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Introduction

Supply chain planning is typically done with multiple optimization systems that differ in scope
and planning horizon, from strategic sales and operations planning to near-real-time transporta-
tion systems. Despite advanced planning and execution systems, manufacturers and distributors
tend to observe service levels below their targets. There are two main reasons for this. First,
deviations such as drastic changes in demand, delays in transport, or production problems may
occur. Since some plans are generated and fixed for a certain period, perhaps a month, the
deviations may not be accounted for until the next planning period, resulting in temporary
service level failures. Second, when multiple supply chain systems need to be tightly integrated,
there is a risk of undetected mismatches or problems in their configurations that may lead to
sub-optimal plans. For more information on supply chain planning, the reader is referred to
Stadtler and Kilger (2002).

Recent advances in machine learning (ML) and the growing availability of data have initiated
a steady stream of research combining machine learning and supply chain. Nguyen et al. (2018)
recently published a survey of big-data analytics for supply chains that classifies the studies
by supply chain functions, including demand management, manufacturing, warehousing, and
general supply chain management. The authors highlight that areas such as demand forecasting
and machine maintenance are increasingly using ML. The survey also outlines some gaps in the
literature, especially in general supply chain management. In this general category there were
two descriptive, four prescriptive, and no predictive applications. The problem described in this
paper is a predictive application in the general category. Other papers in this category consider
managing sustainability in the supply chain (Papadopoulos et al. 2017) and natural disaster risk
management (Ong et al. 2015), which both focus on specific aspects of the problem. No papers
included in the survey studied the anticipation of service level failures via modeling multiple
segments of the supply chain. This may be because of the difficulty of obtaining real data,
given the complexity of supply chains and the nature of the service level failures. Apart from
this survey, a lot of papers explore supply chain risk management, which can complement our
approach. Some papers explore disruptions impact on the supply chain and how risk propagates
(Simchi-Levi et al. 2015, Garvey et al. 2015), while other papers are more focused on how to
react and mitigate its impact (Schmitt 2011, Paul et al. 2017).

In this paper, we present a system that uses ML to raise alerts when the supply chain con-
ditions, such as combinations of events, small deviations or inadequate systems configurations,
may lead to service level failures. The alerts need to anticipate issues in time for the planners
to take corrective actions but not so early that the issues would naturally be accounted for in
the next plan. The system focuses the attention of the planners on alerts that are actionable
(it is possible to avoid the failure), exclusive (the issues are not detected by other systems),
and significant (failures concern important items, so that performing the corrective action is
worthwhile). To increase confidence in the results, the tool also aims to explain alerts, by iden-
tifying their underlying causes and providing the context of potential fixes. The model and
the user interface (UI) have been developed in co-operation with Michelin, an international tire
manufacturer, which provided the business use case and the data.

In the remainder of this paper, the Problem Description section will describe why service
level failures occur in supply chains, how planners deal with them today and detail some factors
that must be accounted for in the model. In the Machine Learning Model section, we will outline
how we modeled the problem using ML. Then the section entitled User Interface will present the
UI that we implemented to navigate through the alerts while building confidence and helping
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planners with potential fixes. In the Case Study: The Michelin European Supply Chain section,
we will discuss the results and benefits of the case study we have done with Michelin. The
Appendix contains some details on the model and the data.

Problem Description

In this section, we discuss why supply chains tend to observe service level below their target, and
how planners typically handle this issue. We present how a ML system could help in addressing
the problem and the guidelines we followed to ensure that our approach would produce useful
alerts.

Service Level Failures

Supply chains can be described as a ”... network of organizations that are involved, through
upstream and downstream linkages, in the different processes and activities that produce value
in the form of products and services in the hands of the ultimate consumer” (Christopher 2005,
p.17). The flow of material will typically go through a supply chain such as shown in Figure 1.
Organizations may own all segments of their supply chains, or may outsource some sections to
reduce complexity.

Figure 1: A typical material flow in a supply chain starts at raw materials procurement and
ends when products or services are received at the ultimate consumer.

Raw Materials
Procurement Upstream Logistics Production Internal Logistics Distribution Centers Channel Logistics Ultimate Consumer 

Notes. The last link can be the end-consumer, retailers or other manufacturers for instance. Some organizations
may outsource the management of some sections of the supply chain to third parties.

Typically, the performance of the supply chain can be measured through indicators such as
service level. For instance, for a given consumer order, the service level can measure whether the
desired quantity of products were available at the distribution center (DC) in time for delivery
to the ultimate consumer requested date. A failure to meet the deadline and/or the desired
quantity of items can be cause by either an execution issue or a planning issue. By execution
issue, we mean that the plan was adequate to fulfill the orders on time, but the plan was
not executed as expected, resulting in a failure. These disruptions can be caused by delay in
shipments between plants and DCs, or machines failure for instances and are difficult to foresee
and prevent. By planning issue, we mean that the plan was inadequate in fulfilling the right
amount of items on time. These types of issues may be detected early enough to be avoided.
Planning issues are usually caused by large deviations in demand that are not accounted for in
the most recent plan, or it may be that the supply chain is already at full capacity, hence not
able to fulfill the right amount of items. Planning issues can also be the result of inadequate
systems configurations. By configurations, we refer to the systems parameters and rules that
create the supply chain plans, such as safety stock targets, demand forecasting, master plans
and such. Systems may not be adequately configured or may not have adapted throughout
time. Moreover, as typically manufacturers tend to leverage heterogeneous systems with limited
integration, either from different vendors or built in-house, the systems may not be working
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properly together. These situations may be diluted in aggregated performance metrics since
these bad configurations may affect only a subset of items or locations.

Current Process and Need for an Automatic Alerting System

In an ideal world, the planners would continuously monitor the supply chain data and adjust
the parameters when they detect situations or patterns that could lead to poor service levels.
However, in part because of the high volume of data and the complexity of supply chains, they
are usually unable to monitor the data at a granular level. Instead, they adopt a proactive
approach for only the most important items, and they resort to a corrective approach (adjusting
the parameters only once the service level has fallen significantly below the target) for the vast
majority of their products. This is reasonable because supply chains generally operate well,
and the experts’ time is costly; having the planners investigate low-risk situations would not be
profitable. Consequently, there is a need for a system that can identify problematic situations so
that the planners can focus their efforts where they are most needed. Moreover, such a system
could detect problems that would be missed by human planners. The prediction horizon should
cover part or all of the period during which the current plan is frozen. We use the term alert to
refer to situations that present risk for a given item–location combination.

Useful Alerts

Due to the high number of potential alerts, the system should focus on alerts that are useful
for the planners, which we defined as alerts that are exclusive, actionable, and significant, as
detailed below. Additionally, the system must provide explanations to increase confidence and
help to identify the failures’ fix.

By exclusive, we mean that the system should generate alerts that are not obvious or detected
by other tools. For example, the planners are usually aware of production capacity problems and
quality issues. By actionable, we mean that alerts should identify situations where the planners
can attempt to avoid the failure event. Potential actions include changing the forecast, adjusting
the safety-stock levels, and adding transportation options. The prediction horizon should be long
enough to ensure a minimal number of available actions. For example, anticipating a stock-out
for the next day when the replenishment lead time is one week is unhelpful. By significant,
we mean that alerts need to concern items and locations that are important (e.g., in terms of
volume or strategy), so that the corrective action is worth the effort and cost. Nevertheless,
alerts that are not exclusive, actionable or significant may still allow supply chain planners
to forewarn customers of delays and highlight recurrent problems that could be alleviated by
structural changes in planning processes.

The system also needs to provide explainability around the alerts for two main reasons.
First, the users need confidence in the model’s results. Second, without the right data, finding
the appropriate fix may require a study of multiple planning systems, thus reducing the time
saved by the automatic alerting system. A classical spreadsheet approach does not provide the
necessary context.

Machine Learning Model

We now discuss how we approached the problem with a classification ML model, summarizing
the task and detailing the performance measure and feature set.
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Task

We must anticipate service level failures. We use service level targets to convert service levels
into a binary classification model: will the service level be above or below this target in the
period starting a few weeks from now? These predictions can be made at the most granular
level: the item/location/period. Failures are typically less common than successes, leading
to two unbalanced classes. Appropriate performance measures for these problems are receiver
operating characteristics (ROC) curves and precision/recall curves, sometimes summarized via
the area under the curve. Since the experts’ time is costly, we choose precision/recall, which
allows us to directly answer the question: “How likely is it that this alert will actually be a
problem?” by looking at the precision metric.

Feature Engineering

Since raw data cannot be directly input into the model, supply chain conditions are encoded
into a set of features representing the different segments as represented in Figure 1. To highlight
deviations from the plan, the features generally compare the actual and planned values, as
detailed below. They include data from before the period of the prediction, including the service
level of the last few periods, and from after the period of prediction, when using projections.

First, raw materials procurement can lead to failures when the needed quantities are not
received on time, thus affecting production. Relevant features include (1) inventory on-hand vs.
production needs and (2) inventory received vs expected inventory.

Second, production problems can be good indicators of future failures since the lead time
between the plant and the DCs delays their impact, allowing us to foresee potential issues and
delays. Relevant features include (1) production plan vs. actual production; (2) inventory
on-hand compared to latest forecast; and (3) percentage of production capacity achieved.

Third, between the plant and the DC or between the DC and the ultimate consumer, logistics
problems may occur in the transportation network or the loading and unloading, delaying the
shipment of the items. Although important to understand the past failures, transportation
disruptions are less likely to predict future ones. For example, a delay may be weather-related
and likely to be resolved within the time horizon. Relevant features include (1) average logistics
delays in last period and (2) percentage of logistics capacity achieved.

Finally, forecasting deviations and stock problems at the DC may indicate that the plan is
no longer meeting the demand. Relevant features include (1) cumulative forecasts of the last few
periods compared to the customer orders, indicating over- or under-forecasting and (2) inventory
on-hand vs. safety-stock target.

Algorithm

We used gradient-boosted decision trees (GBDTs) as implemented in XGBoost (Chen and
Guestrin 2016) to solve this problem. GBDTs allow to capture non-linear effects and can also
be explainable with the help of approaches such as Shapley values.

GBDTs use machine learning techniques to build trees ensemble that performs a classification
or regression task. Each decision tree is trained on the prediction error of the preceding trees.
The first tree generally trains on the delta between the predictions and a baseline, such as
the average value of the training set. GBDT can perform well in various settings and capture
complex non-linear effects, as it is comprised of multiple simpler models (trees) that can learn
local behaviors in the data.
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One way to explain a model’s output is to identify the most important features for each
prediction. Additive feature attribution methods (Lundberg and Lee 2017) are approaches
that assign a contributing value to each feature for each data point, such that the sum of all
contributions is equal to the prediction. Through game theory, this value attribution problem
can be seen as a cooperative game, by viewing all players as the different features. The solution
to this problem are named Shapley values (Shapley 1953). For each feature, the intuition
behind those values is to compare the prediction that is obtained with and without this feature.
Unfortunately, computing Shapley values has an exponential complexity, hence approximations
must be used. These values can be approximated efficiently for decision trees using a recently
proposed method called Tree SHAP (Lundberg et al. 2018), which can be executed in pseudo-
polynomial time.

User Interface

We developed a UI to help the planners understand the alerts generated by the system. The
UI, shown in Figure 2, provides an interactive dashboard that summarizes the predictions and
highlights individual alerts. It is based on both the model output and additional data sources.
One of the most important feature of the dashboard, and the motivation for developing it,
is that it explains the alerts so that the planners can gain confidence and identify potential
corrective actions, as discussed in the subsection entitled Model Explainability. Additionally,
the dashboard allows the planners to filter the alerts based on various rules so that they can
focus on the most useful ones: see the subsection entitled Navigation and Filtering. Finally,
the UI serves managers by giving them a quick assessment of the health of the supply chain, as
detailed in the subsection entitled Supply Chain Health Check.

Model Explainability

In ML, it is increasingly recognized that results must be explainable. With the UI, we display
the contributing features of each prediction to provide an explanation for the alert and help
identify the root causes, we provide context for each alert, and finally we calibrate the model’s
output so its definition is intuitive for the users and independent of the model.

First, to provide an explanation of an alert and identify its main underlying causes, con-
tributions (Shapley values) of each feature can be summed and grouped by family, each one
referring to a different cause and their corresponding corrective actions. In the Appendix, Table
5 indicates the mapping between the features and the families (underlying causes). Because
Shapley values are additive, they can be displayed in a waterfall graph such as in Figure 3. In
the context of GBDTs, Shapley values actually sum to the difference between the prediction and
the baseline. In this example, the rightmost bar displays the overall prediction of 0.747. The
other bars illustrate the sum of the contributions for each feature family (sum of the Shapley
values by family estimated by Tree SHAP (Lundberg et al. 2018)). Contributions can be pos-
itive (in green) and decrease the failure risk or negative (red) and increase it. In classification
problems, the prediction is usually computed as log-odds ratio, hence the Shapley values are
actually log-odds contributions. So that the length (contributions) of the bars (features family)
can be linearly comparable, the graph uses a non-linear (logit) y axis.

Second, the UI provides context on the current conditions via graphs and displays of stock
levels, production plans, logistics delays, and so on. These graphs includes the data that is used
to create the features. It also displays additional data that the planners need to identify the
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Figure 2: We developed an interactive user interface which can be used to have an overview
of all alerts and to explore each prediction individually, providing context and explanations to
identify potential failure fixes.

Notes. The UI was developed using Dash by Plotly. It connects both to the model output and to additional data
sources.

A Machine-Learning-Based System for Predicting Service Level Failures in Supply Chains

6 CIRRELT-2019-28



Figure 3: This waterfall graph shows the log-odds contributions of each features family, summing
to the difference between the baseline (y intercept) and the failure risk (last bar).

Notes. In this example, the main underlying cause is a production problem. The service level in the last few weeks
and features representing the safety stock at the DC are also factors which increase the failure risk. Favorable
logistic conditions have slightly lowered it.

right corrective actions, so the users do not have to access multiple systems to get the necessary
information.

Finally, we calibrate the algorithm’s output for the UI so that its meaning is not dependent
to the model’s features and objective, but also so its interpretation by the system’s users matches
their perception of risk. Instead of directly using the model output value as the quantification
of an alert, we use the precision value of the validation set associated with each output value.
We refer to the associated look-up precision as the failure risk. This allows us to compare failure
risks from different models and also allows the user to refer to this value as a probability of
the model being right, assuming that the new data comes from the same distribution as the
validation set.

Navigation and Filtering

Alerts can be filtered out in the UI. We allow planners to provide their own filters for each
item/location/period combination. Giving planners the ownership of the filters ensures that the
alerts are useful, relevant, and adapted to their supply chain dynamics context. Typical filters
include: (1) problematic plants and DCs that are already known to the planners (and so not
exclusive to this system), (2) logistics problems causing delays that cannot be avoided (these
alerts are not actionable), and (3) low-volume tires and discontinued products (these alerts are
not significant). In the UI, it is also possible to filter alerts by underlying cause, to easily deal
at the same time with all the situations which can be fixed by the same corrective action.
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Supply Chain Health Check

Since the model generates alerts at a granular level, it is possible to group them to gain a quick
overview of the supply chain health. In Figure 2, the heatmap in the upper part of the UI
displays the alerts organized by item, DC, and plant. The x axis represents the items, grouped
by the corresponding plants. The y axis represents the DCs, grouped by the corresponding
regions. The color change from green to red represents the failure risk. By glancing at the
heatmap, managers can quickly identify if the alerts primarily affect certain items, plants, DCs,
or regions. It is also the entry point for exploring each alert in more detail.

Case Study: The Michelin European Supply Chain

In this section, we discuss how we implemented and tested our ML model and the UI in the
context of Michelin’s supply chain, specifically the store-and-sell channel. We describe the
performance of the model and the benefits that Michelin observed with our approach.

Michelin Context

Michelin is an international manufacturer that produces and sells tires for a vast range of vehicles,
from cars and motorcycles to tractors and aircraft. Michelin produces roughly 200M tires per
year and has a commercial presence in 170 countries, reaching 13.7% of the global tire market in
2014. In this study, we considered the car tires segment of the Michelin supply chain. For these
products, Michelin distinguishes two channels: one for orders placed well in advance (typically
large quantities, for car manufacturers or large retailers) and one for orders placed only a few
days ahead (typically for local mechanics), called store-and-sell. The latter represents a challenge
from a supply perspective since there is little time to plan and potentially a high variability in
the demand. We focused on this channel for this case study. We used a prediction horizon of 14
days and a period of a week; meaning we aimed to predict failures for the week starting in 14
days.

Since data gathering and validation is complex and this study is the first, to our knowledge, to
use ML to anticipate failures, it was important to limit the data effort and the complexity of the
model. We therefore focused on the supply chain segments that were believed to have the most
impact on the customer service level. In particular, we excluded raw materials procurement and
upstream logistics. Also, for simplicity, we measured the service level at the DC and excluded
the channels logistics (i.e., the transport between the DC and the retailer), since this segment
usually reflects execution issues more than planning issues. In a nutshell, we considered all
operations between the plant and the DCs, indicated in the rectangle in Figure 4.

Figure 4: The rectangular identifies the supply chain segments that were included in the model.

Raw Materials
Procurement Upstream Logistics Production Internal Logistics Distribution Centers Channel Logistics Retailers 

Note. In this visualisation, the ultimate consumer has been identified as retailers to reflect the store-and-sell
channel.

For the considered scope, the lack of data remained a challenge. It is not yet standard
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practice, to our knowledge, to archive all of the supply chain data at the finest granularity. For
example, at the beginning of our case study, the metrics Available To Promise and Forecast at
the item/DC level were not archived by Michelin. Since ML models are trained with past data,
this led us to discard some data that we believed could have been useful. This indicates that
archiving must become the default policy for supply chain data before ML can significantly enter
this space. In the Appendix can be found the complete set of features that we used.

Model Performance

The project was carried out in two phases. In the first, which lasted seven months, we performed
the data gathering and exploration and then developed the model, by focusing on about a
hundred 17′′ summer tires that had been identified by Michelin as good representatives of the
general situation in their supply chain. In the second phase, we performed live tests with the
planners on 10 weeks and developed the UI that explains the alerts. We also extended the
number of tires in scope to the complete range of Michelin car tires in Europe, about 4000
items, and tested that with the planners for an additional 6 weeks.

As noted above, the first phase focused on 17′′ summer tires. The more than 43k data points
covered a period of 14 months and described the supply chain conditions of 95 items, produced
at 10 plants (each type of tire was produced in one plant at a time) and stored in 16 DCs. These
orders were placed from over 23k customers. We used the first twelve months as the training
set and the remaining two months as the validation set. Figure 5 shows the performance of the
model, with the x axis representing the recall and the y axis the precision. The mean service
level is around 87.5%, so a random classifier would correspond to a horizontal line at y = 0.125,
as shown with the horizontal white doted line. Our curves are significantly above this, which
indicates the predictive value of the proposed model. The optimal hyper-parameters can be
found in the Appendix.

During the second phase of the project, we decided to explore how the system would perform
with more tires. We did not have enough historical data to do a full retraining on all the new
tires, so we applied the model trained on the 17′′ tires. This test included most of the car tires
sold by Michelin in Europe (around 4k items), ranging from 13′′ to 22′′ and beyond, with 11
months of data. The dataset contains over 500k points, approximately 15 times more than the
number in the 17′′ training set. Figure 6 shows that the performance of the 17′′ model on the
full range of tires is similar to its performance for the 17′′ tires, thus the model is generalizing
well.

User Adoption and Useful Alerts

The dynamic tests with the planners in the second phase of the project were crucial for developing
a useful system. In total, we met with the planners on 16 weeks (10 weeks on the Summer 17”
Tires scope and 6 weeks on the full range scope). We processed the new weekly generated alerts
and improved the UI in an iterative way based on their feedback. We added new graphs, to reduce
the users’ dependence on other systems to validate the alerts and identify fixes. We also provided
better explanations of the alerts, via the graph shown in Figure 3, which was particularly well
received. These iterative improvements in the UI empowered the users and helped them to
understand and handle the alerts. The users also added filters to hide not exclusive and not
actionable alerts, resulting in predictions that were more useful. Figure 7 assesses the model’s
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Figure 5: Precision-recall curves for training and validation on 17” Summer Tires.

Notes. The gray area represents the training performance on the first 12 months of data for 17” summer tires.
The blue area is the validation performance on the following 2 months of data for the same tires. The horizontal
dotted line displays the mean service level in the dataset.

Figure 6: Precision-recall curves on a test set containing the full range of tires.

Notes. The blue area is the validation set as shown on Figure 5. The yellow area displays the performance on
all sizes of tires (around 4k items for 11 months of data). The performance is similar, indicating that the model
generalize well to new items.

performance on the subset of these useful alerts. The performance is slightly lower than that for
all the alerts, and in particular the system does not reach a high precision level. This is because
the users have filtered out easy-to-find problems captured by other systems, i.e. not exclusive
alerts. Additional filters were also added to classify alerts by significance, identifying big runner,
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medium runner and long tail products.

Figure 7: Precision-recall curve on a new test set containing only exclusive and actionable alerts.

Notes. The blue area represents the validation set with 17” tires as shown in Figure 5 and 6. The green area
displays the performance on a new test set of 17” summer tires, filtered down to the alerts which were exclusive
and actionable only. Alerts concerning tires of all significance were included (big runners, medium runners and
long tail products).

Capturing Not Adequate System Configurations

Looking at alerts generated at the finest granularity allowed the users to identify recurrent issues
that were diluted in the high-level metrics. In the first weeks of test, the system’s alerts led
to some structural changes in Michelin’s processes, identifying systems being either wrongly
configured or no more adapted to the current supply chain dynamics. These initial changes had
a positive impact beyond the tires in the scope of this project, as they fixed the problems at
their source.

First, through multiple alerts, Michelin detected a problem in the computation of the safety
stock for their small-volume tires, affecting around 25k units on the week where the issue was
discovered. To temporarily fix the problem, the planners manually changed the safety-stock
values of the item–DC combinations for which service-level failures were predicted. After a few
weeks, it was detected that the overwriting process was faulty as well, so the safety-stock changes
were not being taken into account. A month after the discovery of these issues, the amount of
items affected by the problem was reduced to around 2.8k tires, reducing the volume of the
problem by 89%. Fixing these two issues was one of the first and most significant benefit of the
system.

Second, the system detected multiple situations where the underlying cause was a forecasting
issue, highlighting that the forecasting algorithm was not sufficiently dynamic. The system
identified individual cases of under-forecasting and raised awareness of these issues, motivating
further work at Michelin on forecast improvements.
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Third, the system detected multiple situations where an item that was to be discontinued
was phased out too aggressively given the customer demand. The planners reached out to the
appropriate team to address this issue.

Corrective Actions to Address Deviations

Once the most important structural changes were put in place, planners used the alerts on a
weekly basis to identify more fine-grained issues on specific items and DCs, such as deviations in
the demand, logistics, and production, and intervened to avoid the failures. Of the 16 weeks of
tests, the last six weeks (on the full scope of tires) were used extensively to capture the impact at
scale of corrective actions on the service level. At first, planners took manual corrective actions
which did not affect a big proportion of the tires. However, during the last weeks of the live
tests, planners implemented an automatic process to take corrective actions based on the alert’s
underlying cause. In total, over the course of three weeks, planners were able to act on 23% of
the store-and-sell volume. For all tires impacted by corrective actions, they observed a gain of
10 points in their service level (measured out of 100) after 3 weeks. In Table 1 is detailed the
results by volume of tires. The total is weighted by the volume of tires in each category.

Table 1: Changes in service level observed over 3 weeks of corrective actions.

Changes in Service Level (/100) Corrective Actions No Action

Big Runners +4 -4
Medium Runners +14 +3
Long Tail +14 +5

Total (weighted by volume) +10 0

Notes. The values represent the changes in service level which are measured out of 100. Service level changes
were measured before and after the prediction horizon, hence three weeks apart. In total, tires on which an action
was taken as a result of an alert gained in average 10 points of service level over the three weeks of test. Tires on
which no action were taken have not gained any points.

Meanwhile, the tires which plans were revised also faced a small decrease in their demand
(2%), as compared to tires on which no actions were taken (10%), as shown in Table 2. This
indicates that the gains in service levels were not only due to the negative trend in the demand.

Table 2: Changes in demand observed over 3 weeks of corrective actions.

Changes in Demand (%) Corrective Actions No Action

Big Runners 0% -3%
Medium Runners -7% -10%
Long Tail -2% -21%

Total (weighted by volume) -2% -10%

Notes. The tests were done during weeks where the demand of tires tend to naturally decrease. However, for tires
on which actions were taken, the demand only reduced of 2%, as opposed to other tires which reduced of 10%.
This shows that the gains in service level shown in Table 1 are not only due to the negative trend in the demand.

A gain in service level can be achieved at the expense of an increase in the total inventory
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and storage cost. However, for tires on which actions were taken, the days of coverage (stock
compared to demand) increased of only 2 days, while having a decrease of 2% in their demand.
This was considered as stock and cost efficient for Michelin. Details can be find in Table 3.

Table 3: Changes in days of coverage (Stock/Demand) observed over 3 weeks of corrective
actions.

Changes in Days of Coverage (Days) Corrective Actions No Action

Big Runners +1 +6
Medium Runners +2 +9
Long Tail +4 +15

Total (weighted by volume) +2 +8

Notes. For tires on which actions were taken, the coverage of the stock as compared to the demand increased of 2
days only, where, as comparison, tires on which no action were taken, it increased of 8 days. This could be due in
part to the decrease of the demand. However, the increase of 2 days of coverage for a gain of 10 points in service
level was very reasonable and cost efficient for Michelin.

Improving the service level also led to lowering the orders cancellation rate. These results
confirmed the benefits of the system, and resulted in increased sales and revenue over the course
of the dynamic tests. By identifying situations at risk, planners were able to take corrective
actions on risky situations on which they had no visibility before. The system also had good
results with big runners, a category in which we suspected gains would be minimal due to the
existing manual tracking done by planners on these items.

Due to the new capabilities and disruptive changes that the ML system brings, Michelin
needs to adapt its current processes to allow planners to intervene more easily on the supply
chain. Today, the available corrective actions for planners are still limited, the main one being
adjusting the safety stock at the DC. For example, because Michelin’s forecasting process is not
done at the most granular level, it is yet impossible for planners to change the forecast of a
specific instance. Adjusting safety stock is the most practical lever planners have to re-allocate
tires or increase production. Adding new corrective actions could allow the planners to more
readily react to deviations and other issues.

Managerial Insights

The tool also had other benefits. Supply chain management can be complex, and the planners are
typically organized by function: safety-stock specialists, forecasting experts, logistic planners,
and so on. This makes it difficult to gain a product or customer view of the supply chain.
Our system provided an opportunity for different specialists to collaborate and discuss specific
aspects of the supply chain mechanics. These discussions helped the planners to broaden their
understanding of the supply chain. Our experiments suggest that the tool could also help
with the training of new employees, since it gives just the right level of information: it is not
necessary to understand in detail all the individual data sources. Lastly, this initiative also
changed Michelin’s perspective on the importance of archiving data at the most granular level.
During this project, they implemented a Data Lake in response to the lack of history in some
data sources which caused some issues and challenges. This new mindset will surely open the
door to numerous ML projects in the years to come.
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Conclusion

We have developed a system that uses ML to predict service level failures in a supply chain.
Early on in this project, it has been clear that a good performing algorithm is usually not
sufficient to ensure users adoption. It needs to be paired with a system that builds confidence
and understanding in the model. Our results and the adoption by the planners show the potential
of ML systems to complement existing systems for supply chain management. We believe that
this type of approach can be applied to more complex supply networks and to other areas such
as production planning.

As this system gets used in production over an extensive period of time, it will probably trend
towards identifying less structural changes for more fine-grained issues. A natural extension
would be to automatically perform corrective actions based on the predicted failures, so that
the supply chain becomes a self-learning entity, dealing with deviations in autopilot mode. As
the availability of data improves, such initiatives will lead the way to a new era in supply chain
management.
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Appendix

Data Format

For each m historical instances, a set of n features (fn) is computed at the item, DC and
week level. The complete list of features can be found in the next section, Features Set. To
indicate failures, aggregated service levels are computed with the mean of the corresponding
orders weighted according to the product quantities. These aggregated service levels are then
compared to the global service level target and converted into a binary variable, y. If the service
level is below the target, it is considered as a failure (1), else a 0. In Table 4 is shown the data
format. Note that the product, location and week columns were not used explicitly as features,
hence the model can be used with new location and products. The columns in grey were hence
dropped before running the model.

Table 4: Data format used in the model.

Product Location Week f1 f2 ... fn Failure

x1 AXP 9272 W1 y1 1
x2 BFR 875 W1 y2 0
x3 AXP 9272 W2 y3 0
... ... ... ... ... ...
xm GFT 7654 W700 ym 1

Note. Grey columns were dropped out of the model, so the system can produce alerts for new products and
locations.
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Features Set

Table 5 details the complete list of features used in the final model. Each feature type corresponds
to either an item, a DC, a plant or a combination of those, as shown in column Aggregation.
Each feature type can also be computed for different time steps, from the 3 weeks preceding the
instance to the 3 weeks after (for certain projections), as detailed in column Time. The column
Nb indicates the number of features as a result of the different time steps for each feature type.
Lastly, the column Underlying Cause shows the mapping between feature types and the features
family. These mappings are used in particular to produce the cumulative contributions graph
in Figure 3, as well as to categorize the alerts by cause in the UI to accelerate their resolution.
In total, 35 features were used.

Table 5: Features set used in the final model, according to data availability.

Feature Types Aggregation Time Nb Underlying Cause

(1) Production Plan vs Actual Production Item-Plant t0 1 Production
(2) Inventory and Production Plan vs Needs Item-Plant t0:t+2 9 Production
(3) Inventory vs Safety Stock Item-Plant t-2:t+2 5 Production
(4) Average logistic delays Item-Plant-DC t-3:t0 4 Logistic
(5) Total Stock (all items) vs Capacity DC t0 1 Logistic
(6) Inventory vs Safety Stock Item-DC t-3:t0 4 Safety Stock at DC
(7) Projected Safety Stock vs current Safety Stock Item-DC t1:t3 3 Safety Stock at DC
(8) Past Service Level (Volume tires) Item-DC t-3:t0 4 Unknown
(9) Past Service Level (Count orders) Item-DC t-3:t0 4 Unknown

Note. For feature type (2), 3 different needs projections were used for each time step, resulting in 3x3 features in
total.

Algorithm

The optimal hyperparameters for the GBDT using XGBoost were the following: n estimators=75,
learning rate=0.1 and max depth=5. The other hyperparameters were kept at their default
value.
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