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Abstract. This paper introduces the Vehicle Routing and Truck Driver Scheduling Problem 

with Idling Options (VRTDSP-IO), an extension of the long-haul vehicle routing and truck 

driver scheduling problem with a more comprehensive objective function that accounts for 

routing cost, driver cost and idling cost, i.e., the cost associated with energy supply used to 

maintain drivers’ comfort when the vehicle is not moving. For the idling cost, we consider 

Electrified Parking Space (EPS) and Auxiliary Power Unit (APU) usage costs. The use of 

EPSs or APUs avoids keeping the vehicle engine running while the vehicle is not moving. 

We develop a multi-start matheuristic algorithm that combines adaptive large neighborhood 

search and mixed integer linear programming. We present extensive computational results 

on instances derived from the Solomon test-bed. 
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1 Introduction
In long-haul freight transportation, a fleet of vehicles must visit a set of customers over several
days, quite often for an entire week. Because customer locations normally close at night, these
will typically have multiple time windows over the planning horizon. In addition, the drivers
are subject to Hour of Service (HOS) regulations which specify minimum break or rest durations
in relation to the driving or to the on-duty times. There exists a rich literature on the combined
routing and scheduling problem encountered in long-haul freight transportation. An important
yet less studied issue arising in this context is related to vehicle idling. When drivers take breaks or
rests or when they service customers, they often leave their engine running in order to keep their
vehicle at a comfortable temperature or to benefit from amenities such as television. According to
Rahman et al. (2013), long-haul trucks idle between six and 16 hours per day. This practice is not
only expensive, but it damages the vehicles and is highly harmful to the environment. In a recent
study, Koç et al. (2016b) have shown that Electric Parking Spaces (EPSs) and Auxiliary Power Units
(APUs) constitute interesting idling options that can be used instead of engine idling. EPSs allow
vehicles to be plugged into an electrical power source, whereas APUs are fuel-based pieces of
equipment added to the vehicle, that generate sufficient power to maintain an adequate comfort
level in the vehicle, but consumes far less fuel than engine idling. Given a vehicle route and
considering the fixed and variable costs of EPSs and APUs, Koç et al. (2016b) have investigated
the optimal use of idling options. The aim of this paper is to develop a multi-start matheuristic to
solve the combined routing, scheduling and idling option selection problem. Before we proceed
with our study, we briefly review the literature on each of these three components.

1.1 Literature review
The long-haul Truck Driver Scheduling Problem (TDSP) under the HOS regulations, which does
not consider routing decisions, has been studied by several researchers in recent years. Archetti
and Savelsbergh (2009) developed an algorithm to solve the problem of sequencing full truckload
requests that have a dispatch window at the origin. The algorithm generates a feasible sched-
ule in polynomial time if one exists. Goel (2012a) later studied a variant of the TDSP with the
aim of minimizing total duration under the United States (US) and European Union (EU) regu-
lations. The author proposed a mixed integer linear programming formulation and a dynamic
programming algorithm. Goel and Kok (2012) developed an algorithm to solve the similar prob-
lem of Goel (2012a) in which each customer location must be visited within one of several time
windows. The complexity of the algorithm is similar to that of the single window case. Goel and
Rousseau (2012) and Goel (2012b) studied the TDSP under the Canadian HOS regulations. Goel
and Rousseau (2012) proposed an exact algorithm and two heuristics, and Goel (2012b) developed
an iterative dynamic programming algorithm. Goel (2012c) and Goel et al. (2012) considered the
TDSP under the Australian HOS regulations. Goel (2012c) presented a mixed integer program-
ming formulation and valid inequalities, while Goel et al. (2012) developed four heuristics and an
exact method.
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The joint routing and scheduling problem under the HOS regulations, called the Vehicle Routing
and Truck Driver Scheduling Problem (VRTDSP), has been considered by several authors. Xu et al.
(2003) were the first to study this combined problem. Goel (2009) considered the EU regulations.
For the same regulations, Kok et al. (2010) developed a hybrid method that integrates a basic break
scheduling procedure within a dynamic programming framework. Prescott-Gagnon et al. (2010)
proposed a large neighborhood search algorithm based on a column generation heuristic. Ran-
court et al. (2013) put forward a hybrid tabu search algorithm which includes several scheduling
procedures to solve the VRTDSP under the US regulations with a heterogeneous fleet of vehi-
cles. Goel and Vidal (2014) developed a unified genetic algorithm for the EU, US, Canadian and
Australian HOS regulations. Goel and Irnich (2016) later developed a branch-and-price algorithm
which is the first exact method for the VRTDSP.

More recently, Koç et al. (2016b) introduced, modeled and solved exactly the Truck Driver Schedul-
ing Problem with Idling Options (TDSP-IO) within a long-haul transportation context under the
US HOS regulations. The problem has a more comprehensive objective function than that of the
TDSP since it accounts for the cost of fuel consumption along with the costs of drivers and idling
options. In addition, unlike the papers just reviewed, it is no longer assumed that the trucks can
stop anywhere along their route. Instead, the rests and breaks imposed by the HOS regulations
must be taken at locations belonging to a prespecified set. By performing extensive sensitivity
analyses, the authors quantified the advantages of using EPSs and APUs relative to engine idling,
both in terms of economic and environmental benefits. One of their main conclusions is that it is
worth investing in both EPS and APU equipment.

1.2 Scientific contributions and structure of the paper
This paper makes two main scientific contributions. First, it introduces the Vehicle Routing and
Truck Driver Scheduling Problem with Idling Options (VRTDSP-IO) as an extension of the VRTDSP
and of the TDSP-IO, using a comprehensive objective function that minimizes routing costs, driver
costs, as well as EPS and APU usage costs. The second contribution is the development of a multi-
start matheuristic capable of efficiently solving the problem. The algorithm successfully combines
adaptive large neighborhood search (ALNS) with an exact scheduling and idling optimization
component.

The remainder of this paper is structured as follows. Section 2 provides some technical back-
ground for the problem, which is then formally defined and modeled in Section 3. Section 4 con-
tains a description of the matheuristic. Computational results are presented in Section 5, followed
by conclusions in Section 6.

2 Technical background
We first briefly describe the two idling alternatives (EPS and APU) that have been shown to be
preferable to engine idling (Koç et al., 2016b), followed by the US HOS regulations and their pa-
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rameters.

2.1 Idling options
Following the conclusions of Koç et al. (2016b), we assume in this study that each vehicle is
equipped with EPS and APU apparatus, so that these two options are effectively available and
their fixed costs can be disregarded.

2.1.1 Electrified Parking Space (EPS) idling
EPSs provide power for heating, ventilation, air conditioning and other amenities without idling
the engine and allow truck drivers to switch off their engines. The US National Renewable En-
ergy Laboratory (NREL) (NREL, 2016) publicly shares EPS data of current EPS owner companies
(EnviroDock, 2016; Shorepower, 2016), in order to inform heavy-duty truck companies and truck
drivers about the EPS locations (DOE, 2016a). Trucks making use of an EPS require an on-board
equipment which includes an inverter to convert 120-volt power, electrical equipment, and hard-
ware, so that they can plug into an off-board outlet. The trucking company owns and maintains
the on-board equipment. The EPS equipment fixed cost is around $2500 and its variable cost is
around $1.00/h (Argonne National Laboratory, 2015).

2.1.2 Auxiliary Power Unit (APU) idling
Drivers can use an APU, which is powered by diesel and provides on-board power for climate
control and electrical devices. Similar to engine idling an APU can be used at Interstate Rest Areas
(IRAs) and at customer locations (Carrier, 2016). Many IRAs are available on US highways (US
Rest Areas, 2016). APUs have an acquisition cost of around $10,000 and a variable cost of around
$0.63/h (Argonne National Laboratory, 2015).

2.2 The United States Hours of Service regulations
In the US, the HOS regulations (FMCSA, 2014) distinguish between on-duty time and off-duty time.
On-duty time means that a truck driver is working. It includes driving time, which is the time spent
at the driving controls of a vehicle in operation, as well as the time needed for other activities such
as waiting for service, supervising, loading and unloading, and handling paperwork. Off-duty
time consists of break periods and rest periods during which truck drivers have no obligation to
perform any work. Table 1 summarizes the parameter values of the regulations.

3 Formal problem definition and mathematical formulations
Given a homogeneous fleet of vehicles, the VRTDSP-IO aims to determine a set of routes, and
their corresponding schedules, which include the choice of idling options. The solution to the
problem ensures that each customer demand is satisfied within one of its time windows, all ve-
hicles start and end their routes at the depot, the total load assigned to a vehicle does not exceed
its capacity, and the HOS regulations are satisfied. For given routes, the problem then consists
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Table 1: Parameters imposed by the US HOS regulations.
Notation Value (h) Description
tduty 60 The maximal cumulative on-duty hours during seven consecutive days.
tdriving 11 The maximal cumulative driving hours between two rest periods.
trest 14 The maximal cumulative on-duty hours since the end of the last rest period.
tbreak 8 The maximal cumulative on-duty hours since the end of the last rest or

break period.
tminrest 10 The minimal duration of a rest period to regain driving time.
tminbreak 0.5 The minimal duration of a break period to regain driving time.

of deciding when the truck driver will drive, serve a customer, rest or break at an IRA or at an
EPS. The main objective of the VRTDSP-IO is to minimize the total cost which is made up of three
main components: routing cost, driver cost and idling cost. The routing cost is proportional to the
traveled distance and corresponds to the cost of fuel while the vehicle is moving. The driver cost
corresponds to the driver’s wages while on-duty; since the driving and service times on a given
route are constant, the only part of the driver cost that can be optimized is related to the waiting
time before service at customer locations. The idling cost is associated with EPS and APU usage
while the driver is off-duty (and not paid) and the vehicle is not moving.

The VRTDSP-IO is defined on a complete directed graph G = (N ,A), where N is the set of nodes
and A = {(i, j) : i, j ∈ N , i 6= j} is the set of arcs. The set of nodes is partitioned into N =

{N0,Nc}, where N0 = {0, n + 1} contains two copies of the depot at which each route starts
and ends, and Nc = {1, . . . , n} is the set of customers. In addition, we define two other set of
nodes: the set Ne of EPSs and the set Na of IRAs appearing on the arcs of A. The nodes of Ne
and Na appearing on different arcs are not directly connected to each other. Each arc (i, j) ∈ A
has a nonnegative distance cij . The driving time in hours from node i to node j is denoted by
dij . Let Q denote the capacity of the vehicle. Each customer i ∈ Nc has a positive demand qi, a
service time si, and each node ofN has an ordered set Ti of time windows, all expressed in hours.
The service at a customer must begin within one of its time windows, and must be completed
without interruption. The τ th time window (τ ∈ Ti) at node i ∈ N is denoted by the interval
[tminiτ , tmaxiτ ]. If a vehicle arrives before the opening of the first available time window, it has to
wait. It must also arrive before the closing of the selected time window because otherwise it will
have to wait until the opening of the next available time window. The time horizon is denoted by
thorizon, typically 168 h. We assume that the two copies of depot have very wide time windows
[tmini1 = 0, tmaxi1 = thorizon].

3.1 Set partitioning model
We formulate the VRTDSP-IO as a Set Partitioning Problem (SPP) on G. Let R be the set of all
feasible routes. Let θr be a binary variable equal to 1 if route r is selected, and equal to 0 otherwise.
Let Cr be the total cost of route r. Let air be a binary parameter equal to 1 if a customer i is on
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route r ∈ R, and equal to 0 otherwise. The SPP is then:

Minimize
∑
r∈R

Crθr (1)

subject to∑
r∈R

airθr = 1 i ∈ Nc (2)

θr ∈ {0, 1} r ∈ R. (3)

The objective function (1) computes the total cost of the solution. Constraints (2) guarantee that
each customer is assigned to exactly one route. Constraints (3) define the domain of the decision
variables. Next, we detail the computation of the optimal driver and idling costs on a given route
r.

3.2 Computation of the optimal driver and idling costs of a given route
The optimal driver and idling cost on a given route r are computed through the exact solution of a
TDSP-IO on a subgraph Gr = (N r,Ar) of G, whereN r and Ar are restricted to the nodes and arcs
of route r, and N r

c , N r
e and N r

a are defined similarly. Our model is adapted from that of Koç et al.
(2016b). We assume that a driver is paid for on-duty time only, the truck driver has been off-duty
and off-the-road for at least 34 consecutive hours before departure from the starting depot (Koç et
al., 2016b; Rancourt et al., 2013), each trip has a maximum duration of seven days, and each truck
has APU and EPS equipments. The hourly wage of truck drivers is denoted by fDRI , the hourly
cost of using an EPS is fEPS , and the hourly cost of using an APU is fAPU .

We define the following binary variables. Let zrest,EPSi be equal to 1 if a rest is taken at EPS location
i ∈ N r

e , and to 0 otherwise. Let zbreak,EPSi be equal to 1 if a break is taken at EPS location i ∈ N r
e ,

and to 0 otherwise. Let zrest,IRAi be equal to 1 if a rest is taken at IRA location i ∈ N r
a , and to 0

otherwise. Let zbreak,IRAi be equal to 1 if a break is taken at IRA location i ∈ N r
a , and to 0 otherwise.

Let yi = (yiτ )τ∈Ti : yiτ be equal to 1 if the τ th time window of location i ∈ N r is used, and to 0
otherwise. The following decision variables are defined. Let urest,EPSi be the duration of a rest
period at EPS location i ∈ N r

e . Let ubreak,EPSi be the duration of a break period at EPS location
i ∈ N r

e . Let urest,IRAi be the duration of a rest period at IRA location i ∈ N r
a . Let ubreak,IRAi be

the duration of a break period at IRA location i ∈ N r
a . Let xarrivali be the arrival time at location

i ∈ N r. Let xstarti be the start time of the service, rest or break at location i ∈ N r. Let xendi be the
end time of the service, rest or break at location i ∈ N r. Let qEPS be the total duration of total EPS
idling. Let qAPU be the total duration of total APU idling. The mixed integer linear programming

Long-Haul Vehicle Routing and Scheduling with Idling Options

CIRRELT-2016-47 5



formulation of the TDSP-IO is then:

Minimize fDRI
(
xendn+1 − xstart0 −

∑
i∈N r

e

(
urest,EPSi + ubreak,EPSi

)
−
∑
i∈N r

a

(
urest,IRAi + ubreak,IRAi

))
(4)

+ fEPSqEPS (5)

+ fAPUqAPU (6)

subject to

xarrivali = xstarti = xendi i ∈ N0 (7)

xarrivali ≤ xstarti i ∈ N r
c (8)

xstarti + si = xendi i ∈ N r
c (9)

xarrivali = xstarti i ∈ N r
e ∪N r

a (10)

xstarti + urest,EPSi + ubreak,EPSi = xendi i ∈ N r
e (11)

xstarti + urest,IRAi + ubreak,IRAi = xendi i ∈ N r
a (12)

xendi + di,i+1 = xarrivali+1 i ∈ N r (13)∑
τ∈Ti

yiτ = 1 i ∈ N r (14)

∑
τ∈Ti

yiτ t
min
iτ ≤ xstarti i ∈ N r (15)

xstarti ≤
∑
τ∈Ti

yiτ t
max
iτ i ∈ N r (16)

xstartk − xendi ≤ trest +M

( k∑
j=i,j∈N r

e

zrest,EPSj +

k∑
j=i,j∈N r

a

zrest,IRAj

)
i, k ∈ N r, i < k (17)

xstartk − xendi ≤ tbreak +M

( k∑
j=i,j∈N r

e

(
zrest,EPSj + zbreak,EPSj

)
+

k∑
j=i,j∈N r

a

(
zrest,IRAj + zbreak,IRAj

))
i, k ∈ N r, i < k (18)

xendjn+1 −
∑
i∈N r

e

(
urest,EPSi + ubreak,EPSi

)
−

∑
i∈N r

a

(
urest,IRAi + ubreak,IRAi

)
≤ tduty (19)

k−1∑
j=i

dj,j+1 ≤ tdriving +M

( k−1∑
j=i+1,j∈N r

s

zrest,EPSj +
k−1∑

j=i+1,j∈N r
a

zrest,IRAj

)
i, k ∈ N r, i < k (20)
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zrest,EPSi + zbreak,EPSi ≤ 1 i ∈ N r
e (21)

zrest,IRAi + zbreak,IRAi ≤ 1 i ∈ N r
a (22)

urest,EPSi ≤Mzrest,EPSi i ∈ N r
e (23)

urest,IRAi ≤Mzrest,IRAi i ∈ N r
a (24)

ubreak,EPSi ≤Mzbreak,EPSi i ∈ N r
e (25)

ubreak,IRAi ≤Mzbreak,IRAi i ∈ N r
a (26)

tminrestzrest,EPSi ≤ urest,EPSi i ∈ N r
e (27)

tminrestzrest,IRAi ≤ urest,IRAi i ∈ N r
a (28)

tminbreakzbreak,EPSi ≤ ubreak,EPSi i ∈ N r
e (29)

tminbreakzbreak,IRAi ≤ ubreak,IRAi i ∈ N r
a (30)

qAPU =
∑
i∈N r

c

(
xendi − xarrivali

)
+
∑
i∈N r

a

(
urest,IRAi + ubreak,IRAi

)
(31)

qEPS =
∑
i∈N r

e

(
urest,EPSi + ubreak,EPSi

)
(32)

xarrivali ∈ [0, thorizon], xstarti ∈ [0, thorizon], xendi ∈ [0, thorizon] i ∈ N r (33)

qEPS ≥ 0, qAPU ≥ 0 (34)

zrest,EPSi ∈ {0, 1}, zbreak,EPSi ∈ {0, 1} i ∈ N r
e (35)

zrest,IRAi ∈ {0, 1}, zbreak,IRAi ∈ {0, 1} i ∈ N r
a (36)

urest,EPSi ≥ 0, ubreak,EPSi ≥ 0 i ∈ N r
e (37)

urest,IRAi ≥ 0, ubreak,IRAi ≥ 0 i ∈ N r
a (38)

yi ∈ {0, 1} i ∈ N r. (39)

The first term (4) of the objective function computes the driver cost during on-duty time. Terms (5)
and (6) compute the EPS and APU idling costs, respectively. Constraints (7) guarantee that the de-
parture time from the depot is equal to the start time and to the arrival time. Constraints (8) ensure
that the service start time at customer locations is at least equal to the arrival time. Constraints (9)
imply that the departure time at customer locations is equal to the sum of the start and service
times. Constraints (10) guarantee that the start time at an EPS or at an IRA location is equal to the
arrival time. Constraints (11) and (12) state that the departure time at an EPS or at an IRA location
is equal to the sum of start, rest and break times. Constraints (13) imply that the arrival time at a
location is equal to the end time of the previous location, plus the driving time. Constraints (14)
guarantee that exactly one of the time windows is used at each location. Constraints (15) and (16)
enforce the time windows restrictions. Constraints (17) and (18) ensure that the time elapsed since
the end of the last rest and break period must lie within the regulation parameters, where M is
a large number. Constraints (19) imply that the accumulated amount of on-duty hours cannot
exceed the seven-day on-duty limit. Constraints (20) guarantee that the total driving hours be-
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tween two rest periods does not exceed the daily driving limit tdriving. Constraints (21) state that
at each EPS location at most one rest or break period is scheduled. Constraints (22) impose that at
each IRA location at most one rest or break period is scheduled. Constraints (23)–(26) are linking
constraints. Constraints (27)–(30) ensure that rest or break periods satisfy the HOS regulations.
Constraints (31)–(32) are APU and EPS idling time linking constraints. Finally, constraints (33)–
(39) define the domains of the decision variables.

4 Multi-start matheuristic algorithm
Because of the size of the VRTDSP-IO and of the difficulty of computing the Cr values, we solve
the problem by means of a multi-start matheuristic algorithm. Matheuristics are often used in
vehicle routing (see Archetti and Speranza (2014) for a survey, and Erdoğan et al. (2013) for a re-
cent application). More precisely, the routing part in the SPP is solved heuristically by the ALNS
mechanism which generates a set of vehicle routes satisfying (2) and (3), as well as the capacity
and tduty constraints imposed by the HOS regulations, without yet considering the time windows.
The ALNS framework proposed by Ropke and Pisinger (2006a,b) is based on a removal and inser-
tion iterative procedure. Candidate solutions are accepted or rejected according to a probabilistic
simulated annealing criterion. The matheuristic integrates the exact solution of the TDSP-IO (Sec-
tion 3.2) within the local search. Specifically, every ∆ iterations of the algorithm, where ∆ is a
user-defined parameter, the algorithm identifies a solution having the smallest routing cost in the
last ∆ iterations. It then computes the total cost of this solution by exactly solving the TDSP-IO
for each route r, while satisfying all constraints of the problem, including the time windows.

As in Bräysy et al. (2004) and Palomo-Martı́nez et al. (2016), we have implemented a multi-start
scheme governed by three parameters α, β and γ. The algorithm first generates α initial solutions
ωinitial (Algorithm 1), and applies the matheuristic (Algorithm 2) to each of them for κ̄ = β iter-
ations. Taking as ωinitial the best feasible solution ωbest thus generated, the matheuristic is then
applied for κ̄ = γ iterations. In total, αβ + γ iterations are executed. The case α = 1 corresponds
to a single-start algorithm.

4.1 Removal and insertion operators
Before proceeding with the description of our matheuristic, we describe the removal and insertion
operators it uses. Removal operators remove n′ customers and then place them in a removal list
Lremoval. The value of n′ is selected from the interval [bl, bu], where bl, bu are input parameters.
Insertion operators insert the n′ removed customers into a least-cost position of the destroyed
solution.

4.1.1 Removal operators
We use the following seven removal operators, the first six having already been used by other
authors (see Cherkesly et al., 2015; Koç, 2016; Koç et al., 2016a; Ropke and Pisinger, 2006a,b), and
the last one being introduced in this paper.
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Random removal (RO1): This operator randomly removes n′ customers from a solution.

Worst distance removal (RO2): The aim of this operator is to choose a number of expensive cus-
tomers based on distance. The cost of a node j ∈ Nc\Lremoval is the sum of its distance from its
predecessor i and of its distance to its successor k. The RO2 operator iteratively removes nodes j∗

from the solution where j∗ = arg maxj∈Nc\Lremoval{cij + cjk}.

Shaw removal (RO3): This operator removes a set of n′ similar customers. It is iteratively applied
to select a node which is most similar to the one last added to Lremoval. The similarity between
two customers i and j is defined by a relatedness measure Ω(i, j) which includes three terms: the
distance cij , an index lij equal to −1 if i and j are in the same route, and to 1 otherwise, and the
demand spread |qi − qj |. The relatedness measure is given by

Ω(i, j) = ϕ1cij + ϕ2lij + ϕ3|qi − qj |, (40)

where ϕ1 to ϕ3 are weights that are normalized to find the best candidate solution. The operator
starts by randomly selecting a node i ∈ Nc\Lremoval, and selects the node j∗ to remove, where
j∗ = arg minj∈Nc\Lremoval{Ω(i, j)}.

Proximity-based removal (RO4): This operator is a special case of RO3 where the selection crite-
rion of a set of customers is solely based on distance.

Demand-based-removal (RO5): This operator is yet another variant of RO3 which is solely based
on demand.

Neighborhood removal (RO6): In a given solution with a set of routes, this operator calculates an
average distance c̄(r) =

∑
(i,j)∈r cij/|r| for each route r, and selects a node j∗ = arg max(r∈R;j∈r){c̄(r)−

cr\{j}}, where cr\{j} denotes the average distance of route r, excluding node j.

Pair removal (RO7): This operator, aims to remove pairs of customers which are very close to one
another. It first randomly removes n′/2 customers, and then removes the other n′/2 customers by
selecting the nearest ones, based on their distance to the previously removed customers.

4.1.2 Insertion operators
In addition, we introduce three new insertion operators:

Scheduling-greedy insertion (IO1): This operator iteratively inserts all nodes of Lremoval in the
solution, starting with the first customer of Lremoval, by considering the best possible distance
based insertion position. For node i ∈ N\Lremoval followed in the destroyed solution by k ∈
N\Lremoval, and node j ∈ Lremoval we define γ(i, j) = cij+cjk−cik. We find the least-cost insertion
position for j ∈ Lremoval by i∗ = arg mini∈N\Lremoval {γ(i, j)}. During the insertion process of each
customer location, this operator forbids the insertion of a customer in the route if this would
violate tduty or the capacity constraints.
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Scheduling-greedy insertion with noise function (IO2): This operator is an extension of the IO1
operator that allows a degree of freedom for diversification by selecting the best position for a
node. This is done by calculating a noise cost υ(i, j) = γ(i, j)+dmaxπε, where dmax is the maximum
distance between all nodes, π is a noise parameter used for diversification, and ε is a random
number in [−1, 1]. We find the least-cost insertion position for j ∈ Lremoval by computing i∗ =

arg mini∈N\Lremoval {υ(i, j)}. Capacity and tduty constraints are again enforced in the insertion
mechanism.

Scheduling-removal list insertion (IO3): This operator is also a variant of the IO1. The outcomes
of the IO1 operator are mainly based on the order of the nodes in Lremoval. This operator aims to
change this order with the aim of decreasing the insertion costs. The operator first calculates the
least insertion costs for each node in Lremoval, then lists them in a non-increasing order, and finally
applies IO1.

4.2 Initialization procedure
The initialization procedure presented in Algorithm 1 generates an initial feasible solution ωinitial.
We first fix the number of removal nodes equal to |Nc|, and we randomly assign all customers
to the removal list Lremoval. We then apply the IO2 operator to create solution ω∗initial. We apply
CPLEX for each route of ω∗initial. If the solution is feasible, we return it as an initial solution ωinitial.
Otherwise, we reiterate this procedure until a feasible solution has been identified.

Algorithm 1 Initialization procedure
1: Input: The graph G = (N ,A) and related parameters
2: while a feasible VRTDSP-IO solution is not generated do
3: Randomly assign all customers to the removal list Lremoval
4: Apply the IO2 operator and create ω∗initial
5: r̄ ←number of routes of ω∗initial
6: r ← 1
7: while r ≤ r̄ do
8: Apply CPLEX to route r of ω∗initial to solve the TDSP-IO
9: if route r is feasible then

10: r ← r + 1
11: else
12: Go to line 3
13: end while
14: if all routes of ω∗initial are feasible then
15: ωinitial ← ω∗initial
16: end while
17: Output: ωinitial

4.3 Description of the matheuristic
Algorithm 2 presents the general framework of our matheuristic. The iteration counter, the max-
imum number of iterations, and the frequency of calls to CPLEX are denoted by κ, κ̄ and ∆,
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respectively. It considers partial solutions ωrouting that only specify the vehicle routes, and full
solutions ω that also consider scheduling and idling options. We denote by c(ω) the full cost of ω
and by c(ωrouting) the cost of ωrouting, which is only a routing cost. The algorithm uses as input
an initial feasible solution ωinitial (line 1). Probabilities are then initialized for each operator (line
2). Initially, they are equal for each removal and insertion operator. The temperature T , used in
simulated annealing, is initially set at c(ωinitial)T0, and T0 is the startup temperature defined as
an input parameter. Initially, the promising, current and best solutions coincide with the first so-
lution. These are denoted by ωpromising, ωcurrent, and ωbest, respectively. A temporary solution is
denoted by ωtemporary. Such a solution will either be discarded or become the current solution.

In lines (5–15), the driver and idling costs, and the feasibility of the routing in terms of time win-
dows and HOS regulations are neglected. A removal operator is selected, applied to the ωcurrent,
and a destroyed temporary solution ωtemporary∗ is obtained at the beginning of every iteration (line
5). An insertion operator is then applied to ωtemporary∗ to yield ωtemporary (line 6). If the routing
cost of ωtemporary is less than that of ωpromising, it is then replaced with ωtemporary (lines 7 and 8). If
the routing cost of ωtemporary is less than that of ωcurrent, it is then replaced with ωtemporary (lines
9 and 10). Otherwise (lines 11 and 15), the probability ϑ of accepting a non-improving solution
is computed as a function of the current temperature. A random number ε is generated in the
interval [0, 1]; if ε is less than ϑ, ωcurrent is then replaced by ωtemporary. If κ is a multiple of ∆ (line
16–21), ωcurrent is replaced by ωpromising and the TDSP-IO is solved by CPLEX for each route of
ωcurrent. If this schedule is feasible and the total cost of ωcurrent is less than that of ωbest, then ωbest
is replaced by ωcurrent. The temperature is gradually decreased during the algorithm as δT (line
22), where 0 < δ < 1 is a fixed cooling parameter.

An adaptive weight adjustment procedure (lines 23 and 24) is then applied to update the prob-
abilities of the removal and insertion operators. Each removal and insertion operator has a cer-
tain probability of being chosen at every iteration. The selection criterion is based on the histor-
ical performance of the operators and is calibrated by a roulette-wheel mechanism as in Ropke
and Pisinger (2006a,b). After every segment of ρ iterations, the probability of each operator is
recalculated according to its total score. Initially, the probabilities of each removal and inser-
tion operator are equal. Let φti be the probability of selecting operator i in segment t, and let
φt+1
i = φti(0.9) + 0.1Πi/ζi, for operator i; Πi is the score and ζi is the number of times it was used

during the last segment. At the start of each segment, the scores of all operators are set to zero.
The scores are increased by σ1 if a new best solution is found, by σ2 if the new solution is better
than the current solution, and by σ3 if the new solution is worse than the current solution.

Finally, algorithm returns the best found feasible solution ωbest, that is, a set of routes r together
with an optimal truck driver schedule and idling options for each of them.
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Algorithm 2 General framework of the matheuristic
1: Input: An initial solution ωinitial, a maximum number of κ̄ iterations, and a segment length ρ
2: Initialize the probabilities associated with the operators
3: T ← c(ωinitial)T0, ωpromising ← ωcurrent ← ωbest ← ωinitial, κ← 1
4: while κ ≤ κ̄ do
5: Select a removal operator, apply it to the ωcurrent and obtain ωtemporary∗
6: Select an insertion operator, apply it to the ωtemporary∗ and obtain ωtemporary
7: if c(ωroutingtemporary) < c(ωroutingpromising) then
8: ωpromising ← ωtemporary

9: if c(ωroutingtemporary) < c(ωroutingcurrent) then
10: ωcurrent ← ωtemporary
11: else
12: ϑ← e−(c(ω

routing
temporary)−c(ω

routing
current))/T

13: Generate a random number ε
14: if ε < ϑ then
15: ωcurrent ← ωtemporary

16: if κ is a multiple of ∆ then
17: ωcurrent ← ωpromising
18: Solve the TDSP-IO on ωcurrent by CPLEX
19: if the schedule is feasible then
20: if c(ωcurrent) < c(ωbest) then
21: ωbest ← ωcurrent

22: T ← δT
23: if κ is a multiple of ρ then
24: Update the probabilities of the operators
25: κ← κ+ 1
26: end while
27: Output: The best feasible solution ωbest
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5 Computational experiments and analyses
This section present the results of our computational experiments. All computations were per-
formed on an Intel 3.6 GHz processor and 32 GB of RAM. The matheuristic was implemented in
C++. We used CPLEX 12.6 with its default settings as the optimizer to solve the TDSP-IO. In all
experiments, five runs were performed on each instance, as in Rancourt et al. (2013) and Goel and
Vidal (2014), and the best one is reported.

5.1 Benchmark instances
We generated the benchmark instances for the VRTDSP-IO by considering the data set described
by Goel (2009) and Rancourt et al. (2013) for the VRTDSP which are derived from the classical
Solomon (1987) VRPTW instances with 100 nodes. This set includes 56 instances, consisting of a
clustered data set C, a random data set R, and a semi-clustered data set RC. The sets C1, R1 and
RC1 have a short scheduling horizon and small vehicle capacities, in contrast to the sets C2, R2
and RC2 which have a longer scheduling horizon and larger vehicle capacities. The time windows
and the travel time matrix adapted for the VRTDSP context. The service time of each customer
is set to one hour. Geographic coordinates of nodes, customer demands and vehicle capacities
remain the same. We considered a seven-day horizon (thorizon = 168 h). The time intervals in the
original Solomon instances were defined over periods of 24 hours. Here we replicate these time
windows for each of the seven days. Instead of considering vehicle speed as 60 distance units per
h as in the original Solomon instances, the speed is set to five distance units per h. To represent
the real road network, we assume that one distance unit is 15 km. Thus, the speed is equal to 75
km/h. Distances are rounded to a single decimal place.

We assumed that an IRA is located every 100 km on every route and that an EPS is located every
340 km on every route, as in Koç et al. (2016b). For simplicity, we assume that the fuel cost is
$0.66/L ($2.50/US gallon) (EIA, 2016), the routing cost is $0.10/km, fEPS = $1.00/h (Argonne
National Laboratory, 2015), fAPU = $0.63/h (0.95 L/h x $0.66/L) (Argonne National Laboratory,
2015; EIA, 2016), fDRI = $17.34/h (Pay Scale, 2016).

5.2 Parameter calibration on training instances
To calibrate the parameters, we initially worked with α = 1, β = 100 and γ = 9900, i.e., in a
single-start fashion. We applied a calibration procedure on six representative 100-customer train-
ing instances, C101, C203, R101, R211, RC105 and RC207. The parameter values selected after the
calibration phase are provided in Table 2.

5.3 Sensitivity analyses
We have conducted extensive sensitivity experiments to comparatively analyze several variations
of the matheuristic.
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Table 2: Parameters used in the matheuristic
Description Value
Total number of iterations (αβ + γ) 10000
Frequency of calls to CPLEX (∆) 200
Roulette wheel parameter (ρ) 450
New global solution score σ1 1
Better solution score σ2 0
Worse solution score σ3 5
Startup temperature parameter (T0) 100
Cooling parameter (δ) 0.999
Lower limit of removable nodes (bl) 10% of |Nc|
Upper limit of removable nodes (bu) 30% of |Nc|
First Shaw parameter ϕ1 0.5
Second Shaw parameter ϕ2 0.15
Third Shaw parameter ϕ3 0.25
Noise parameter π 0.1

5.3.1 Effect of the score parameters
We investigated the impact of new global solution (σ1), better solution (σ2) and worse solution (σ3)
parameters on the solution quality. To this end, we analyzed four combinations of σ1, σ2 and σ3.
The results are presented in Table 3. The column Dev (%) shows the percentage deviation from the
best-known solution. The best setting for all instances is obtained with σ1 = 1, σ2 = 0 and σ3 = 5.

Table 3: Performance of the matheuristic for various σ1, σ2 and σ3 settings.
(σ1, σ2, σ3) (5,1,0) (3,1,0) (1,0,3) (1,0,5)
Instance Dev (%) Dev (%) Dev (%) Dev (%)
C101 0.41 0.32 0.12 0.00
C203 0.31 0.24 0.22 0.00
R101 0.25 0.22 0.10 0.00
R211 0.33 0.37 0.28 0.00
RC105 0.41 0.38 0.37 0.00
RC207 0.45 0.32 0.21 0.00
Average 0.36 0.31 0.22 0.00

5.3.2 Effect of the parameter ∆ which controls the frequency of calls to CPLEX
We analyzed the impact on solution quality and computing time of the parameter ∆ which regu-
lates the frequency of calls to CPLEX to solve the TDSP-IO. Table 4 shows the average values on
the training instances. The column CPU (min) shows the total computation time of five runs in
minutes. It can be seen that the best setting in terms of solution quality is obtained for ∆ = 200.

5.3.3 Effect of the multi-start scheme
Here we investigate the effect on solution quality of applying a multi-start scheme with parame-
ters (α, β, γ). We tested different versions of it and compared the results against the single-start
base case (α, β, γ) = (1, 100, 9900) and ∆ = 200. These versions are (α, β, γ) = (1, 100, 4900),
(5, 100, 4500), (12, 100, 3800), (25, 100, 2500), (37, 100, 1300), (10, 100, 9000), (25, 100, 7500), (50, 100, 5000),
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Table 4: Performance of the matheuristic for various ∆ settings.
Instance ∆ = 100 ∆ = 200 ∆ = 300 ∆ = 400 ∆ = 500

Dev CPU Dev CPU Dev CPU Dev CPU Dev CPU
(%) (min) (%) (min) (%) (min) (%) (min) (%) (min)

C101 0.09 85.2 0.00 76.1 0.13 70.5 0.22 64.3 0.26 54.1
C203 0.14 95.6 0.00 85.7 0.12 81.0 0.23 65.7 0.28 59.8
R101 0.12 95.4 0.00 91.2 0.18 84.0 0.19 74.8 0.32 58.7
R211 0.08 89.1 0.00 75.3 0.13 71.3 0.24 60.7 0.38 55.4
RC105 0.10 69.3 0.00 61.2 0.18 58.0 0.19 50.8 0.27 44.2
RC207 0.09 104.2 0.00 101.1 0.12 72.0 0.17 64.0 0.25 54.3
Average 0.10 89.8 0.00 81.8 0.14 72.8 0.21 63.4 0.29 54.4

and (75, 100, 2500). The first five versions ran for 5,000 iterations while the others ran for 10,000
iterations. Table 5 provides the average deviations with respect to the base case. The results
clearly show that most of these versions improve upon the base case. The two versions (α, β, γ) =

(25, 100, 2500) and (37, 100, 1300) yield better results than (1, 100, 9900), which requires 10,000 it-
erations. Our results indicate that multi-start scheme yields better results than the single-start
scheme. For the rest of the experiments, we work with (α, β, γ) = (25, 100, 7500) which becomes
the updated base case.

Table 5: Average deviations of the effect of multi-start procedure with respect to the base case.
(α, β, γ) Dev (%) (α, β, γ) Dev (%)
(1,100,4900) 1.79 (1,100,9900) 0.00
(5,100,4500) 0.56 (10,100,9000) −0.99
(12,100,3800) 0.32 (25,100,7500) −2.13
(25,100,2500) −1.12 (50,100,5000) −1.22
(37,100,1300) −1.25 (75,100,2500) −1.36

5.3.4 Marginal impact of the operators
We now analyze the marginal value of the operators. To this end, we removed one operator at a
time by keeping all the remaining ones. Table 6 shows the average percentage deviations of the
solutions obtained by removing each operator individually with respect to the results yielded by
the updated base case. Our results show that if we discard any operator, the solution worsens. This
indicates that all of the operators have positive marginal impact on solution quality. Therefore, we
decided to keep all of them.

Table 6: Average deviations of the effect of the removal of operators with respect to the base case.
Removed Dev (%) Removed Dev (%) Removed Dev (%)
operator operator operator
RO1 0.07 RO5 0.08 IO1 0.22
RO2 0.15 RO6 0.09 IO2 0.32
RO3 0.14 RO7 0.12 IO3 0.25
RO4 0.08
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5.4 Results on the benchmark instances
Table 7 presents the average results obtained on benchmark instances of the VRTDSP-IO, exclud-
ing the six training instances. The first column shows the instance type where the number in
parentheses represents the total number of instances. The other columns display the routing cost
($), the driver cost ($), the EPS idling cost ($), the APU idling cost ($), the total cost ($), and the
total CPU time in minutes over five runs. For detailed results of all instances, the reader is referred
to Table A.1 in the Appendix which reports the results corresponding to the best solution for each
instance. One can see that all CPU times are below two hours, which is reasonable for a problem
that is typically solved on a weekly basis.

Table 7: Average results on the VRTDSP-IO instances except six training instances.
Instance Routing Driver EPS APU Total CPU
set cost ($) cost ($) cost ($) cost ($) cost ($) (min)
C1 (8) 2815.0 8488.3 5.1 505.7 11814.2 81.4
C2 (7) 3551.5 10015.0 1.6 654.0 14222.1 78.5
R1 (11) 2449.9 7446.8 1.3 428.4 10326.5 92.4
R2 (10) 2321.5 7198.8 5.1 431.7 9957.1 76.5
RC1 (7) 2837.8 8412.1 1.5 477.6 11729.0 60.5
RC2 (7) 3117.4 9093.0 4.0 496.6 12711.0 104.3

6 Conclusions
We have introduced the Vehicle Routing and Truck Driver Scheduling Problem with Idling Op-
tions (VRTDSP-IO) using a comprehensive objective function that minimizes routing costs, driver
costs, as well as Electrified Parking Space and Auxiliary Power Unit usage costs. We have devel-
oped a matheuristic capable of efficiently tackling the problem. It solves a set partitioning model
heuristically by generating good vehicle routes through a multi-start adaptive large neighbor-
hood search mechanism. Promising vehicle routes are optimized by periodically solving exactly
by CPLEX a truck driver scheduling problem with idling options. One interesting feature of our
algorithm is the use of a multi-start scheme which has proved highly beneficial in terms of solution
quality. Our algorithm was tested on instances derived from the Solomon test-bed, and several
sensitivity analyses were conducted. We have shown that the proposed algorithm can efficiently
solve the VRTDSP-IO for the first time within a reasonable computing effort.

Acknowledgements
The authors gratefully acknowledge funding provided by the Canadian Natural Sciences and En-
gineering Research Council under grants 2015-06189 and 436014-2013.

Appendix
Table A.1 presents the detailed results on all benchmark instances for the VRTDSP-IO.
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Table A.1: Detailed results on the VRTDSP-IO instances.
Instance Routing Driver EPS APU Total CPU

cost ($) cost ($) cost ($) cost ($) cost ($) (min)
C101 3903.7 10788.9 33.5 685.2 15411.3 82.5
C102 3251.2 9405.2 0.0 604.7 13261.1 81.0
C103 2317.5 7369.5 0.5 471.1 10158.6 79.0
C104 1858.5 6030.8 0.0 331.9 8221.2 72.5
C105 3321.0 10149.1 10.0 624.8 14104.9 79.0
C106 3728.2 10579.1 10.0 664.5 14981.8 79.0
C107 3136.5 9471.1 10.0 492.4 13110.0 86.0
C108 2730.0 8045.7 10.0 452.1 11237.8 83.5
C109 2177.2 6856.2 0.0 404.4 9437.8 91.5
C201 4851.7 13228.6 0.0 963.2 19043.5 72.5
C202 4178.2 11421.8 0.5 767.0 16367.5 77.5
C203 3126.7 8963.0 0.5 559.2 12649.4 74.0
C204 2071.5 6523.3 0.0 340.3 8935.0 82.5
C205 4060.5 11194.7 10.0 717.2 15982.4 69.5
C206 3405.0 9606.3 0.5 652.5 13664.3 71.0
C207 3194.2 9119.1 0.0 589.8 12903.0 84.0
C208 3099.7 9011.5 0.0 547.9 12659.1 92.5
R101 4488.7 12274.9 0.5 821.1 17585.1 87.0
R102 3667.5 10247.9 10.5 611.8 14537.7 93.5
R103 2667.7 7967.7 1.5 508.4 11145.3 85.5
R104 1878.0 6075.9 1.0 384.1 8339.0 92.5
R105 3590.2 10072.8 0.9 543.0 14206.9 86.0
R106 2850.7 8607.5 0.0 538.3 11996.5 97.0
R107 2442.7 7381.6 0.0 412.0 10236.3 98.5
R108 1755.7 5793.2 0.0 302.3 7851.2 92.5
R109 2322.0 7102.4 0.5 437.4 9862.3 87.0
R110 2164.5 6776.4 0.0 358.5 9299.4 92.0
R111 2108.2 6608.2 0.0 372.3 9088.6 98.0
R112 1501.5 5281.7 0.0 244.7 7027.9 94.0
R201 3378.0 9791.8 10.0 603.7 13783.5 70.5
R202 2960.2 8591.9 10.0 552.8 12114.8 73.5
R203 2398.5 7490.8 10.4 416.2 10315.9 72.5
R204 1674.7 5609.4 0.5 278.6 7563.2 74.5
R205 2556.0 7700.6 0.0 487.8 10744.4 65.5
R206 2132.2 6861.4 20.0 431.4 9444.9 76.5
R207 1797.7 5890.3 0.0 340.7 8028.7 80.5
R208 1410.7 5117.0 0.0 227.5 6755.2 93.0
R209 2227.5 7005.3 0.0 522.5 9755.3 71.0
R210 2679.7 7929.5 0.5 455.8 11065.5 87.0
R211 1631.2 5505.4 14.3 293.3 7444.2 66.5
RC101 4278.0 11831.0 1.0 695.8 16805.8 57.0
RC102 3507.7 10045.0 0.0 703.0 14255.7 63.0
RC103 2420.2 7357.3 9.1 448.2 10234.8 69.5
RC104 2043.0 6457.4 0.0 358.4 8858.8 58.0
RC105 4405.5 12032.2 0.0 629.8 17067.5 61.5
RC106 2958.0 8758.4 0.0 460.5 12176.9 56.0
RC107 2467.5 7561.9 0.5 358.9 10388.8 60.0
RC108 2190.0 6873.5 0.0 318.6 9382.1 60.0
RC201 4760.2 13067.4 17.4 647.0 18492.0 111.5
RC202 3814.5 10591.2 0.5 634.2 15040.4 104.5
RC203 2325.0 7109.3 0.0 415.4 9849.6 99.0
RC204 1750.5 5781.1 10.0 282.7 7824.3 101.5
RC205 3870.7 10908.5 0.0 637.6 15416.8 101.0
RC206 3329.2 9901.1 0.0 551.0 13781.3 109.0
RC207 2621.2 7796.0 0.0 435.8 10853.0 106.5
RC208 1971.7 6292.6 0.0 308.0 8572.3 103.5
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Pay Scale, 2016. United States truck driver salary. Pay Scale Inc. <http://www.payscale.com/

research/US/Job=Truck_Driver%2c_Heavy_%2f_Tractor-Trailer/Hourly_Rate> (ac-
cessed 06.01.2016).

Prescott-Gagnon, E., Drexl, M., Rousseau, L.-M., 2010. European driver rules in vehicle routing with time
windows. Transportation Science 44, 455–473.

Rahman, S. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., Sajjad, H., 2013. Impact of idling on
fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles–A
review. Energy Conversion and Management 74, 171–182.
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