It is therefore critical to
consider potential uncertainties at the planning stage, to avoid high recourse costs at the operational
stage.

In facility location problems, the uncertainty can be generally classified into three types: provider-
side uncertainty, receiver-side uncertainty, and in-between uncertainty (Shen et al. 2011). The provider-
side uncertainty includes uncertain facility capacity and status (operational or failed). The receiver-
side uncertainty captures randomness in demand. The in-between uncertainty involves uncertain
transportation costs/time and arc status. These three types of uncertainty have been widely con-
sidered in the literature. For example, facility location under demand uncertainty (Atamtürk and
Zhang 2007; Baron et al. 2011; Gülpınar et al. 2013), facility location under random travel costs/times
(Nikoofal and Sadjadi 2010; Gao and Qin 2016; Mǐsković et al. 2017), and facility location under
disruption risks (Cui et al. 2010; Yu et al. 2017; Afify et al. 2019).

Most studies consider one type of uncertainty at a time whereas a few of them consider simultaneous
uncertainties, which are common in real-world applications of facility location where facilities are faced
with multiple uncertainties at the same time. For example, at the time of building a new facility, it
is typically very challenging to precisely estimate the future demand of multiple customers over long-
term horizons. In addition, during the operational stage, a facility could be disrupted by various risks
such as power outages and natural disasters. Thus, in this work, we study a capacitated fixed-charge
location problem (CFLP) that considers supply-side and receiver-side uncertainties simultaneously.
More specifically, customers are subject to demand uncertainty and facilities may experience disruption
risks. We adopt a two-stage robust optimization (RO) scheme to model the problem, which does not
rely on any probability information, because it is typically difficult to estimate the probability in this
strategic context. To solve the robust models, we develop both exact and heuristic methods.

Our contributions. We consider this study to make the following contributions: (1) To the best
of our knowledge, this work is the first to study the CFLP with simultaneous provider-side and receiver-
side uncertainties in the two-stage RO framework. The corresponding model generalizes the problems
with only demand uncertainty and with only facility disruptions. (2) We develop both exact (column-
and-constraint generation, C&CG) and heuristic (affine policy, AP) methods to solve the robust
models. For the model based on the AP, we further use a row generation (RG) algorithm besides
directly solving the dualized reformulation. We identify conditions under which the AP generates
optimal first-stage solutions for the robust models. (3) We conduct extensive numerical tests to study
the differences in solutions produced by the three robust models, the impact of uncertainty, and
the efficiency of algorithms. We also benchmark the two-stage RO framework against the two-stage
stochastic programming method.

The rest of this paper is organized as follows. Section 2 presents related literature. Section 3
constructs the deterministic and robust models. Section 4 describes both exact and heuristic solution
methods. Section 5 discusses the numerical results, and Section 6 concludes the paper.

2 Related literature

This section reviews related work. A summary of the papers is given in Table 1.
For early work of facility location under demand uncertainty, see the review paper by Snyder

(2006). Baron et al. (2011) study a multi-period facility location problem under demand uncertainty,
where a box uncertainty set and an ellipsoid uncertainty set are used. Atamtürk and Zhang (2007)
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are the first to study the two-stage robust location-transportation problem (LTP), and a cutting plane
algorithm is applied. They compare solutions generated by the two-stage RO method, one-stage (also
known as static) RO method, and the stochastic optimization method. For the same problem, Zeng
and Zhao (2013) focus on comparing the performance of the C&CG algorithm and the Benders-style
cutting plane method. Ardestani-Jaafari and Delage (2017) study a multi-period LTP and develop
various approximation schemes to solve the problem based on the AP.

Gao and Qin (2016) study a p-hub center location problem under uncertain travel times. A chance
constrained programming (CCP) approach is used and the deterministic equivalent model is solved
by a genetic algorithm. Mǐsković et al. (2017) consider a two-echelon facility location problem, where
products are first delivered to depots and then from depots to customers. The transportation costs
in both echelons are uncertain. They use budgeted uncertainty sets and a static RO method for
the problem. Matthews et al. (2019) address a single-commodity flow network design problem with
multiple concurrent edge failures. They formulate the problem as a two-stage RO model and solve
it with a C&CG algorithm. Pishvaee et al. (2011) study a closed-loop supply chain network design
problem, where box uncertainty sets are used to describe the randomness in demand, returns, and
transportation costs. Zetina et al. (2017) consider both uncertain demand and transportation costs
in uncapacitated hub location problems. They use budgeted uncertainty sets to characterize both
uncertainties and the duality technique to reformulate the static robust models.

In terms of facility disruptions, Yu et al. (2017) study the uncapacitated fixed-charge location
problem (UFLP) in a stochastic optimization framework by incorporating risk preferences. They
propose conditional value-at-risk- and absolute semideviation- based models to control the risk of
transportation cost at each customer. Afify et al. (2019) study a reliable p-median problem (PMP)
and a reliable UFLP, where each facility has a heterogeneous failure probability and each customer is
allocated to a primary facility and a back-up facility. They propose an evolutionary learning algorithm
to solve the problem. Xie et al. (2019) study the reliable UFLP with correlated disruptions, which are
solved by Lagrangian relaxation based algorithms. An et al. (2014) study a reliable PMP. Cheng et al.
(2018b) consider a three-echelon logistics network design problem. Both studies use the two-stage RO
framework and solve models using C&CG algorithms. For more details on reliable facility location,
see the review paper by Snyder et al. (2016).

Baghalian et al. (2013) study a supply chain network design problem, considering supply-side and
demand-side uncertainties simultaneously. They assume demand variables follow a known distribution
function and describe supply-side uncertainty (facility disruption and link failure) through scenarios.
Zokaee et al. (2016) study a humanitarian network design problem, which includes suppliers, relief
distribution centers (RDC), and affected areas. Installation costs of RDC, shortage costs at affected
areas, transportation costs at both echelons, supply capacity, and demand are subject to uncertainties.
They use budgeted uncertainty sets to describe randomnesses and a static RO method to model the
problem.

Table 1: Summary of literature review
Type of uncertainty Modeling scheme

Authors Provider Receiver In-between Static Two(multi)-stage Solution method

Baron et al. (2011) X RO Duality technique
Atamtürk and Zhang (2007) X RO Cutting plane
Zeng and Zhao (2013) X RO Column-and-constraint generation
Ardestani-Jaafari and Delage (2017) X RO Affine policy
Gao and Qin (2016) X CCP Genetic algorithm
Mǐsković et al. (2017) X RO Memetic algorithm
Matthews et al. (2019) X RO Column-and-constraint generation
Pishvaee et al. (2011) X X RO Duality technique
Zetina et al. (2017) X X RO Duality technique
Yu et al. (2017) X Stochastic Branch-and-cut, Lagrangian decomposition
Afify et al. (2019) X Stochastic Evolutionary learning algorithm
Xie et al. (2019) X Stochastic Lagrangian relaxation
An et al. (2014) X RO Column-and-constraint generation
Cheng et al. (2018b) X RO Column-and-constraint generation
Baghalian et al. (2013) X X Stochastic Mixed-integer linear programming
Zokaee et al. (2016) X X X RO Duality technique
This paper X X RO Column-and-constraint generation, affine policy
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From the literature, we can see that most works consider one type of uncertainty at a time. Al-
though some papers consider multiple types of uncertainties simultaneously, their modeling schemes
may produce overly conservative solutions as all decisions are made ‘here-and-now ’ (Pishvaee et al.
2011; Zokaee et al. 2016), or because it is impossible to enumerate all the disruption scenarios
(Baghalian et al. 2013). Thus, this paper uses a two-stage RO method for the CFLP under uncer-
tain demand and facility disruptions, which applies revealed uncertainty information to make recourse
decisions, in order to generate less conservative solutions. Moreover, the two-stage method does not
depend on probability distribution or scenario generation.

3 Models

Notation. We denote R as the space of real numbers, R+ as the space of positive real numbers, and
B as the space of binary numbers. |I| is the cardinality of set I. Let I and J be the sets of customers
and facilities, respectively. The parameter fj is the fixed cost of locating a facility at candidate site
j ∈ J , and Cj is the corresponding capacity if we build a facility there. The parameter hi is the
demand quantity at customer i ∈ I, and dij is the cost for facility j to satisfy one unit of demand at
customer i ∈ I. The unit penalty cost associated with unmet demand at customer i ∈ I is pi. We use
yj = 1 to denote that a facility is built at site j ∈ J , and yj = 0 otherwise. The variable xij is the
product quantity delivered from facility j ∈ J to customer i ∈ I, and ui is the unsatisfied demand at
customer i ∈ I.

3.1 The deterministic model

The deterministic CFLP can be formulated as

CFLP: min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui (1a)

s.t.
∑
j∈J

xij + ui ≥ hi ∀i ∈ I, (1b)

∑
i∈I

xij ≤ Cjyj ∀j ∈ J, (1c)

yj ∈ {0, 1} ∀j ∈ J, (1d)

xij ≥ 0 ∀i ∈ I, j ∈ J, (1e)

ui ≥ 0 ∀i ∈ I. (1f)

Objective function (1a) minimizes the total cost, which involves the facility location cost, transporta-
tion cost, and the penalty cost of unsatisfied demand. Constraints (1b) denote that the sum of met
and unmet demand must be greater than or equal to a customer’s demand. Inequalities (1c) impose
that customers can only be allocated to opened facilities and that a facility’s capacity constraint must
be respected. Constraints (1d)–(1f) impose the integrality and non-negativity constraints.

3.2 The robust model under uncertain demand and facility disruptions

We use a budgeted uncertainty set to characterize uncertain demand (Zeng and Zhao 2013; Bertsimas
and Shtern 2018):

Uh =

{
h ∈ R|I|+ : hi = h̄i + θih

∆
i , 0 ≤ θi ≤ 1,

∑
i∈I

θi ≤ Γh

}
, (2)

where h̄i is the nominal (or basic) demand at customer i and h∆
i ≥ 0 is the maximal demand deviation.

Γh is the uncertainty budget which bounds the maximal number of demand parameters by which values
are allowed to deviate from their nominal values.
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We characterize disruption risks as (An et al. 2014; Cheng et al. 2018b)

Zk =

z ∈ B|J | :
∑
j∈J

zj ≤ k

 , (3)

where zj = 1 if facility j is disrupted, and zj = 0 otherwise. Equation (3) means that at most k
facilities are allowed to fail simultaneously.

We use the following uncertainty set to represent simultaneous demand uncertainty and facility
disruptions

W =
{

(h, z) ∈ R|I|+ × B|J | : h ∈ Uh, z ∈ Zk
}
. (4)

The adjustable robust counterpart (ARC) model for CFLP is

CFLP-DR: min
y,x(·),u(·)

sup
(h,z)∈W

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijxij(h, z) +
∑
i∈I

piui(h, z) (5a)

s.t.
∑
j∈J

xij(h, z) + ui(h, z) ≥ hi ∀(h, z) ∈ W, i ∈ I, (5b)

∑
i∈I

xij(h, z) ≤ Cjyj(1− zj) ∀(h, z) ∈ W, j ∈ J, (5c)

yj ∈ {0, 1} ∀j ∈ J, (5d)

xij(h, z) ≥ 0 ∀(h, z) ∈ W, i ∈ I, j ∈ J, (5e)

ui(h, z) ≥ 0 ∀(h, z) ∈ W, i ∈ I. (5f)

The objective function minimizes the worst-case cost. Here, we use xij(h, z),∀i ∈ I, j ∈ J and
ui(h, z),∀i ∈ I to indicate that we can delay the allocation decisions until we have observed customers’
demand and facilities’ status. Constraints (5c) mean that customers can only be reassigned to opened
and functional facilities (i.e., those with y = 1 and z = 0). We use CFLP-D and CFLP-R to denote the
model with only uncertain demand and with only facility disruptions, respectively. The two models
can be obtained directly by setting the parameter Γh = 0 or k = 0. From model (5), we can observe
that uncertainties only affect the right-hand side of constraints and that the model has the propriety
of fixed recourse (i.e., the coefficients of recourse variables are not influenced by uncertainties).

4 Solution methods

Notation xij(h, z) and ui(h, z) indicates that xij and ui are no longer a single variable but rather a

mapping from the space of observations R|I|+ × B|J | to R+ ∪ {0}. This flexibility comes at the price
of significant computational challenges. To solve the models, this section presents an exact algorithm
based on a decomposition scheme and a heuristic algorithm based on the AP. We use the CFLP-DR
to describe our algorithms.

4.1 Column-and-constraint generation

The C&CG algorithm is implemented in a master-subproblem framework. The master problem (MP)
is solved to generate a first-stage solution, and the subproblem (SP) is solved to identify the worst-case
realization of the uncertain parameters under a given first-stage solution. Each time after an SP is
solved, we compute the gap between the upper and lower bounds. If the optimality gap is reached, the
algorithm terminates; otherwise, we add the identified worst-case scenario and its associated variables
and constraints to the MP, and the algorithm iterates.
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Master problem. The MP is written as

φ = min
y,s,{x}nl=1,{u}

n
l=1

s

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijx
l
ij +

∑
i∈I

piu
l
i ∀l ∈ {1, · · · , n} ,

∑
j∈J

xlij + uli ≥ hli ∀l ∈ {1, · · · , n} , i ∈ I,

∑
i∈I

xlij ≤ Cjyj(1− zlj) ∀l ∈ {1, · · · , n} , j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,
xlij ≥ 0 ∀l ∈ {1, · · · , n} , i ∈ I, j ∈ J,
uli ≥ 0 ∀l ∈ {1, · · · , n}, i ∈ I.

The MP seeks to find the best location decision in light of the set of significant scenarios identified
in the subproblem. The allocation variables, xlij and uli, now feature an extra index l, which means

that these variables are added after finishing the lth iteration. Similarly, parameters hli and zlj are the
worst-case realization of random variables hi and zj identified in the lth iteration.

Subproblem. Since unmet demand is associated with a penalty cost, the second-stage problem
is always feasible. Here, we use Karush–Kuhn–Tucker (KKT) conditions to derive the SP. Let α, β,
γ, and λ be the dual variables associated with constraints (5b)–(5c) and (5e)–(5f), respectively. The
SP is

ψ = max
x,u,α,β,γ,λ,

wα,wβ ,wγ ,wλ,z

∑
j∈J

fj ŷj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui

s.t.
∑
j∈J

xij + ui ≥ hi ∀i ∈ I,

∑
i∈I

xij ≤ Cj ŷj(1− zj) ∀j ∈ J,

xij ≥ 0 ∀i ∈ I, j ∈ J,
ui ≥ 0 ∀i ∈ I,
αi − βj + γij = dij ∀i ∈ I, j ∈ J,
αi + λi = pi ∀i ∈ I,∑
j∈J

xij + ui ≤ hi +Mα
i (1− wαi ) ∀i ∈ I,

αi ≤Mα
i w

α
i ∀i ∈ I,∑

i∈I
xij ≥ Cj ŷj(1− zj) +Mβ

j (wβj − 1) ∀j ∈ J,

βj ≤Mβ
j w

β
j ∀j ∈ J,

xij ≤Mγ
ij(1− w

γ
ij) ∀i ∈ I, j ∈ J,

γij ≤Mγ
ijw

γ
ij ∀i ∈ I, j ∈ J,

ui ≤Mλ
i (1− wλi ) ∀i ∈ I,

λi ≤Mλ
i w

λ
i ∀i ∈ I,

hi = h̄i + θih
∆
i ∀i ∈ I,

0 ≤ θi ≤ 1 ∀i ∈ I,
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∑
i∈I

θi ≤ Γh,∑
j∈J

zj ≤ k,

xij , ui, αi, βj , γij , λi ≥ 0 ∀i ∈ I, j ∈ J,

wαi , w
β
j , w

γ
ij , w

λ
i , zj ∈ {0, 1} ∀i ∈ I, j ∈ J.

Let Mα
i = pi,M

β
j = max{Cj ,maxi{dij(h̄i + h∆

i ), pi(h̄i + h∆
i )}},Mγ

ij = max{Cj , dij(h̄i + h∆
i ), pi(h̄i +

h∆
i )},Mλ

i = max{pi, h̄i + h∆
i }.

The detailed implementation of the C&CG algorithm is given in Algorithm 1. In Step 1, we
solve the deterministic model and get an initial location decision ŷ. In Step 2, we solve the SP with
provided ŷ to identify the worst-case scenario and update the lower bound. If the termination condition
is satisfied, the algorithm ends, else iteration continues. In Step 3, MP and SP are alternately solved
to close the optimality gap.

Algorithm 1: C&CG algorithm for ARC model

Initialization: Let LB = −∞,UB =∞, n = 0.
Step 1: Solve the deterministic model with hi = h̄i to get an initial location decision ŷ. Set
LB as the objective value of the deterministic model.

Step 2: Solve the SP based on ŷ to find the worst-case scenario (ĥ, ẑ). Let ψ̂ be the SP’s
optimal value. Set UB = min{UB, ψ̂} and n = n+ 1. If (UB− LB)/UB ≤ ε, the algorithm
terminates; else, add the identified worst-case scenario and its associated variables and
constraints to the MP and go to Step 3.

Step 3: Iterate until the algorithm terminates:
Step 3.1: Solve the MP to get a location decision ŷ and its optimal value φ̂. Set LB = φ̂.
Step 3.2: Solve the SP to identify the worst-case scenario and its optimal value ψ̂. Set
UB = min{UB, ψ̂} and n = n+ 1.
Step 3.3: If (UB− LB)/UB ≤ ε, the algorithm terminates; else, add the identified
worst-case scenario and its associated variables and constraints to the MP, and go to Step
3.1.

4.2 Affine policy

Although the exact method described in the previous section is valuable, one cannot guarantee that
it will converge in a reasonable amount of time. In most cases the ARC model is computationally
intractable (Ben-Tal et al. 2004). This issue calls for some approximation schemes, among which the
affine policy, or linear decision rule (LDR), is widely used. The LDR restricts adjustable variables
to be affine functions of uncertain parameters. This leads to tractable robust counterparts for linear
optimization problems with fixed recourse. In uncertainty set (4), since random variables z are
independent from θ and z can be relaxed to continuous variables (Cheng et al. 2018a), we are able to
use the LDR for the robust model (5). Specifically, we approximate{

xij =
∑

e∈I Aijehe +
∑

t∈J Bijtzt +Dij ∀i ∈ I, j ∈ J,
ui =

∑
e∈I Eiehe +

∑
t∈J Fitzt +Gi ∀i ∈ I,

(6)

where Aije, Bijt, Dij , Eie, Fit, and Gi ∈ R. The resulting affinely adjustable robust counterpart
(AARC) model for the CFLP-DR is

min
y,A,B,D,
E,F ,G

sup
(h,z)∈W

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dij(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij)
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+
∑
i∈I

pi(
∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi), (7a)

s.t.
∑
j∈J

(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij) +
∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi ≥ hi ∀(h, z) ∈ W, i ∈ I, (7b)

∑
i∈I

(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij) ≤ Cjyj(1− zj) ∀(h, z) ∈ W, j ∈ J, (7c)

yj ∈ {0, 1} ∀j ∈ J, (7d)∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij ≥ 0 ∀(h, z) ∈ W, i ∈ I, j ∈ J,

(7e)∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi ≥ 0 ∀(h, z) ∈ W, i ∈ I. (7f)

To solve the AARC model: (i) We can develop an RG algorithm for an equivalent reformulation
of model (7), based on the idea in Ardestani-Jaafari and Delage (2017). The resulting master and
subproblems are linear programming models, and the master problem can be further strengthened
by adding valid inequalities. (ii) We can first rewrite model (7) as an epigraph form, and then
reformulate each robust constraint by applying duality theory (Gorissen et al. 2015). This method
ultimately produces a mixed-integer linear programming (MILP) model. In the following sections, we
implement both methods.

4.2.1 Row generation algorithm for the AARC model

In this section, we first derive an equivalent formulation for the AARC model and then develop an
RG algorithm based on the equivalence.

Theorem 1. The AARC model (7) is equivalent to

min
y,Ψ

∑
j∈J

fjyj + Ψ

s.t. Ψ ≥ g(y),

yj ∈ {0, 1} ∀j ∈ J,

where g(y) is defined as

max
W ,Y ,Z,A′,B′,E′,
F ′,G′,S′,H′,L′,N ′

∑
i∈I

h̄iWi +
∑
i∈I

∑
e∈I,
e=i

h∆
i Yie −

∑
j∈J

CjyjA
′
j +

∑
t∈J

∑
j∈J,
j=t

CjyjE
′
tj

s.t. h∆
e (Yie −B′ej +G′ije − dijθe) = 0 ∀i ∈ I, j ∈ J, e ∈ I,
Zit − E′tj + S′ijt = dijzt ∀i ∈ I, j ∈ J, t ∈ J,
Wi −A′j + F ′ij = dij ∀i ∈ I, j ∈ J,
h∆
e (Yie + L′ie − piθe) = 0 ∀i ∈ I, e ∈ I,
Zit +N ′it = pizt ∀i ∈ I, t ∈ J,
Wi +H ′i = pi ∀i ∈ I,
−Wi + Yie ≤ 0 ∀i ∈ I, e ∈ I,
− ΓhWi + Yie ≤ 0 ∀i ∈ I, e ∈ I,

− kWi +
∑
t∈J

Zit ≤ 0 ∀i ∈ I,

−A′j +B′ej ≤ 0 ∀e ∈ I, j ∈ J,
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− ΓhA
′
j +

∑
e∈I

B′ej ≤ 0 ∀j ∈ J,

−A′j + E′tj ≤ 0 ∀t ∈ J, j ∈ J,

− kA′j +
∑
t∈J

E′tj ≤ 0 ∀j ∈ J

− F ′ij +G′ije ≤ 0 ∀i ∈ I, j ∈ J, e ∈ I,

− ΓhF
′
ij +

∑
e∈I

G′ije ≤ 0 ∀i ∈ I, j ∈ J,

− F ′ij + S′ijt ≤ 0 ∀i ∈ I, j ∈ J, t ∈ J,

− kF ′ij +
∑
t∈J

S′ijt ≤ 0 ∀i ∈ I, j ∈ J,

−H ′i + L′ie ≤ 0 ∀i ∈ I, e ∈ I,

− ΓhH
′
i +

∑
e∈I

L′ie ≤ 0 ∀i ∈ I,

−H ′i +N ′it ≤ 0 ∀i ∈ I, t ∈ J,

− kH ′i +
∑
t∈J

N ′it ≤ 0 ∀i ∈ I,

0 ≤ θi ≤ 1 ∀i ∈ I,
0 ≤ zj ≤ 1 ∀j ∈ J,∑
i∈I

θi ≤ Γh,∑
j∈J

zj ≤ k,

Wi, Yie, Zit, A
′
j , B

′
ej , E

′
tj , F

′
ij , G

′
ije, S

′
ijt, H

′
i, L
′
ie, N

′
it ≥ 0 ∀i ∈ I, e ∈ I, j ∈ J, t ∈ J.

Proof. Please see Appendix A.

Algorithm 2: Row generation algorithm for AARC model

Initialization: Let LB = −∞,UB =∞, n = 1.
Step 1: Solve the deterministic model with hi = h̄i to get an initial location decision ŷ(1).
Step 2: Solve the subproblem g(ŷ(n)) and obtain its optimal value Ψ∗. Set Ẇ (n), Ẏ (n),
Ȧ
′(n), Ė

′(n) to their respective values based on the optimal solution. Let

UB = min(UB,
∑

j∈J fj ŷ
(n)
j + Ψ∗).

Step 3: Set n = n+ 1 and solve the following master problem:

min
∑
j∈J

fjyj + Ψ, (8a)

s.t. Ψ ≥
∑
i∈I

h̄iẆ
(l)
i +

∑
i∈I

∑
e∈I,
e=i

h∆
i Ẏ

(l)
ie −

∑
j∈J

CjyjȦ
′(l)
j +

∑
t∈J

∑
j∈J,
j=t

CjyjĖ
′(l)
tj ∀l ∈ {1, . . . , n− 1} ,

(8b)

yj ∈ {0, 1} ∀j ∈ J. (8c)

Let ŷ(n) and Ψ(n) be the optimal solution and value of the master problem, respectively. Set

LB =
∑

j∈J fjy
(n)
j + Ψ(n).

Step 4: If (UB− LB)/UB ≤ ε, then the algorithm terminates, return ŷ(n) as its optimal
solution; otherwise repeat from Step 2.
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Based on Theorem 1, we use an RG algorithm, given in Algorithm 2, to solve the AARC model.
The RG algorithm is implemented in a master-subproblem framework. The master problem is to find
the best location decision and the subproblem is to search for the optimality cut. We can improve
the convergence speed of Algorithm 2 by adding valid inequalities (Ardestani-Jaafari and Delage
2017). For a pair (y,Ψ) to be feasible for model (7), for any {(h, z)(l)}l∈Λ ⊂ W, there must exist an
assignment for A,B,D,E,F , and G such that the following constraints are satisfied:

Ψ ≥
∑
i∈I

∑
j∈J

dij(
∑
e∈I

Aijeh
(l)
e +

∑
t∈J

Bijtz
(l)
t +Dij) +

∑
i∈I

pi(
∑
e∈I

Eieh
(l)
e +

∑
t∈J

Fitz
(l)
t +Gi) ∀l ∈ Λ,

∑
j∈J

(
∑
e∈I

Aijeh
(l)
e +

∑
t∈J

Bijtz
(l)
t +Dij) +

∑
e∈I

Eieh
(l)
e +

∑
t∈J

Fitz
(l)
t +Gi ≥ h(l)

i ∀l ∈ Λ, i ∈ I,

∑
i∈I

(
∑
e∈I

Aijeh
(l)
e +

∑
t∈J

Bijtz
(l)
t +Dij) ≤ Cjyj(1− z(l)

j ) ∀l ∈ Λ, j ∈ J,∑
e∈I

Aijeh
(l)
e +

∑
t∈J

Bijtz
(l)
t +Dij ≥ 0 ∀l ∈ Λ, i ∈ I, j ∈ J,∑

e∈I
Eieh

(l)
e +

∑
t∈J

Fitz
(l)
t +Gi ≥ 0 ∀l ∈ Λ, i ∈ I.

Therefore, we propose an enhanced master problem:

min
y,Ψ

∑
j∈J

fjyj + Ψ

s.t. Ψ ≥
∑
i∈I

∑
j∈J

dij(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij) +
∑
i∈I

pi(
∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi) ∀(h, z) ∈ W ′

∑
j∈J

(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij) +
∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi ≥ hi ∀(h, z) ∈ W ′, i ∈ I,

∑
i∈I

(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij) ≤ Cjyj(1− zj) ∀(h, z) ∈ W ′, j ∈ J,∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij ≥ 0 ∀(h, z) ∈ W ′, i ∈ I, j ∈ J,∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi ≥ 0 ∀(h, z) ∈ W ′, i ∈ I,

and (8b)–(8c),

whereW ′ is a finite set of some feasible realizations of (h, z). In our implementation,W ′ only includes
the most recently identified worst-case scenario, as was the case in Ardestani-Jaafari and Delage (2017).

4.2.2 Reformulation of the AARC model

We can derive the robust counterpart of model (7) using duality theory, which produces a MILP model
and it can be directly solved by an off-the-shelf solver. The reformulation is

min
y,η,µ,σ,ν,ρ,A,B,D,E,F ,G,S,
H,L,N ,O,P ,Q,R,K,T ,U ,ζ,ξ,δ,π

s (9a)

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijDij +
∑
i∈I

piGi +
∑
i∈I

∑
j∈J

∑
e∈I

dijAijeh̄e +
∑
i∈I

∑
e∈I

piEieh̄e

+
∑
e∈I

ζe + Γhδ +
∑
t∈J

ξt + kπ, (9b)

ζe + δ ≥
∑
i∈I

∑
j∈J

dijAijeh
∆
e +

∑
i∈I

piEieh
∆
e ∀e ∈ I, (9c)
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ξt + π ≥
∑
i∈I

∑
j∈J

dijBijt +
∑
i∈I

piFit ∀t ∈ J, (9d)

and (A.1)–(A.4). (9e)

4.3 Optimality of the affine policy

Although the AP is an approximate method, it can generate optimal first-stage solutions in some
cases. Table 2 identifies conditions under which the AP is optimal for each robust model.

Table 2: Optimality of the linear decision rule

k Γh CFLP-D CFLP-R CFLP-DR

0 0 X X X
1 X Not applicable X
(1, |I|) × Not applicable ×
|I| X Not applicable X

1 0 Not applicable X X
1 Not applicable Not applicable ×
(1, |I|) Not applicable Not applicable ×
|I| Not applicable Not applicable X

(1, |J |) 0 Not applicable × ×
[1, |I|] Not applicable Not applicable ×

|J | 0 Not applicable X X
[1, |I|] Not applicable Not applicable X

From Table 2, we get the following conclusions:

1. When k = 0 and Γh = 0, the robust models reduce to the deterministic model.

2. For the CFLP-D, when Γh = 1 and Γh = |I|, the AP gives optimal first-stage solutions.
• When Γh = 1, the uncertainty set Uh is a simplex, i.e., it is a convex combination of (|I| +
1) affinely independent points in R|I|+ . These points are (h̄1, h̄2, . . . , h̄i), (h̄1 + h∆

1 , h̄2, . . . , h̄i),
(h̄1, h̄2 + h∆

2 , . . . , h̄i),. . .,(h̄1, h̄2, . . . , h̄i + h∆
i ). Based on Theorem 1 in Bertsimas and Goyal

(2012), for a two-stage adaptive RO problem under right-hand side uncertainty with a min-max
objective, the AP identifies optimal solutions when the uncertainty set is a simplex.
• When Γh = |I|, constraint

∑
i∈I θi ≤ Γh in Equation (2) is redundant as 0 ≤ θi ≤ 1,∀i ∈ I.

Since only constraints (2) involve uncertain parameter hi at the right-hand side of the ARC
model, in this situation the uncertainty becomes constraint-wise. According to Theorem 2.1
in Ben-Tal et al. (2004), the ARC is now equivalent to the static RO model. We can set
xij = Dij , ui = Gi,∀i ∈ I, j ∈ J in Equation (6), and the resulting AARC model (7) is exactly
the static RO model. This means that both the AARC model and the ARC model are now
equivalent to the static RO model.

3. For the CFLP-R, when k = 1 and k = |J |, the AP is optimal.

We first relax the uncertainty set (3) to its convex hull Zk =
{
z ∈ [0, 1]|J | :

∑
j∈J zj ≤ k

}
. Then

the proof process is the same as that of the CFLP-D. Further, when k = |J |, both the ARC and
AARC models generate solutions with no opened facilities as the static RO model does (proved
in Appendix B).

4. For the CFLP-DR, when k = 0 (or Γh = 0), it reduces to the CFLP-D (or CFLP-R). When
k = 1 and Γh = |I|, the CFLP-DR is equivalent to the CFLP-R with hi = h̄i + h∆

i , ∀i ∈ I;
therefore, the AP identifies optimal solutions for the CFLP-DR as it is optimal for the CFLP-R
when k = 1. When k = |J |, the ARC and AARC models provide optimal solutions with no
opened facilities, regardless of the value of Γh.
The latter two cases are proved in Appendix C.
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5 Computational experiments

We adopt the instances generated by Cheng et al. (2018a) with slight modifications, which are originally
from Daskin (2011). These instances are derived from 1990 census data. The 49 nodes include the
state capitals of the continental United States and Washington, D.C. There are 35 instances in total.
The nominal demand h̄i = Pi× 10−5, where P i is the population at node i. We generate the maximal
demand deviation h∆

i uniformly from the interval [0.15h̄, h̄]. The transportation cost dij is the great
circle distance between nodes i and j in miles. For simplicity, we set the unit penalty cost pi the
same for all the customers, which is the greatest travel distance in the system. We denote instances as
Fac-X-Cus-Y, which means that the considered instance has X candidate facilities and Y customers.

All the algorithms and models were coded in Python programming language, using Gurobi 8.1.1
as the solver. The calculations were run on a cluster of Lenovo SD350 servers with 2.4 GHz Intel
Skylake cores and 202 GB of memory under Linux CentOS 7 system. Each experiment was conducted
on a four-core processor of one node.

5.1 The impact of uncertainty on optimal solutions

We use instances Fac-10-Cus-10 and Fac-15-Cus-15 to conduct the experiments and set Γh = 0.2|I| and
k = 2. Results are presented in Table 3. We set the deterministic model’s results as benchmarks and
the other models’ results are normalized by dividing those of the deterministic model. A ratio smaller
(or larger) than 1 means that the robust models generate solutions of smaller (or larger) costs. Note
that the nominal costs of the robust models are calculated by fixing the location decisions and solving
resulting minimum cost flow problems. The worst-case cost of the deterministic model is obtained by
fixing the location decision and solving the subproblem of the C&CG algorithm.

Table 3: The impact of uncertainty on location decision and cost

Instance Model Opened facilities Nominal cost ratio Worst-case cost ratio

Fac-10-Cus-10 CFLP [0, 2, 3, 6, 8]∗ 1.00 1.00
CFLP-D [0, 2, 3, 5, 6, 8] 1.04 0.94
CFLP-R [0, 2, 3, 4, 5, 6, 8] 1.08 0.68
CFLP-DR [0, 2, 3, 4, 5, 6, 7, 8] 1.13 0.73

Fac-15-Cus-15 CFLP [0, 1, 2, 3, 4, 5, 7] 1.00 1.00
CFLP-D [0, 1, 2, 3, 4, 5, 7] 1.00 1.00
CFLP-R [0, 1, 2, 3, 4, 5, 7, 14] 1.09 0.94
CFLP-DR [0, 1, 2, 3, 4, 5, 7, 10, 14] 1.17 0.82

? Facilities are indexed from 0.

The first impact is the selection of opened facilities. As expected, when uncertainties are considered,
more facilities are opened to mitigate potential risks. The CFLP-DR model generates solutions of the
greatest number of opened facilities, due to the fact that two types of uncertainties are considered
simultaneously. The second impact is cost. Generally, considering uncertainty increases the nominal
cost and decreases the worst-case cost. Table 3 shows that facility disruption risk has a greater
influence on location and cost, compared to demand uncertainty. For instance Fac-10-Cus-10, the
CFLP-D opens one more facility than the deterministic model. However, when disruption risk is
further considered, the CFLP-DR locates two more facilities compared to the CFLP-D. For instance
Fac-15-Cus-15, the location decision of the CFLP-D is the same as the deterministic problem. However,
the CFLP-R and CFLP-DR generate different solutions with more opened facilities.

Table 3 also suggests that sometimes a slight increase in the nominal cost can lead to a significant
decrease in the worst-case cost. For example, for instance Fac-10-Cus-10, the nominal cost ratio of the
CFLP-R (CFLP-DR) is 1.08 (1.13) whereas the worst-case cost ratio is 0.68 (0.73). This observation
is consistent with other works that study reliable facility location problems (Snyder and Daskin 2005;
An et al. 2014).
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5.2 The impact of uncertainty budget on optimal solutions

We denote Γh = Θ|I|, which means there are at most Θ of customers whose demand parameters are
allowed to deviate from their nominal values. For space consideration, we only present the results of
instance Fac-15-Cust-15 in Figure 1.

Figure 1(a) indicates that budget of demand uncertainty has a slight impact on the location decision
and the worst-case cost. When Θ increases from 0.2 to 0.3, one more facility is opened. When Θ ≥ 0.3,
the number of opened facilities stays the same, and the curve of the worst-case cost is relatively flat.
On the contrary, the budget of facility disruption has a significant influence on facility configuration
and the worst-case cost. Figure 1(b) displays that the number of opened facilities and the worst-case
cost increase almost linearly with respect to k for the CFLP-R.

500,000

600,000

700,000

800,000

900,000

1,000,000

1,100,000

6

7

8

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
-c

as
e 

co
st

# 
O

pe
ne

d 
fa

cil
ty

Percentage of the total number of uncertain demand parameters (Theta)

# Opened facility Worst-case cost

(a) Demand budget

500,000

700,000

900,000

1,100,000

1,300,000

1,500,000

1,700,000

1,900,000

6

7

8

9

10

11

12

1 2 3 4 5

W
or

st
-c

as
e 

co
st

# 
O

pe
ne

d 
fa

cil
ity

The budget of facility disruption (k)

# Opened facility Worst-case cost

(b) Facility disruption budget

6

7

8

9

10

11

12

13

14

1 2 3 4 5

# 
O

pe
ne

d 
fa

cil
ity

The budget of facility disruption (k)

Theta = 0.1 Theta = 0.2 Theta = 0.3

Theta = 0.4 Theta = 0.5

(c) Demand and facility disruption budgets

1,200,000

1,600,000

2,000,000

2,400,000

2,800,000

1 2 3 4 5

W
or

st
-c

as
e 

co
st

The budget of facility disruption (k)

Theta = 0.1 Theta = 0.2 Theta = 0.3

Theta = 0.4 Theta = 0.5

(d) Demand and facility disruption budgets

Figure 1: The impact of uncertainty budget (Instance Fac-15-Cus-15)

Figures 1(c)–1(d) are the summarized results of the CFLP-DR. The detailed results are given in
Table 4, where the last column is obtained by setting the results in the first row of different Θ values
as benchmarks. Both figures show that the uncertainty of facility disruption plays a dominating
role. Under the same value of k, the difference in the number of opened facilities is not significant,
especially when k ≥ 3, and the worst-case costs are also close. However, under the same value of
Θ, the number of opened facilities and the worst-case cost ratio increase almost linearly with k. We
note that sometimes even the number of opened facilities is the same under the same value of k for
different Θ, there might be a difference in facility configuration. For example, according to Table 4,
when k = 4, 11 sites are opened when Θ = 0.1 and Θ = 0.2. However, facilities 6 and 8 are opened in
the former circumstance, and facilities 1 and 11 are opened in the latter.

5.3 Algorithm evaluation

This section evaluates the solution methods. The optimality tolerance for both C&CG and RG
algorithms is set to 10−4. The time limit is 7200 seconds (when this limit is reached, we still allow the
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Table 4: Detailed results of the CFLP-RD for Instance Fac-15-Cust-15
Θ k Opened facilities # Opened facilities Worst-case cost ratio

0.1 1 [0, 1, 2, 3, 4, 5, 7] 7 1.00
2 [0, 1, 2, 4, 5, 7, 10, 14] 8 1.19
3 [0, 1, 2, 4, 5, 7, 10, 11, 13, 14] 10 1.31
4 [0, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14] 11 1.41
5 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.52

0.2 1 [0, 1, 2, 3, 4, 5, 7, 14] 8 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 14] 9 1.20
3 [0, 1, 2, 4, 5, 7, 10, 11, 13, 14] 10 1.32
4 [0, 1, 2, 3, 4, 5, 7, 10, 11, 13, 14] 11 1.42
5 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.56

0.3 1 [0, 1, 2, 3, 4, 5, 7, 14] 8 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 14] 9 1.20
3 [0, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14] 11 1.32
4 [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14] 12 1.43
5 [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14] 13 1.59

0.4 1 [0, 1, 2, 3, 4, 5, 7, 11, 14] 9 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 11, 14] 10 1.21
3 [0, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14] 11 1.32
4 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.44
5 [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14] 13 1.59

0.5 1 [0, 1, 2, 3, 4, 5, 7, 11, 14] 9 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 11, 14] 10 1.22
3 [0, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14] 11 1.32
4 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.45
5 [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14] 13 1.61

current iteration to be completed). In following tables, Ref represents the reformulated model (9).
#Opt is the number of instances that are solved to optimality. #Iter is the number of iterations. Gap
is the optimality gap between the upper and lower bounds. Bound gap refers to the relative difference
between the optimal worst-case cost f∗C (generated by C&CG algorithm) and the worst-case bound f∗L
(the upper bound generated by the LDR). Mathematically, it is measured using (f∗L−f∗C)/f∗C ×100%.
Opt gap is the relative difference between f∗C and the achieved worst-case cost f∗A. The “achieved
worst-case cost” of a location decision refers to the actual worst-case cost if the decision is applied.
Mathematically, f∗A is obtained by fixing the location decision generated by the LDR and solving the
subproblem of C&CG, and Opt gap = (f∗A − f∗C)/f∗C × 100%. Note that for the Opt gaps, we only
make comparisons for instances that can be optimally solved by the C&CG algorithm. Meanwhile,
we only report the Opt gaps for algorithms (used for the AARC models) which provide smaller bound
gaps.

5.3.1 The CFLP-D

Table 5 and Figure 2 present the results of the CFLP-D. Table 5 shows that the C&CG algorithm
can generate optimal solutions for almost all the instances with different budgets in a shorter time.
As to the AARC model, the RG algorithm is more efficient than solving the reformulation directly.
Specifically, the RG algorithm yields solutions with smaller bound gaps and consumes less computing
time. The small bound and Opt gaps between the solutions of the C&CG algorithm and those of the
RG algorithm suggest that the LDR can provide good approximation solutions for the CFLP-D.

From Figure 2(a), the iteration number of the C&CG algorithm is small. It first increases and
then decreases with the increasing uncertainty budget. When Θ = 1, the C&CG algorithm finds
optimal solutions in only 1 iteration. Figure 2(b) shows that the performance of the C&CG algorithm
is not heavily affected by uncertainty budget. On the contrary, the computational efficiency of the
RG algorithm is sensitive to the budget. For a small budget (Θ = 0.1 ) or a large budget (Θ = 0.9 or
1.0), the RG algorithm is relatively fast; however, in other cases, its CPU time has a wide variation.
The reformulation model has seen an obvious decrease in CPU time when Θ ≥ 0.7; however, it always
consumes the most time among the three solution methods.
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Table 5: Algorithm comparison for the CFLP-D (average results)

AARC model from the linear decision rule

C&CG Row generation Reformulation

Θ #Opt #Iter Gap CPU Bound gap Opt gap CPU Bound gap CPU

0.1 35/35∗ 2.77 0.00 48.72 0.02 0.24 400.58 4.14 3260.48
0.2 35/35 4.20 0.00 233.41 0.01 0.00 1281.14 7.06 3407.41
0.3 35/35 5.14 0.00 163.03 0.02 0.78 2194.35 39.83 3554.42
0.4 34/35 5.14 0.01 540.80 0.02 0.00 2433.38 12.14 3708.92
0.5 35/35 4.77 0.00 135.07 0.02 0.28 2214.24 14.98 3704.56
0.6 35/35 4.11 0.00 108.40 0.02 0.09 1515.89 14.78 3613.36
0.7 35/35 3.57 0.00 110.08 0.01 0.00 1177.02 3.10 3706.80
0.8 35/35 3.14 0.00 146.05 0.00 0.00 577.15 2.76 3170.10
0.9 35/35 2.57 0.00 190.17 0.00 0.00 261.71 3.64 3029.60
1.0 35/35 1.00 0.00 62.49 0.00 0.00 106.26 0.03 1790.31

∗ : The number of instances (out of 35) that are solved to optimality.
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Figure 2: Average results of different algorithms for the CFLP-D

5.3.2 The CFLP-R

Table 6 presents the results of the CFLP-R. It displays that the C&CG algorithm can solve most
instances to optimality for a small budget. Specifically, for k = 1 and k = 2, 35 and 32 (out of 35)
instances can be optimally solved, respectively. However, Figure 3(a) demonstrates that this number
decreases significantly with an increasing budget. The number of iterations increases over the budget
k in general. With respect to the AARC model, the reformulation method provides solutions with
smaller bound gaps in a shorter time, compared to the RG algorithm. When k = 1, the reformulation
method identifies optimal first-stage solutions with Opt gaps being 0 as indicated in Section 4.3. Table
6 also suggests that even though the bound gaps are large, the Opt gaps are acceptable. Figure 3(b)
shows that the CPU time of the C&CG algorithm increases almost linearly when k ≥ 2; however,
the computing time of the reformulation method is relatively stable and also shorter. Thus, for the
CFLP-R with a large budget, we can consider using the LDR with the reformulation method to solve
the robust model approximately.

Table 6: Algorithm comparison for the CFLP-R (average results)

AARC model from the linear decision rule

C&CG Row generation Reformulation

k #Opt #Iter Gap CPU Bound gap CPU Bound gap Opt gap CPU

1 35/35 4.57 0.00 150.40 0.02 1606.99 0.00 0.00 164.97
2 32/35 13.54 1.37 1262.03 48.11 5372.04 46.53 7.91 2514.88
3 21/35 25.66 5.71 4285.34 46.72 5165.26 44.81 9.38 2775.00
4 12/35 23.63 14.31 6901.59 39.64 4987.98 37.44 5.05 2459.19
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Figure 3: Average results of different algorithms for the CFLP-R

5.3.3 The CFLP-DR

Table 7 summarizes the results of the CFLP-DR. It shows that the computational efficiency of the
C&CG algorithm is heavily affected when both uncertainties are simultaneously considered. Specifi-
cally, fewer instances are solved to optimality and the gaps are also larger compared to the CFLP-D
and the CFLP-R. Figure 4(a) further shows that when k is small (k = 2), the #Opt has a large
variation under different values of Θ. Similarly, when Θ is small (Θ = 0.2), the #Opt also varies sig-
nificantly with respect to k. For the AARC model, the RG algorithm provides solutions with smaller
bound gaps than the reformulation method does. The Opt gaps are relatively large when Θ = 0.2.
And the RG algorithm provides solutions with better Opt gaps when Θ = 0.6. Figure 4(c) shows that
the CPU time of the C&CG algorithm has a lot of variation. However, the CPU time of the other two
algorithms is quite stable. Although the reformulation method consumes less time, its solutions are
inferior to those of the RG algorithm. From Figures 4(b)–4(c), when Θ = 0.2, the C&CG algorithm
has the largest iteration number while it consumes the least CPU time, compared to the cases of
Θ = 0.4 and Θ = 0.6, which indicates that the computing time during each iteration is relatively
shorter when Θ = 0.2. In contrast, when Θ = 0.6, the C&CG algorithm consumes the most CPU time
with the smallest number of iterations.

Table 7: Algorithm comparison for the CFLP-DR (average results)

AARC model from the linear decision rule

C&CG Row generation Reformulation

Θ k #Opt #Iter Gap CPU Bound gap Opt gap CPU Bound gap CPU

0.2 2 22/35 8.83 11.59 6141.89 47.85 10.21 5414.68 77.53 3217.34
3 15/35 11.71 15.60 8043.41 50.04 11.57 5449.15 53.64 3337.77
4 12/35 12.14 20.14 10932.31 42.55 9.46 5409.59 46.28 3251.51

0.4 2 16/35 6.71 16.74 8133.65 35.36 11.48 5358.68 42.46 3076.00
3 12/35 7.97 19.53 9202.40 44.52 5.69 5363.89 45.00 3237.11
4 13/35 7.60 22.99 11023.90 41.11 6.43 5191.64 48.05 3155.73

0.6 2 13/35 5.34 19.93 11307.78 27.59 4.89 5262.17 30.01 3194.63
3 11/35 5.74 19.51 13019.47 39.75 7.00 5316.69 41.17 3223.54
4 12/35 6.06 24.81 13239.51 37.42 2.33 4991.64 44.40 3247.58

Conclusions. (1) For the CFLP-D, the C&CG algorithm is the most efficient one among the
three algorithms. The LDR can provide good approximations with minor bound and Opt gaps. (2)
For the CFLP-R, the efficiency of the C&CG algorithm is sensitive to the budget k. The CPU time
of the reformulation model is relatively stable, and it is less than that of the C&CG when k is large.
(3) The CFLP-DR is the most difficult one among the three robust models. The reformulation model
resulting from the LDR can be used to get approximate solutions when both uncertainty budgets have
large values.
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Figure 4: Average results of different algorithms for the CFLP-DR

5.4 A comparison of robust and stochastic solutions

In this section, we compare the solutions obtained form the two-stage RO framework and the two-
stage stochastic programming model presented in Appendix D. For the stochastic model, we sample
100 scenarios from independent and uniformly distributed demand hi ∼ U(h̄i, 2h̄i),∀i ∈ I. For each
scenario, we also incorporate potential facility disruptions. Specifically, we first generate a random
float number r ∈ [0, 1] for scenario s ∈ S. If r ≤ 0.5, no facility is disrupted in scenario s; otherwise,
we randomly generate two integer numbers in [0, |J | − 1] (facilities are indexed from 0) to represent
that the corresponding facilities are disrupted. Note that the two numbers can be the same, which
means that only one facility fails. We set the occurrence probability of scenario s to os = 1/100. For
the stochastic model with only facility disruptions, customer demand is set to the nominal value h̄i.
Experiments are conducted using instance Fac-10-Cust-15. Figure 5 plots the results. The expected
cost for the robust solution is obtained by solving the stochastic model with a given robust location
decision. The worst-case cost for the stochastic solution is obtained by solving the subproblem of
the C&CG algorithm. Note that we do not report the results of the static RO models, because they
generate very conservative solutions when disruption risks are considered, i.e., no facility is opened
and all customer demand will be lost.

Figures 5(a) and 5(e) show that for a large value of Θ, the expected costs realized by the robust
models are close to the minimum generated by the stochastic models. This indicates that even though
the RO models do not aim to minimize the expected cost, we can adjust the uncertainty budget
to obtain reasonable solutions with regard to the expectation criterion. Note that in the samples,
customer demand has a large variation, i.e., between h̄i and 2h̄i, so a large uncertainty budget produces
good expectation solutions here. Correspondingly, if customer demand is generated between a small
interval, we can adjust Θ to small values to satisfy the expectation criterion. Figure 5(c) indicates
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Figure 5: Comparison of the two-stage robust and stochastic solutions (Instance Fac-10-Cust-15)

that the robust and the stochastic models realize the same expected cost when k = 2. For k = 1
and 3, the expected costs of robust solutions are slightly higher. However, when k = 4 and 5, the
differences become large. This is because when generating the samples, we allow at most 2 facilities
to be disrupted in each scenario. Therefore, a large uncertainty budget means a large deviation from
the samples, leading to poor performance in terms of expectation criterion. Figures 5(b), 5(d), and
5(f) suggest that in terms of worst-case cost, the performance of the robust models is better than or
as good as that of the stochastic models.

6 Conclusions

This paper solves a fixed-charge location problem where two categories of parameters are subject to
uncertainties simultaneously: demand and facility availability. We apply a two-stage RO framework
for the problem, which allows allocation decisions to be made after the uncertainties are realized. We
develop a C&CG algorithm and use the LDR to solve the model. We identify conditions under which
the LDR produces optimal first-stage solutions. Numerical tests indicate that disruption risk has a
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greater effect on solution configuration and cost compared to demand uncertainty. For the CFLP-D,
the C&CG algorithm is quite efficient and the LDR also produces good approximate solutions. For
the CFLP-R and the CFLP-DR, the LDR can provide solutions with acceptable optimality gaps in a
shorter time when the uncertainty budgets have large values. Numerical tests also demonstrate that
we can adjust the uncertainty budget for robust models to generate reasonable solutions with respect
to the expectation criterion.
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Appendix A Proof of Theorem 1

We first derive the robust counterpart of constraints (7b) as∑
j∈J

∑
e∈I

Aijeh̄e +
∑
e∈I

Eieh̄e +
∑
j∈J

Dij +Gi − h̄i −
∑
e∈I

ηie − Γhµi −
∑
t∈J

σit − kνi ≥ 0 ∀i ∈ I,

− ηie − µi ≤
∑
j∈J

Aijeh
∆
e + Eieh

∆
e ∀i ∈ I, e ∈ I, i 6= e,

− ηie − µi ≤
∑
j∈J

Aijeh
∆
e + Eieh

∆
e − h∆

i ∀i ∈ I, e ∈ I, i = e,

σit − νi ≤
∑
j∈J

Bijt + Fit ∀i ∈ I, t ∈ J,

ηie, µi, σit, νi ≥ 0, ∀i ∈ I, e ∈ I, t ∈ J.

(A.1)
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Similarly, we can get the robust counterpart of constraints (7c) as∑
i∈I

∑
e∈I

Aijeh̄e +
∑
i∈I

Dij − Cjyj +
∑
e∈I

ρej + ΓhSj +
∑
t∈J

Htj + kLj ≤ 0 ∀j ∈ J,

ρej + Sj ≥
∑
i∈I

Aijeh
∆
e ∀e ∈ I, j ∈ J,

Htj + Lj ≥
∑
i∈I

Bijt ∀t ∈ J, j ∈ J, t 6= j

Htj + Lj ≥
∑
i∈I

Bijt + Cjyj ∀t ∈ J, j ∈ J, t = j,

ρej , Sj , Htj , Lj ≥ 0 ∀e ∈ I, j ∈ J, t ∈ J.

(A.2)

The robust counterpart of constraints (7e) is∑
e∈I

Aijeh̄e +Dij −
∑
e∈I

Nije − ΓhOij −
∑
t∈J

Pijt − kQij ≥ 0 ∀i ∈ I, j ∈ J,

−Nije −Oij ≤ Aijeh∆
e ∀i ∈ I, j ∈ J, e ∈ I,

− Pijt −Qij ≤ Bijt ∀i ∈ I, j ∈ J, t ∈ J,
Nije, Oij , Pijt, Qij ≥ 0 ∀i ∈ I, j ∈ J, e ∈ I.

(A.3)

The robust counterpart of constraints (7f) is∑
e∈I

Eieh̄e +Gi −
∑
e∈I

Rie − ΓhKi −
∑
t∈J

Tit − kUi ≥ 0 ∀i ∈ I,

−Rie −Ki ≤ Eieh∆
e ∀i ∈ I, e ∈ I,

− Tit − Ui ≤ Fit ∀i ∈ I, t ∈ J,
Rie,Ki, Tit, Ui ≥ 0 ∀i ∈ I, e ∈ I, t ∈ J.

(A.4)

Therefore, the AARC model can be reformulated as

min
y,η,µ,σ,ν,ρ,A,B,D,E,F ,G
S,H,L,N ,O,P ,Q,R,K,T ,U

max
(h,z)∈W

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dij(
∑
e∈I

Aijehe +
∑
t∈J

Bijtzt +Dij)

+
∑
i∈I

pi(
∑
e∈I

Eiehe +
∑
t∈J

Fitzt +Gi),

s.t. yj ∈ {0, 1} ∀j ∈ J,
and (A.1)–(A.4).

Since W is compact and convex, we can apply Sion’s minimax theorem to reverse the order of mini-
mization over {η,µ,σ,ν,ρ,A,B,D,E,F ,G,S,H,L,N ,O,P ,Q,R,K,T ,U} with the maximiza-
tion over {h, z}, and then replace the inner minimization by its dual maximization problem. The dual
maximization problem and the maximization with respect to {h, z} can be merged to the following
problem

max
W ,Y ,Z,A′,B′,E′,
F ′,G′,S′,H′,L′,N ′

∑
j∈J

fjyj +
∑
i∈I

h̄iWi +
∑
i∈I

∑
e∈I,
e=i

h∆
i Yie −

∑
j∈J

CjyjA
′
j +

∑
t∈J

∑
j∈J,
j=t

CjyjE
′
tj

s.t. h̄e(Wi −A′j + F ′ij − dij) + h∆
e (Yie −B′ej +G′ije − dijθe) = 0 ∀i ∈ I, j ∈ J, e ∈ I,

Zit − E′tj + S′ijt = dijzt ∀i ∈ I, j ∈ J, t ∈ J,
Wi −A′j + F ′ij = dij ∀i ∈ I, j ∈ J,
h̄e(Wi +H ′i − pi) + h∆

e (Yie + L′ie − piθe) = 0 ∀i ∈ I, e ∈ I,

Robust Facility Location Under Demand Uncertainty and Facility Disruptions

20 CIRRELT-2019-53



Zit +N ′it = pizt ∀i ∈ I, t ∈ J,
Wi +H ′i = pi ∀i ∈ I,
−Wi + Yie ≤ 0 ∀i ∈ I, e ∈ I,
− ΓhWi + Yie ≤ 0 ∀i ∈ I, e ∈ I,
−Wi − Zit ≤ 0 ∀i ∈ I, t ∈ J,

− kWi +
∑
t∈J

Zit ≤ 0 ∀i ∈ I,

−A′j +B′ej ≤ 0 ∀e ∈ I, j ∈ J,

− ΓhA
′
j +

∑
e∈I

B′ej ≤ 0 ∀j ∈ J,

−A′j + E′tj ≤ 0 ∀t ∈ J, j ∈ J,

− kA′j +
∑
t∈J

E′tj ≤ 0 ∀j ∈ J,

− F ′ij +G′ije ≤ 0 ∀i ∈ I, j ∈ J, e ∈ I,

− ΓhF
′
ij +

∑
e∈I

G′ije ≤ 0 ∀i ∈ I, j ∈ J,

− F ′ij + S′ijt ≤ 0 ∀i ∈ I, j ∈ J, t ∈ J,

− kF ′ij +
∑
t∈J

S′ijt ≤ 0 ∀i ∈ I, j ∈ J,

−H ′i + L′ie ≤ 0 ∀i ∈ I, e ∈ I,

− ΓhH
′
i +

∑
e∈I

L′ie ≤ 0 ∀i ∈ I,

−Hi +N ′it ≤ 0 ∀i ∈ I, t ∈ J,

− kH ′i +
∑
t∈J

N ′it ≤ 0 ∀i ∈ I,

0 ≤ θi ≤ 1 ∀i ∈ I,
0 ≤ zj ≤ 1 ∀j ∈ J,∑
i∈I

θi ≤ Γh,∑
j∈J

zj ≤ k,

Wi, Yie, Zit, A
′
j , B

′
ej , E

′
tj , F

′
ij , G

′
ije, S

′
ijt, H

′
i, L
′
ie, N

′
it ≥ 0 ∀i ∈ I, e ∈ I, j ∈ J, t ∈ J.

We can rewrite the first constraints as

h∆
e (Yie −B′ej +G′ije − dijθe) = 0 ∀i ∈ I, j ∈ J, e ∈ I,

because Wi −A′j + F ′ij = dij ,∀i ∈ I, j ∈ J . Similarly, we can rewrite the fourth constraints as

h∆
e (Yie + L′ie − piθe) = 0 ∀i ∈ I, e ∈ I,

because Wi +H ′i = pi,∀i ∈ I. We eliminate the constraints −Wi − Zit ≤ 0,∀i ∈ I, t ∈ J because they
always hold as Wi ≥ 0, Zit ≥ 0.
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Appendix B Robust counterpart of the static RO model

The static RO model for the CFLP with facility disruptions is

min
y,x,u

sup
z∈Zk

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui,

s.t.
∑
j∈J

xij + ui ≥ h̄i ∀i ∈ I,

∑
i∈I

xij ≤ Cjyj(1− zj) ∀z ∈ Zk, j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,
xij ≥ 0 ∀i ∈ I, j ∈ J,
ui ≥ 0 ∀i ∈ I.

Through duality theory, the second constraints can be reformulated as∑
i∈I

xij ≤ Cjyj − kAj −Bj ∀j ∈ J, (B.1)

Cjyj −Aj −Bj ≤ 0 ∀j ∈ J, (B.2)

Aj , Bj ≥ 0 ∀j ∈ J. (B.3)

Constraints (B.2)–(B.3) indicate that when k ≥ 1, the equation Cjyj − kAj − Bj ≤ 0 always holds.
Therefore, when k ≥ 1, we have

∑
i∈I xij ≤ 0,∀j ∈ J , which suggests that xij = 0, ∀i ∈ I, j ∈ J and

ui = h̄i, ∀i ∈ I. Since the static RO model is a minimization problem, all yj would be 0 at optimality.

Appendix C Optimality of the affine policy for the CFLP-DR

We use duality theory to derive the subproblem of the C&CG algorithm, which is

max
∑
j∈J

fj ŷj +
∑
i∈I

αi(h̄i + θih
∆
i )−

∑
j∈J

Cj ŷj(1− zj)βj

s.t. αi − βj ≤ dij ∀i ∈ I, j ∈ J,
αi ≤ pi ∀i ∈ I,
αi, βj ≥ 0 ∀i ∈ I, j ∈ J,∑
j∈J

zj ≤ k,∑
i∈I

θi ≤ Γh,

zj ∈ {0, 1} ∀j ∈ J,
0 ≤ θi ≤ 1 ∀i ∈ I.

(C.1)

Note that the second term in the objective is nonlinear (product of two continuous variables) and
cannot be linearized. Thus, in Section 4.1, the subproblem is derived using the Karush–Kuhn–Tucker
conditions. Here, we use the duality theory because it is easy to explain the proof process by using
model (C.1).

When Γh = |I|, θi, ∀i ∈ I will take the value of 1, because it is a maximization problem and
αi ≥ 0,∀i ∈ I. The resulting sub and master problems are the same as those of the CFLP-R. Thus,
the CFLP-DR reduces to the CFLP-R with each customer’s demand reaching the maximal value when
Γh = |I|. Since the affine policy is optimal for the CFLP-R with k = 1, it is also optimal for the
CFLP-DR with k = 1 and Γh = |I|.
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When k = |J |, we can set zj = 1,∀j ∈ J in each iteration of the C&CG algorithm to maximize
the objective of the subproblem. Thus, in the third constraint of the master problem, zlj , ∀j ∈ J, l ∈
{1, . . . , n} will be 1. As the master problem is a minimization problem, we get yj = 0,∀j ∈ J
at optimality for the ARC model. In the AARC model, for any i ∈ I and j ∈ J , we can let
Aije = 0, Bijt = 0, Dij = 0 to construct a corresponding solution yj = 0, xij = 0 (ui can adaptive to
each scenario l). To conclude, when k = |J |, no matter the budget of demand uncertainty, both the
exact method and the affine policy identify solutions with no opened facilities for the CFLP-DR.

Appendix D The two-stage stochastic programming model

Notation. os is the occurrence probability of scenario s ∈ S. xsij and usi are the corresponding
decision variables in scenario s. hsi is the demand realization of customer i in scenario s. zsj is the
status of facility j in scenario s.

The two-stage stochastic programming model is

min
y,xs,us

∑
j∈J

fjyj +
∑
s∈S

os(
∑
i∈I

∑
j∈J

dijx
s
ij +

∑
i∈I

piu
s
i ),

s.t.
∑
j∈J

xsij + usi ≥ hsi ∀s ∈ S, i ∈ I,

∑
i∈I

xsij ≤ Cjyj(1− zsj ) ∀s ∈ S, j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,
xsij ≥ 0 ∀s ∈ S, i ∈ I, j ∈ J,
usi ≥ 0 ∀s ∈ S, i ∈ I,

where the objective minimizes the sum of facility construction cost and the expected transportation
and penalty costs.
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