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Abstract. This problem involves optimizing product collection and redistribution from 

production locations to a set of processing plants over a planning horizon. This horizon 

consists of several days, and the collection-redistribution is performed on a repeating daily 

basis. A single routing plan must be prepared for the whole horizon, taking into account the 

seasonal variations in the supply. We model the problem using a sequence of periods, each 

corresponding to a season. We propose an adaptive large-neighborhood search with 

several specifically designed operators and features. The results show the excellent 

performance of the algorithm in terms of solution quality and computational efficiency. 

Keywords: Multi-period vehicle routing problem with seasonal fluctuations, tactical 

planning, seasonal variation, adaptive large neighborhood search. 

 
Acknowledgements. Partial funding for this project was provided by the Natural Sciences 

and Engineering Research Council of Canada (NSERC), through its Industrial Research 

Chair, Collaborative Research and Development, and Discovery Grant programs. We also 

received support from the Fonds de recherche du Québec - Nature et technologies 

(FRQNT) through its Team Research Project program, and from the EMME/2-STAN Royalty 

Research Funds (Dr. Heinz Spiess). We also gratefully acknowledge the support of Fonds 

de recherche du Québec through infrastructure grants and of the support of Calcul Québec 

and Compute Canada through access to their high-performance computing infrastructure. 

 

 
 
Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: teodorgabriel.crainic@cirrelt.net 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
Bibliothèque et Archives Canada, 2016 

© Dayarian, Crainic, Gendreau, Rei and CIRRELT, 2016 



1 Introduction

The vehicle routing problem (VRP) is a di�cult combinatorial optimization
problem that appears in many practical applications relating to the design
and management of distribution systems. Studies of the classical VRP and
its many variants and extensions, starting with the seminal work of Dantzig
and Ramser (1959), represent a signi�cant portion of the operations research
literature (Toth and Vigo, 2002). The classical VRP, referred to as the ca-
pacitated vehicle routing problem (CVRP), concerns the determination of
routes for a �eet of homogeneous vehicles, stationed at a central depot, that
must service a set of customers with known demands (supplies). The goal is
to design a collection of least-cost routes such that: 1) each route, performed
by a single vehicle, begins at a depot, 2) each customer is visited once by
exactly one vehicle, and 3) the quantity of goods delivered (collected) on each
route does not exceed the vehicle capacity (Golden et al., 2008).

In many settings, e.g., the CVRP, the routing plan is executed repeatedly
over a long planning horizon. The parameters of the problem, such as the
quantities to be delivered (collected) at each customer location, are assumed
�xed over the horizon and known a priori. However, in many real-life applica-
tions, this assumption may result in poor-quality routing plans. This occurs,
for instance, in settings that display signi�cant seasonal �uctuations in the
level of supply/demand throughout the considered planning horizon. The
class of problems addressed in this paper, inspired by milk collection and re-
distribution in the dairy industry of Quebec (see Dayarian et al., 2015b), has
several problem-speci�c attributes and characteristics. The routing corre-
sponds to the collection of a given product from producers' facilities followed
by the distribution of the product to a set of processing plants. The routes
must be designed in such a way that the plant demands are completely sat-
is�ed, while every producer is visited by exactly one vehicle and each vehicle
delivers to just one plant per day. We assume that the total daily quan-
tity produced satis�es the total plant demand. Because of contractual and
service-consistency requirements, a single routing plan must be designed for
a given horizon.

For service consistency, each producer should always be included in the
same route and serviced by the same vehicle. The drivers also use this routing
plan to schedule their daily operations.

Dayarian et al. (2015b) modeled this problem as a Multi-Period VRP with
Seasonal Fluctuations (MPVRPSF) and proposed an exact solution method
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based on a branch-and-price approach. Their solution approach provides op-
timal solutions for instances with up to sixty producers. However, real-life
instances may have several hundred producers. Therefore, we need solu-
tion approaches that can �nd good but not necessarily optimal solutions to
larger instances. Furthermore, since the solutions obtained from the model
can be the basis for negotiations with carriers in some settings, such as the
one described in Dayarian et al. (2015b), it may be imperative to be able
to solve di�erent versions of an instance repeatedly and within a short time
span. Therefore, it is critical to have a fast and e�cient solution approach.
The main goal of this paper is to derive such a solution approach for the
MPVRPSF based on the adaptive large-neighborhood search (ALNS) frame-
work (Pisinger and Ropke, 2007; Ropke and Pisinger, 2006).

Our main contributions are as follows:

• We design an ALNS based metaheuristic for the MPVRPSF, a rich
vehicle routing problem. The proposed solution procedure includes a
set of novel algorithmic features, including several new operators based
on the inherent structure of the problem. These are detailed in Section
4.

• To evaluate the quality of the solution, we compute a series of lower and
upper bounds on the value of the multi-period solution. We compare
the solutions obtained through the ALNS with these bounds.

• We extensively analyze the performance of the method and its compo-
nents in terms of computational time and solution quality, through a
series of numerical tests on a large set of randomly generated instances.

The remainder of this paper is organized as follows. In Section 2, we
describe the problem and the notation that we use. Section 3 discusses
the state-of-the-art in this �eld. In Section 4, we present our ALNS-based
approach to the problem. In Section 5, we propose a series of bounds that
allow us to evaluate the performance of the algorithm. The experimental
results are reported in Section 6, and Section 7 provides concluding remarks.

2 Problem Statement

In this section, we describe more precisely the Multi-Period VRP with Sea-
sonal Fluctuations (MPVRPSF). As mentioned earlier, the purpose of the
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problem is to design a routing plan that will serve to organize transporta-
tion between a set of producers and a set of processing plants for a given
horizon H of several days (typically, several months). A plan consists of a
set of routes, each performed by a single vehicle on every collection day of
horizon H. An unlimited �eet of identical vehicles is assumed to be avail-
able at multiple depots. On every collection day, each vehicle departs from
a depot, collects a single product type from a subset of producers, delivers
the collected product to a single plant, and then returns to its depot. This
can be seen as an extension of the VRP with additional deliveries to multiple
plants, and it is therefore NP-hard (Lenstra and Kan, 1981).

There are many application settings, in which a routing plan must be
designed to be operated repetitively on several collection �days� over a long
horizon: the collection of dairy products, poultry and eggs, beverage distri-
bution, waste collection, etc. We are interested in environments in which
the supply (demand) exhibits seasonal variations signi�cant enough to have
a major impact on the routing. Moreover, we focus on situations in which
producers' (customers') supply (demand) are su�ciently strongly correlated
that we can make the assumption that they are perfectly correlated.

To treat this correlation, we assume that a year can be divided into several
periods, each representing a seasonal production level. We take inter-period
production variations into account; the potential intra-period �uctuations
are neglected. Intra-period �uctuations can often be handled by leaving a
spare capacity of 5%�10% on each vehicle when designing the routes. In
most applications of the MPVRPSF, this correlation is expected to arise
because almost all the producers/customers in a given geographical region
are exposed to similar seasonal cycles. The plants must adjust their seasonal
demands according to the supply so that the total supply always meets the
total demand.

The proposed multi-period model has strong similarities with an a pri-
ori optimization framework in the context of the vehicle routing problem
with stochastic demand (VRPSD). In a two-stage formulation of a stochas-
tic problem, the solution from the �rst stage is updated at the second stage
as the exact values of the stochastic parameters are revealed. One seeks a
solution that minimizes the total expected cost of the original plan and the
potential adjustments in the second stage. Similarly to algorithms for the
VRPSD, in the context of our multi-period problem we design a single plan
for the planning horizon in the �rst stage, taking into account possible supply
changes between periods. In the second stage, the plan is adjusted based on

3

An Adaptive Large-Neighborhood Search Heuristic for a Multi-Period Vehicle Routing Problem

CIRRELT-2016-35



the speci�cities of each period. In seasons with higher supply levels, a vehicle
may have insu�cient residual capacity to collect the supply at a given pro-
ducer location. We refer to this as a failure. Following a failure, the vehicle
usually travels to a plant to empty its tank and then proceeds to visit the
remaining producers of the planned route. We refer to this extra travel as a
recourse action.

Under our recourse policy, the vehicle always visits the producers in the
order of the planned route; when a failure occurs, it travels to its assigned
plant. Consequently, the total distance traveled corresponds to the �xed
length of the planned route plus the length of the return trip to the plant.

The goal is to design a unique tactical routing plan, which guarantees
given levels of service consistency and quality, and takes into account seasonal
supply �uctuations. This plan consists of a set of �xed routes that are applied
over the horizon. In each period, routes are adjusted based on the recourse
policy described above. A plan is considered to be feasible if its routes can
be applied in all considered periods of the horizon, while requiring at most
one recourse action per route in each period.

We control the desired service quality over the horizon by setting a service
reliability threshold (SRT), indicating the minimum percentage of days over
the horizon H that the planned routes should be executable with no failures.
The magnitude of the SRT has a major impact on the design of the plan.
Clearly, if SRT = 100%, no failure occurs in any period of the horizon.
However, this strategy is not cost-e�cient, because it often requires many
vehicles.

Let Ξ be the set of all periods in the horizon H. We associate with each
period ξ ∈ Ξ a weight Wξ, representing the share of period ξ in horizon H.
It is calculated by dividing the length of period ξ by the length of horizon
H. We also associate with each period ξ a production coe�cient, Pξ, which
is de�ned to be the ratio of the production level in period ξ to a chosen
reference production level Pref . The choice of the reference production level
is discussed in detail in Dayarian et al. (2015b). Brie�y, the reference period is
obtained by merging the smallest subset of the periods with least production
coe�cients, forming a new period in such a way that the cumulative weight of
the added periods to the subset covers the SRT. The newly obtained period,
referred to as the reference period, substitutes the periods included in the
subset. The production coe�cient of the reference period corresponds to the
largest coe�cient among the added periods while its weight is equal to the
cumulative weight of the substituted periods. For the sake of simplicity, all
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the production coe�cients are divided by the reference period's coe�cient
Pref (consequently, Pref = 1). In order to provide plans respecting the
de�ned SRT, one has to make sure that the designed routes do not face any
failure in the reference period.

Example 1 Figure 1 depicts an example of a route in three di�erent periods,
where the supply of the producers in the reference period are reported between
parentheses. Figure 1a shows the routing plan which must be executed in every
period. As one can notice, considering a vehicle of capacity 10, the routing
plan will not face any failure in the reference period (Pref = 1). However,
the route will face one failure in each of periods 1 and 2 (see Figures 1b and
1c).

The model is de�ned on a directed graph G = (V ,A), where V and A
are the node and arc sets, respectively. The node set contains the depots,
producers, and plants; V = D ∪N ∪ P . The arc set A ⊂ V × V de�nes fea-
sible movements between di�erent locations in V . For each pair of locations
ni, nj ∈ V , ni 6= nj, there exists an arc (ni, nj) ∈ A. Each arc (ni, nj) ∈ A
has an associated nonnegative travel cost cij, which is proportional to the
length of the arc. An unlimited �eet of vehicles K, with identical capacity Q,
is available at each depot. However, employing vehicle k ∈ K incurs a �xed
cost of ck. Note that a naive upper bound on the number of vehicles can be
obtained by assigning each producer to a vehicle.

In each period, each producer nj ∈ N produces a limited quantity of
product on a daily basis. The supply levels in period ξ ∈ Ξ are given by
a vector in which the jth parameter, denoted oξj , is the supply (o�er) of
producer j. Moreover, the supply of each producer nj in the reference period
is given by orefj . Therefore, the supply of producer nj in period ξ is

oξj = Pξ.o
ref
j (j ∈ N , ξ ∈ Ξ), (1)

where Pξ represents the production coe�cient in period ξ. Each plant p ∈ P
receives, on a daily basis, the collected product. The demand of each plant
p in period ξ is given by Dξ

p. The routes are designed to have no failures in
the reference period and at most one failure in the other periods. In other
words, for each route r, assuming that Nr represents the set of producer
nodes visited by route r, the following inequalities hold:∑

j∈Nr

oξj ≤ 2Q, (ξ ∈ Ξ) (2)
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(b) Period 1, P1 = 1.2
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(c) Period 2, P2 = 1.5
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1(.) : Producer
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Figure 1: Route execution in di�erent periods. Vehicle capacity = 10.
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and ∑
j∈Nr

orefj ≤ Q. (3)

The two-stage mathematical formulation of the problem is provided in
Appendix A. We present our proposed solution method to tackle the de-
scribed problem setting in Section 4, but before we review the relevant liter-
ature.

3 Literature Review

In this section, we review metaheuristic methods, and in particular, the
ALNS for VRPs. Complete surveys of metaheuristics for the VRP can be
found in Gendreau et al. (2008) and Vidal et al. (2013). They include neigh-
borhood searches, population-based methods such as evolutionary and ge-
netic algorithms, hybrid metaheuristics, as well as parallel and cooperative
metaheuristics. Of the neighborhood search methods, the large neighbor-
hood search (LNS) algorithms (Shaw, 1998) have proven to be successful for
several classes of the VRP. ALNS (Ropke and Pisinger, 2006; Pisinger and
Ropke, 2007), an extension of the LNS, is also related to the ruin-and-recreate
approach of Schrimpf (2000). Recently, ALNS has provided good solutions
for a wide variety of vehicle routing problems; see for instance Ropke and
Pisinger (2006), Pepin et al. (2009), Gendreau et al. (2010), Laporte et al.
(2010), and Azi et al. (2014).

Ribeiro and Laporte (2012) present an ALNS heuristic for the cumula-
tive capacitated vehicle routing problem (CCVRP). The CCVRP is a vari-
ation of the classical capacitated vehicle routing problem where the arrival
times at the customers are important. in the CCVRP, the objective function
constitutes of minimization of the sum of arrival times at customers. The
authors use mainly the typical destruction and construction heuristics from
the literature.Their algorithm outperformed the only available algorithm in
the literature for the CCVRP at the time, which was based on a Memetic
algorithm by Ngueveu et al. (2010).

Hemmelmayr et al. (2012) propose an ALNS heuristic for the Two-Echelon
Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP).
The author propose a modeling approach to transform LRP instances into
2E-VRP instances so as to address both problems with the same operators
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and parameter values. Their method uses existing operators from the litera-
ture and new operators designed speci�cally for the problem classes consid-
ered. In addition, a local search step is applied after some of the operators.
For the 2E-VRP, the proposed ALNS heuristic outperforms existing algo-
rithms from the literature. As for the LRP, the proposed solution method
achieve competitive results and outperform existing solutions methods on
one instance set.

Demir et al. (2012) describe a heuristic algorithm to solve the pollution-
routing problem (PRP). Their proposed algorithm iterates between a vehicle
routing problem with time windows (VRPTW) and a speed optimization
problem. The VRPTW is solved using an enhanced ALNS, while the speed
optimization problem is solved using a polynomial time procedure. The
proposed ALNS uses new, as well as existing removal and insertion operators,
which improve the solution quality. Their results show the e�ectiveness of
the proposed algorithm in �nding good-quality solutions on instances with
up to 200 nodes.

Renaud et al. (2013) addressed a pickup and delivery problem with trans-
fers (PDPT). The authors proposed an ALNS embedding new heuristics ca-
pable of e�ciently inserting requests through transfer points. New destruc-
tion and construction heuristics dedicated to the use of transfer points were
introduced. The proposed approach was applied to the real-life applications
involving the transportation of people with disabilities.

Adulyasak et al. (2014) developed an e�cient heuristic using enumeration,
ALNS, and network �ow techniques to solve the production routing problem
(PRP). As mentioned by the authors, applying ALNS in the context of the
PRP is particularly di�cult because the problem involves quantity decisions.
To overcome this di�culty, following the ideas put forward by Coelho et al.
(2012) in the context of the inventory-routing problem, Adulyasak et al.
(2014) use the ALNS to handle the binary variables indicating the customers
to visit and the vehicle routes. On the other hand, they use a network �ow
model to set the corresponding optimal continuous variables. The results
proved the e�ciency of the proposed heuristic and indicated that it generally
outperforms all other heuristics for the PRP reported in the literature.

More recently, Mancini (2015) addressed a rich VRP characterized as
multi-depot multi-period vehicle routing problem with a heterogeneous �eet,
and several side constraints such as route duration. The author proposed an
ALNS heuristic, in which new destruction heuristics were de�ned.

The other problem settings from the literature with similar features are
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the waste collection problem (Beullens et al., 2004), the collection of waste
vegetable oil to be used in a production process for biodiesel (Aksen et al.,
2014), and the collection of olive oil (Lahyani et al., 2015). For a complete
overview of transportation of waste and reusable material, the reader is re-
ferred to Beullens et al. (2004). The collection of residential waste often takes
the form of an arc routing problem, as a large number of households, with
small distances between them, need to be visited.

Elbek and Wøhlk (2016) consider a special case of residential waste man-
agement in which citizens can deposit glass and paper for recycling in small
cubes located at several collection points. The cubes are emptied by a vehi-
cle and are transported to treatment facilities. One of the main di�erences
between this problem and the MPVRPSF is the fact that in the waste col-
lection problem, there is no demand associated with facilities. Instead, each
facility may have a limited daily capacity. More references on waste collec-
tion can be found in Angelelli and Speranza (2002), Bogh et al. (2014), and
Muyldermans and Pang (2010).

Lahrichi et al. (2013), investigating a dairy transportation application,
considered a variant of the VRP with features similar to those of our problem.
They used a generalized version of the Uni�ed Tabu Search (Cordeau et al.,
2001). They simultaneously considered the plant deliveries, di�erent vehicle
capacities, di�erent numbers of vehicles at each depot, and multiple depots
and periods. Dayarian et al. (2015a) proposed a branch-and-price algorithm
for a variant of the dairy transportation application in which a time window
is associated with each producer, and the production levels over the horizon
are assumed to be �xed.

The VRPs that are similar to our problem are the multi-period (MPVRP)
and the periodic (PVRP) settings. In most studies of the MPVRP, customers
request a service that could be performed over a multi-period horizon (see
Tricoire, 2006; Angelelli et al., 2007; Wen et al., 2010; Athanasopoulos, 2011).
The classical MPVRP is closely related to the PVRP, in which the customers
specify a service frequency and allowable combinations of visit days. Surveys
of these problems and extensions can be found in Francis et al. (2008) and
Vidal et al. (2013). The best-known algorithms for the PVRP are those of
Cordeau et al. (1997), Hemmelmayr et al. (2009), Rahimi-Vahed et al. (2013)
and, particularly, Vidal et al. (2012) and Vidal et al. (2014). In contrast to
the PVRP, in our problem, all the producers need to be serviced every period
on a daily basis. Moreover, the de�nition of the periods is based on seasonal
production level variations.
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A single plan for a horizon of several periods has been investigated in the
context of telecommunication network design (Kouassi et al., 2009; Gendreau
et al., 2006). However, apart from the work of Dayarian et al. (2015b),
we are not aware of any previous study of the VRP with the multi-period
con�guration considered in this paper. Dayarian et al. (2015b) used a branch-
and-price approach to solve the problem that we investigate. However, their
algorithm is able to solve instances with only up to sixty producers.

The MPVRPSF, as considered in this paper, has to date received limited
attention. Based on the success of the ALNS, we propose an ALNS for our
problem. This algorithm is outlined in the next section.

4 Proposed Solution Framework

The classical ALNS algorithm, as presented by (Ropke and Pisinger, 2006;
Pisinger and Ropke, 2007), is an iterative process where, at each iteration,
part of the current solution is destroyed and then reconstructed in the hope
of �nding a better solution. The destruction phase for the VRP consists in
disconnecting a number q ∈ [qmin, qmax] of nodes from their current routes
and placing them into the unassigned node pool Φ. Note that qmin and
qmax are parameters whose values are to be tuned. The construction phase
then inserts the nodes from Φ into the routes of the solution. Destruction
and construction are performed by appropriate heuristics, selected at each
iteration from a given set of procedures via a biased random mechanism,
referred to as roulette-wheel, favoring the heuristics that have been successful
in recent iterations according to certain criteria (e.g., improvement in solution
quality).

Note that, our algorithm is based on the general ALNS concept. In fact,
the structure of the proposed ALNS follows the general scheme of ALNS ap-
plied to routing problems or, for that matter, to many other combinatorial
problems. However, our algorithm incorporates a number of features that
improve its performance. Moreover, one of the main contributions of the al-
gorithm revolves around the de�nition of new focused operators that address
the speci�c characteristics of our problem. An outline of our procedure is
presented in Algorithm 1.

At each iteration, we explore the neighborhood of the current solution,
generating potentially ϕ new solutions (lines 9-18). New solutions are ob-
tained by applying an operator opr ∈ Ω to the current solution, where Ω is
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the set of all operators. Contrary to classical ALNS, the operators are built
through coupling each combination of destruction and construction heuris-
tics, described in Sections 4.5 and 4.6, respectively. (A similar idea of pairing
heuristics was used by Kovacs et al. (2012) in the context of service technician
scheduling.) The main advantage is that we can weight the performance of
each (destruction-construction) pair. We select the operator to apply to the
solution of the current iteration via a roulette-wheel mechanism (line 13).

At the end of each iteration, we apply an acceptance criterion to the best
solution among the ϕ solutions found (lines 19-27). This criterion is de�ned
by simulated annealing (SA) (see Kirkpatrick et al., 1983) as the search
paradigm applied at the master level. If the solution satis�es the criterion,
it replaces the current solution. That is, the new solution s′ replaces the
current solution s if f(s′) < f(s), where f(s) represents the value of solution
s. In SA, with ∆f = f(s′)− f(s), solution s′ is accepted with probability

exp(
−∆f

T
), (4)

where T > 0 is the temperature parameter. The temperature is initialized
to T init and is lowered in the course of the search by a cooling rate c ∈ (0, 1):
T ← cT (line 41). The probability of accepting worse solutions reduces as T
decreases. This allows the algorithm to progressively �nd better local optima.
We perform the cooling procedure when no global best feasible solution has
been found in the last δ iterations. This can be seen as a dynamic repetition
schedule that dynamically de�nes the number of iterations executed at a
given temperature. This procedure divides the search into several segments,
each being a series of consecutive iterations. The length of each segment
corresponds to the repetition schedule for a given temperature and therefore
has a minimum length of δ iterations, where δ is a parameter to be tuned.
If a new global best feasible solution is found in the current segment, the
length of the segment is extended for another δ iterations (line 22).

To intensify the search, at the end of each segment, we apply a series of
local search (LS) operators to the best solution found in the segment (lines
32-40). If this gives an improvement, we update the current solution.

Moreover, we design new operators for our speci�c problem setting. The
main components of our algorithm are described next.
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Algorithm 1 ALNS
1: s← InitialSolution;
2: s∗ ← s; . best solution
3: Initialize the weights π;
4: Set the temperature T ;
5: iter ← 1; . counter of iterations
6: segmentIter ← 1; . counter of iterations in a segment
7: seg ← 1; . counter of segments
8: sseg ← s; . best solution of segment seg
9: repeat

10: repeat . exploring neighbourhood of the current solution
11: siter ← s; . current solution at iteration iter
12: qiter ← Number of nodes to be removed;
13: Opriter ← Select an operator; . roulette-wheel mechanism
14: s′ ← Opriter(s, qiter);
15: if f(s′) < f(siter) then

16: siter ← s′;
17: end if

18: until iter%ϕ == 0
19: if f(siter) < f(s∗) and siter feasible then

20: s∗ ← siter;
21: sseg ← siter;
22: segmentIter ← 0; . extending the length of the segment
23: else

24: if ACCEPT(siter, s) then
25: s← siter;
26: end if

27: end if

28: if f(siter) < f(sseg) then

29: sseg ← siter;
30: end if

31: Update the score of opr;
32: if segmentIter == δ then . local search
33: s′ ← LOCAL SEARCH(sseg);
34: if f(s′) < f(s∗) then

35: s∗ ← s′;
36: segmentIter ← 0;
37: else

38: if f(s′) < f(s) then

39: s← s′;
40: end if

41: T ← c.T ; . cooling procedure
42: sseg ← s;
43: seg ← seg + 1;
44: end if

45: end if

46: if seg%γ == 0 then

47: Update the weights;
48: end if

49: iter ← iter + 1;
50: segmentIter ← segmentIter + 1;
51: until Stopping Criterion
52: return s∗
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4.1 Solution representation

One of the main decisions prior to implementing a metaheuristic is the choice
of the data structure and how to represent solutions. Since most of meta-
heuristics involve numerous neighbourhood evaluations and move executions,
the solution representation has a direct impact on the e�ciency of a meta-
heuristic. In our method, a solution is encoded using the following entities:

List of successors: For each node of the graph associated with a producer,
it gives its successor node, which is associated with another producer
or a plant.

List of predecessors: For each node of the graph associated with a pro-
ducer, it gives its predecessor node, which is associated with another
producer or a depot.

List of assigned route: For each node of the graph associated with a pro-
ducer, it gives the number of the route to which the node is assigned.

Route information: Each route has three main characteristics:

• Its depot,

• Its plant,

• The number of the �rst customer that it visits.

Figure 2 shows an example of a routing solution for a network with 2 de-
pots, 2 plants, and 7 producers. Each element of array �Successors/Predecess-
ors� indicates the successor/predecessor of the node represented by the index
of that element. Similarly, each element of the array �Assigned route� pro-
vides the number of route to which the node corresponding to the index of
that element is assigned. The depot, plant and the �rst node visited by a
route are stored (an empty route can be recognized if its �rst route coincides
its plant). Using these data structures, each insertion or removal can be
performed in constant time.

4.2 Search Space

It is well known in the metaheuristic literature that allowing the search into
infeasible regions may lead to good solutions. We therefore permit infeasible
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Figure 2: Example of a solution with 2 depots, 2 plants, and 7 producers.
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solutions in which the plant demands are not completely satis�ed. We evalu-
ate the moves and solutions using a penalty function f(s) = C(s) + ηD−(s),
where C(s) is the total operating cost of the solution (i.e., �xed, routing,
and recourse costs) and D−(s) is the unsatis�ed plant demand. The role of
parameter η is to put more or less emphasize on the penalty function depend-
ing on the time spent by the search method in feasible or infeasible regions.
The parameter η is initially set to 1. It is updated after each block of Iteradj

iterations based on the trajectory recorded during the last Iterhis iterations.
More precisely, we multiply η by 2 if the number of infeasible solutions in
the last Iterhis iterations is greater than δmax, and we divide it by 2 if the
number of such solutions is less than δmin. The two parameters δmin and
δmax are to be tuned.

This penalty function is similar to that used in Taburoute (Gendreau
et al., 1994) and the Uni�ed Tabu Search (Cordeau et al., 2001). Our penalty
strategy favors removal from routes serving plants with an oversupply and
insertion into routes servicing plants being under-supplied. We add a penalty
ρ to the local cost of removal or insertion in a given position, where

ρ = ηD−(s). (5)

4.3 Central Memory

We propose the use of an enhanced central memory, which stores high-quality
solutions. We design several new destruction heuristics that use information
extracted from the central memory (See Section 4.5). De�ne Ψ, a central
memory containing a limited number of solutions of two types:

- Best Feasible Solutions (ΨFS): A list of the β1 best feasible solutions
generated so far.

- Best Infeasible Solutions (ΨNFS): A list of the β2 infeasible solutions
(involving at least one plant with unsatis�ed demand) with least rout-
ing cost generated so far.

The size of the central memory follows from a trade-o� between search
quality on the one hand and computational e�ciency and memory require-
ments on the other. In Section 4.5 we explain how di�erent types of infor-
mation are extracted from this memory and are used in some destruction
heuristics.
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4.4 Adaptive Search Engine

We implement an adaptive weight adjustment procedure to represent the
historic performance of the operators, and use these weights to bias their
selection at each iteration. We remind the reader that in this paper the term
�operator� refers to a pair of destruction and construction heuristics.

A weight ωopr is thus assigned to each operator opr. Initially, all the
weights are set to one. We update the operator weights after each block
of γ segments,based on a combination of long and short-term performance
history (lines 45-46). The probability of selecting opr is then de�ned as
ωopr/

∑
k∈Ω ωk.

The short-term performance of the operators is captured through a scor-
ing mechanism. A score is assigned to each operator, the score being set
to zero initially and after each γ segments. At each iteration, we then up-
date the scores (line 30) by adding a bonus factor σi, i ∈ {1, . . . , 4}, where
σi ≤ σi+1, i ∈ {1, 2, 3}, to the current score as follows:
I. σ4 if a new global best feasible solution has been found;

II. σ3 if the new solution improves the current solution but not the global
best feasible solution;

III. σ2 if the new solution satis�es the acceptance criterion and is inserted
into ΨFS;

IV. σ1 if the new solution satis�es the acceptance criterion but is not in-
serted into ΨFS.

The bonus factor is zero in all other cases.
Let πopr be the total score of opr obtained from νopr applications of opr in

the last γ segments. We update the weight of each operator using a parameter
α ∈ [0, 1], called the reaction factor, through the formula

ωopr,ι+1 = ωopr,ι(1− α) + α
πopr
νopr

, (6)

where ωopr,ι represents the weight of operator opr in ιth block of γ segments.

4.5 Destruction Heuristics

Several destruction heuristics have been proposed in the literature, and some
can be adapted to our problem setting. We focus on the following destruction
heuristics from the literature:
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Worst Removal: Initially proposed by Rousseau et al. (2002) and later
used by Ropke and Pisinger (2006), it removes the q worst placed nodes
and places them in Φ.

Route Removal: Removes all the nodes of a randomly selected route and
places them in Φ.

Cluster Removal: This heuristic (Pisinger and Ropke, 2007) removes a
cluster of nodes from a route, based on their geographical region. It
randomly selects a route from the current solution. It then applies
the well-known Kruskal algorithm to �nd a minimum spanning tree for
the nodes of this route, based on the arc length. When two forests
have been generated, one of them is randomly chosen and its nodes are
removed and placed in Φ.

Smart Removal: This heuristic (Rousseau et al., 2002) randomly selects a
pivot node and removes portions of di�erent routes around the pivot,
based on a reference distance and a proximity measure.

We also de�ne a series of memory-based destruction heuristics, which pri-
marily di�er in the way that the closeness of the removed nodes are weighted.
The solution-cost-based related removal is adapted from existing heuristics
proposed by Pisinger and Ropke (2007), while others are new. We extract
di�erent types of information from the central memory, described in Sec-
tion 4.3, and use the extracted information to determine the relatedness of
di�erent nodes of the graph with respect to di�erent criteria. We design
a destruction heuristic based on each criterion, obtaining the six heuristics
below.

Solution-Cost-Based Related Removal

The solution-cost-based related removal heuristic, based on the historical
node-pair removal (Pisinger and Ropke, 2007), associates with each arc (u, v) ∈
A a weight f ∗(u, v). This weight indicates the value of the best-known so-
lution that contains arc (u, v). Initially, f ∗(u, v) is set to in�nity for all
arcs (u, v) ∈ A. Then, whenever a new solution is inserted into the central
memory, we update the f ∗(u, v) value of all the arcs (u, v) in the solution.

Following a call to this heuristic, we perform a worst removal procedure
in which the weight f ∗(u, v) replaces the cost of each arc (u, v) ∈ A. We
repeat this process until q nodes have been removed and placed in Φ.

17

An Adaptive Large-Neighborhood Search Heuristic for a Multi-Period Vehicle Routing Problem

CIRRELT-2016-35



Route-Cost-Based Related Removal

The route-cost-based related removal is a new heuristic, in which similar to
the heuristic above, associates with each arc (u, v) ∈ A a weight r∗(u, v),
indicating the value of the minimal-cost route found so far that contains arc
(u, v). Weight r∗(u, v) is initially set to in�nity for all arcs (u, v) ∈ A, and
is potentially updated when a new solution is inserted in the memory. We
perform a worst removal based on the r∗(u, v) weights.

Paired-Related Removal

This heuristic investigates adjacent producer nodes. We give each arc (i, j) a
weight $(i,j), initially set to 0. The heuristic starts by adding a weight hs to
the weights of all the arcs used in the solutions of the central memory. When
an arc (i, j) is used by solution s, we add the weight hs to both (i, j) and (j, i).
We compute hs via hs = List.size()− posinList(s), where List represents the
list to which solution s belongs, List.size() is the length of that list, and
posinList(s) is the position of solution s in that list. This procedure favors
the solutions at the start of the lists. When a new solution is inserted into
any of the lists, we update the weights hs. We use the arc weights $(i,j)

to identify the q producer nodes that seem to be related to each other. An
initial node ni is randomly selected, removed, and placed in Φ. Then, while
|Φ| < q, we randomly select a node nj from Φ and identify the node nk in
Φ that is the most closely related to node nj (it has the highest $(j,k)). We
then remove the node nk and place it in Φ.

Route-Related Removal

This heuristic, similarly to the previous heuristic, adds a weight hs to all
pairs of nodes serviced by the same route in solution s. We assign weights
as for the previous heuristic. We remove nodes from their current position
following a similar procedure to that for the previous heuristic.

Depot-Producer-Related Removal

This heuristic attempts to identify the nodes that may be misassigned to a
depot. A weight is assigned to each depot-node pair (nd, ni), for d ∈ D and
i ∈ N . The weight increases by hs if, in solution s, producer i is assigned
to a route departing from depot d. We calculate the value of hs as for the
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paired-related removal heuristic. We select a node to remove via the following
steps:

Step 1: We sort the producer-depot assignments in the current solution s
according to the historical pair weights obtained as described above in
Listi,d(s).

Step 2: Starting from the producer-depot pair with the lowest weight, we
remove nodes from their current position with probability

Prni,ndi
(s) =

rank(ni)

Listi,d(s).size()
, (7)

where rank(ni) is the position of the pair (ndi , ni) in Listi,d(s). More-
over, Listi,d(s).size() is the length of the node-depot list, which is the
number of producer nodes. Accordingly, we remove the node with the
lowest weight from its current position with probability 1.

Step 3: If the list is traversed to the end, but the number of removed nodes
is less than q, we update the length of the list to Listi,d(s).size()− |Φ|
and make the corresponding updates to the pair ranking. We then
return to Step 2.

Plant-Producer-Related Removal

This heuristic follows the three steps above. It attempts to remove producer
nodes based on the node-plant pair weights calculated from the historical
information.

4.6 Construction Heuristics

After the destruction heuristic, the nodes that have been removed and placed
in Φ are considered for reinsertion into routes. We consider the following
construction heuristics from the literature:

Best-First Insertion: Inserts each node in the cheapest position. At each
step it selects the node with the lowest insertion cost.

Regret Insertion: This heuristic (Ropke and Pisinger, 2006), orders the
nodes in Φ by decreasing regret values. The regret value is the cost dif-
ference between the best insertion position and the second best. More
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generally, the k-regret heuristic de�nes the regret value with respect
to the k best routes. We also use this heuristic to generate our initial
solution, by �xing k equal to the number of plants.

We also designed the following construction heuristic based on the char-
acteristics of our problem.

Minimum-Loss Insertion

This new heuristic, designed based on the regret insertion heuristic, does
not use ρ (the adaptive penalty coe�cient of unsatis�ed plant demand). It
inserts nodes into the routes while attempting to maintain the feasibility
of the solution at the minimal cost. The heuristic is based on the regret
associated with the insertion of a node into a route servicing a plant with
unsatis�ed demand rather than in the best possible route. Clearly, the best
candidate is a node for which the best possible position is in a route servicing
a plant with unsatis�ed demand. The best insertion candidate is determined
using the following criterion:

ni := arg min
ni∈Φ

( min
r∈RD−

s

(∆fr+ni
(s))− min

r∈Rs

(∆fr+ni
(s))), (8)

where Rs is the set of routes for solution s, and RD−
s is the set of routes

servicing plants with unsatis�ed demand. If all the plant demands are met,
the insertion order of the remaining nodes in Φ is de�ned as for the regret
insertion operator.

4.7 Local Search

At the end of each segment, LS procedures are performed on the best so-
lution found during the segment. Our LS procedures are inspired by the
education phase of the genetic algorithm proposed by Vidal et al. (2012).
The procedures are restricted to the feasible region. We build each node's
neighborhood using a threshold ϑ, which is computed as follows:

ϑ =
Z(s)

nbArc(s)
, (9)

where Z(s) and nbArc(s) are the sum of the arc costs and the number of arcs
used in solution s. In our implementation, Z(s) and nbArc(s) are limited to
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the arcs between producer nodes; the recourse costs and the corresponding
arcs are omitted. The value ϑ is the average length of the arcs between the
producer nodes in solution s. The neighbour set of each node ni contains all
nodes nj such that cij ≤ ϑ.

Suppose that nu, assigned to route ru, is a neighbor of nv, assigned to
route rv. Moreover, suppose that nx and ny are immediate successors of nu
and nv in ru and rv, respectively. For every node nu and all of its neighbors
nv, we perform the LS operators in a random order. When a better solution
is found, the new solution replaces the current solution. The LS stops when
no operator generates an improved solution. The LS operators are:

Insertion 1: Remove nu and reinsert it as the successor of nv.

Insertion 2: Remove nu and nx; reinsert nu after nv and nx after nu.

Insertion 3: Remove nu and nx; reinsert nx after nv and nu after nx.

Swap 1: Swap the positions of nu and nv.

Swap 2: Swap the position of the pair (nu, nx) with nv.

Swap 3: Swap the position of (nu, nx) with (nv, ny).

2-opt: If ru = rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx, ny).

2-opt* 1: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx,
ny).

2-opt* 2: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, ny) and (nx,
nv).

5 Bounds on the Multi-Period Solution

To evaluate the performance of our algorithm, we compute lower and upper
bounds on the objective function value. Let the single-period problem that
considers only the production levels in the reference period be Pbref , with
optimal solution xref . An adapted version of the branch-and-price algorithm
of Dayarian et al. (2015a) can be used to solve the Pbref . Let Pbmp be the
multi-period problem, with optimal solution x∗.
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Recall, the route cost, C, has three components: 1) �xed vehicle costs, 2)
�rst-stage routing costs, and 3) second-stage routing costs (recourse costs).
These components are denoted cf (x), c(x), and F(x), respectively. That is,
C(x) = cf (x)+c(x)+F(x). For any feasible solution x to Pbmp, C(x) provides
an upper bound on the optimal value of the multi-period solution. Moreover,
because the �xed vehicle costs are signi�cantly large compared to the total
routing costs, the number of vehicles used in the multi-period solution is the
minimum number of vehicles needed during the reference period, so the �xed
vehicle costs are the same:

cf (x
∗) = cf (x

ref ). (10)

Since x∗ is also a feasible solution to P ref , we have

c(xref ) ≤ c(x∗). (11)

We combine (10) and (11) to obtain a lower bound on the value of the multi-
period solution:

cf (x
ref ) + c(xref ) ≤ C(x∗). (12)

We also consider a lower bound on the value of F(x∗). Let F (r, ξ) be the
recourse cost in period ξ ∈ Ξ for route r ∈ Rs, where Rs is the set of routes
in solution s. We have

F(x) =
∑
ξ∈Ξ

∑
r∈Rs

WξF (r, ξ). (13)

Let the set of producer nodes visited by route r be Nr, the plant to which r
is assigned be pr, and the set of all routes serving plant p ∈ P be Rp

s ⊆ Rs.
Then

F (r, ξ) ≥ 2 min
i∈Nr

ci,pr .t
ξ
r (14)

⇒ F(x∗) ≥ 2
∑
r∈Rs

tξr min
i∈Nr

ci,pr (15)

= 2
∑
p∈P

∑
r∈Rp

s

tξr min
i∈Nr

ci,pr , (16)

where tξr is a binary parameter, which is equal to 1 if a failure occurs on route
r in period ξ and 0, otherwise.
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The minimum failure cost for a given instance can then be computed
by �rst determining the minimum number of vehicles needed to service the
plants and producers. We then assign the producers to vehicles (routes) while
attempting to minimize the total failure cost. To do this, we assign failure
points to the routes so that the total failure cost is minimized. The minimum
number of vehicles, K∗, is obtained using equation (17).

K∗ = max{
∑
p∈P

dDp/Qe, d
∑
i∈N

oi/Qe}. (17)

5.1 Minimum Failure Cost

Given the minimum number of vehicles, we can compute a lower bound on
the total failure cost of Pbmp based on inequality (16). We assign nodes to
the restricted vehicle set K∗, assuming that for a given route r, all the failures
in di�erent periods occur on the node that is closest to pr. We assign the
nodes by solving a bin-packing formulation that minimizes the failure cost,
Table 1 displaying the notation.

Table 1: Bin-packing notation for the minimum failure cost formulation

Notation Description
xikp 1 if producer i is assigned to vehicle k and plant p;
ykp 1 if vehicle k serves plant p;
oi supply of producer i ∈ N ;
Dp demand of plant p ∈ P ;
K∗ set of K∗ identical vehicles;
tξk 1 if a failure in period ξ is assigned to vehicle k;
uξikp 1 if a failure in period ξ is assigned to producer i on vehicle k, serving plant p;
lkp quantity delivered to plant p by vehicle k.
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Z = min
∑
ξ∈S

Wξ

∑
p∈P

∑
i∈N

2ci,pu
ξ
ikp (18)

subject to

lkp =
∑
i∈N

oixikp (p ∈ P , k ∈ K∗); (19)

lkp ≤ Qykp (p ∈ P , k ∈ K∗); (20)∑
p∈P

ykp = 1 (k ∈ K∗); (21)∑
k∈K∗

lkp ≥ Dp (p ∈ P); (22)∑
k∈K∗

∑
p∈P

xikp = 1 (i ∈ N ); (23)

xikp ≤ ykp (i ∈ N , p ∈ P , k ∈ K∗); (24)

Pξ
∑
p∈P

lkp ≤ Q(1 + tξk) (ξ ∈ S, k ∈ K∗); (25)∑
p∈P

∑
i∈N

uξikp = tξk (ξ ∈ S, k ∈ K∗); (26)

uξikp ≤ xikp (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗); (27)

ykp ≤ yk−1p + yk−1p−1 (p ∈ P , k ∈ K∗); (28)

y11 = 1; (29)

xikp, ykp, t
ξ
k, u

ξ
ikp ∈ {0, 1} (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗).(30)

Constraints (19) and (20) ensure that the vehicle capacities are satis�ed.
Constraint (21) ensures that each vehicle is assigned to a single plant. Con-
straint (22) ensures that the plant demands are satis�ed, and constraint (23)
ensures that each producer is assigned to a single vehicle. Constraint (24)
ensures that producers are assigned only to open routes. For each period ξ,
constraints (25)�(27) determine the number and location of failures on each
vehicle k. Constraints (28) and (29) break the possible symmetry due to the
set of identical vehicles. The objective function, Z, provides a lower bound
on the total failure cost. We assume that, for a given route, all the failures
in di�erent periods occur in the node that is closest to the assigned plant.

The bound can be tightened if we acknowledge that on a given route not
all periods have failures at the same node. Proposition 1 provides a condition
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determining when two periods both encounter failure at the same node.

Proposition 1 Two periods ξ1 and ξ2 may both encounter a failure at node
nj if the following inequality holds:

Q

P2

(1− P2

P1

) ≤ oj. (31)

Proof 1 Assume that P1 ≥ P2 and that in period ξ1 the quantity collected
prior to node nj is Q. The quantity collected in period ξ2 will then be P2

Q
P1
.

Moreover, ξ2 has a failure at node nj if P2
Q
P1

+ P2oj ≥ Q.
�

Including this condition in the model (18)�(30) may lead to an increase
in the value of Z by assigning certain failure points to nodes that are farther
from the plant. This occurs when two di�erent periods cannot both encounter
failure on the closest node to the plant.

6 Computational Experiments

We describe our computational experiments in the following sequence. In
Section 6.1, we introduce the set of test problems. We calibrate the param-
eter values via extensive sensitivity analysis; the results of these tests are
presented in Section 6.2. We also study the impact of di�erent components
of the algorithm based on a series of tests, which are presented in Section
6.3. Finally, the computational results for the test problems are presented in
Section 6.4.

6.1 Test Instances

We consider instances with producer set sizes ranging from 40 to 200. The in-
stances with 40, 50, and 60 producers were originally generated by Dayarian
et al. (2015b). We also created a set of larger instances with 100 and 200
producers to evaluate our heuristic on larger-scaled instances (These new in-
stances can be found at https://github.com/idayarian/MPVRPSF). Each
instance was considered with 4 or 5 periods, to represent the multi-periodic
aspect of the problem. For each case with 4 or 5 periods, 5 di�erent scenar-
ios {T1, . . . , T5} were explored, di�ering in terms of the distribution of the
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period weights and the SRT level. The details of the instances considered
in this paper are presented in Table 2. The production levels and period
weights are the same as in Dayarian et al. (2015b) and are given in Table 3.

Table 2: Speci�cations of test instances

Number of producers Number of depots Number of plants

40 2, 3 2, 3
50 2, 3 2, 3
50 4, 6 4, 6
60 2, 3 2, 3
60 4, 6 4, 6
100 2, 3, 6 2, 3, 6
200 3, 6 3, 6

Table 3: Weight and production-level distribution of the periods (Dayarian
et al., 2015b)

# periods Type 1 Type 2 Type 3 Type 4 Type 5

4

Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 20 1.30 25 1.20 35 1.10 30 1.10 40
1.50 10 1.50 15 1.35 20 1.20 25 1.30 30
1.70 10 1.70 10 1.50 15 1.40 15 1.70 10

5

Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 15 1.30 20 1.20 25 1.10 25 1.10 35
1.50 15 1.50 15 1.35 20 1.20 20 1.20 25
1.70 5 1.70 10 1.50 10 1.40 15 1.40 15
1.90 5 1.90 5 1.65 5 1.70 10 1.70 5

We ran our ALNS algorithm for each of the test instances and investigated
its performance in terms of solution quality and computational e�ciency.
The algorithm was coded in C++ and the tests were run on computers with
a 2.67GHz processor and 24GB of RAM.
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6.2 Parameter Settings and Sensitivity Analysis

Similarly to most metaheuristics, changing the values of the parameters may
a�ect the performance (but not the correctness) of the algorithm.

We tune the parameters via a blackbox optimizer called Opal (Audet
et al., 2012). One drawback of this optimizer is that as the number of pa-
rameters increases, the accuracy of the algorithm decreases considerably. We
therefore apply a two-phase procedure, where at each phase a subset of the
parameters is tuned. In the �rst phase, the parameters that have a greater
impact on the performance of the algorithm are adjusted using the blackbox
optimizer. In the second phase, the less sensitive parameters are tuned via
trial-and-error. As for the selection of the parameters to be included in each
phase, it was made based on extensive preliminary tests.

We tune the parameters in the �rst subset by �rst determining a range
for each parameter based on preliminary tests. We then �nd the best value
for each parameter using the Opal algorithm (Audet et al., 2012). Opal
takes an algorithm and a parameter matrix (i.e. for each parameter a lower
and an upper bound) as input, and it outputs parameter values based on a
user-de�ned performance measure. Opal models the problem as a blackbox
optimization, which is then solved by a state-of-the-art direct search solver.

To de�ne a performance measure for Opal, we selected a restricted set of
training instances. This set included instances ranging from 40 to 200 pro-
ducer nodes, with 2 to 6 depots and plants. For a given vector of parameters,
we ran each instance �ve times and recorded the average objective function
value. The performance measure is de�ned to be the geometric mean of the
average values of the training instances. Table 4 gives the values found for
the �rst subset of parameters.

We set the initial temperature to T init = 0.05C(s0)
|N | ln(0.5)

, where C(s0) is the
value of the initial solution. By equation (4), setting the initial temperature
to 0.05C(s0)

ln(0.5)
allows us to accept solutions that are 5% worse than the current

solution with a probability of 50%. The choice of these values were inspired
by the tuning performed by Pisinger and Ropke (2007). Preliminary tests
showed that dividing this value by the number of producers improved the
results; similar results were reported by Pisinger and Ropke (2007). We set
the �nal temperature to T fin = T initc25000, allowing a minimum of 25000
iterations. Table 5 gives the resulting values for the second subset.
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Table 4: Parameter values found using Opal

Parameter Range Value

δ Default segment length [50, 150] 70

ϕ Inner loop length [3, 7] 6

γ Number of segments [1, 4] 2
to update operator weights

α Reaction factor in weight update [0, 1] 0.25

c Cooling rate for SA [0.9980, 0.9998] 0.9987

Table 5: Parameter values found by trial and error

Parameter Value

[qmin, qmax] Bounds on number [min(5, 0.05|N |),min(20, 0.4|N |)]
of nodes removed q

Iteradj Number of iterations 20
after which η is updated

Iterhis History used to update η 100

δmin and δmax Bounds on number of infeasible 30 and 45
solutions used to update η

β1, β2 Lengths of lists in central memory 20, 20

σ1, σ2, σ3, σ4 Bonus factors 1, 1, 1, 2
for adaptive weight adjustment
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6.3 Evaluating the Contributions of the Algorithmic Com-

ponents

We studied and now demonstrate the usefulness of various components of our
algorithmic framework. We �rst examine the performance of the di�erent op-
erators, followed by an evaluation of the contribution of each destruction and
construction heuristic. We then examine the gain of including the heuristics
pairing feature, and the local search operators. We also compare our algo-
rithm with an adapted version of the basic ALNS proposed by Pisinger and
Ropke (2007). Finally, we investigate the price of consistency. These compu-
tations are based on a representative subset of 64 instances of di�erent size
combinations. The comparison is measured based on the following metrics:

best: The best value of the routing cost (solution's total cost excluding the
vehicles �xed cost) found over �ve runs;

avg.: The mean value of the routing costs found over the �ve runs.

Furthermore, the variants obtained by excluding either a pairing of heuris-
tics, or local search operators, the basic ALNS as well as the version with no
consistency are also compared on the basis of the CPU time:

CPU time degradation: The percentage of CPU time increase in average
over �ve runs.

6.3.1 Evaluating the Performances of the Operators

Table 6 provides statistics on the probabilities of selecting di�erent operators,
computed at the end of the solution process of the instances in the represen-
tative instance subset. For each operator (pair of destruction-construction
heuristics), three data are given:

min: The minimum probability of being selected at the end of the solution
procedure among the 64 instances;

avg.: The average probability of being selected at the end of the solution
procedure, considering the 64 instances;

max: The maximum probability of being selected at the end of the solution
procedure among the 64 instances.
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Table 6: Final probabilities of choosing di�erent destruction-construction
pair

Destruction Heuristic Construction Heuristic min % avg. % max %

Worst Removal
Regret Insertion 1.03 6.16 17.41
Best-First Insertion 0.01 1.76 6.56
Minimum-Loss Insertion 0.00 2.17 4.75

Cluster Removal
Regret Insertion 1.16 6.27 11.14
Best-First Insertion 0.11 3.19 9.52
Minimum-Loss Insertion 0.03 3.19 6.68

Route Removal
Regret Insertion 0.00 2.32 10.51
Best-First Insertion 0.00 0.50 4.03
Minimum-Loss Insertion 0.00 1.81 6.03

Smart Removal
Regret Insertion 1.55 6.86 14.32
Best-First Insertion 0.15 2.68 8.55
Minimum-Loss Insertion 0.62 3.69 7.93

Paired-Related Removal
Regret Insertion 2.50 7.68 11.24
Best-First Insertion 0.67 2.55 4.49
Minimum-Loss Insertion 0.91 3.35 5.03

Solution-Cost-Based Related Removal
Regret Insertion 2.66 8.63 15.87
Best-First Insertion 0.12 2.88 11.49
Minimum-Loss Insertion 0.00 1.58 5.63

Route-Cost-Based Related Removal
Regret Insertion 0.46 6.66 17.20
Best-First Insertion 0.00 1.95 7.69
Minimum-Loss Insertion 0.00 1.07 7.65

Depot-Producer-Related Removal
Regret Insertion 0.47 7.26 23.31
Best-First Insertion 0.01 2.47 11.98
Minimum-Loss Insertion 0.11 2.60 9.62

Plant-Producer-Related Removal
Regret Insertion 0.53 7.07 13.16
Best-First Insertion 0.02 1.85 6.08
Minimum-Loss Insertion 0.02 1.81 8.18
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The minimum, average and maximum probabilities are distributed in
[0.00, 2.66], [0.5, 8.63] and [4.03, 23.31] intervals, respectively. Moreover, the
average of the values under the columns min, avg., and max are 0.49%, 3.70%
and 9.85%, respectively. The results show that considering all the instances,
at some point, each operator is useful. The signi�cant variations between the
min and max �nal probabilities in the case of some operators, such as the
Depot-Producer-Related Removal with the Regret Insertion or the Route-
Cost-Based Related Removal with the Regret Insertion show the importance
of the adaptation layer. Even in the case of the operator formed of Route
Removal with Best Insertion, which represents the smallest average �nal
probability, in an instance its �nal probability was 4.03, which is larger than
1/27, its probability if no adaptation was considered. In fact, an operator
may be strongly e�cient in the case of an instance, while the same operator
does not contribute signi�cantly for another instance. The results also show
that the adaptive layer of the algorithm allows the probability adjustment
with respect to the characteristics of each instance.

Moreover, as we see in Table 6, the �nal probabilities of all operators
that use the Regret Insertion outweigh the other operators. However, as we
will show in Section 6.3.2, the exclusion of the operators that either use the
Best-First Insertion or the Minimum-Loss Insertion leads to a degradation
in the performance of the algorithm. Therefore, these operators are kept in
the algorithm.

6.3.2 Evaluating the Contributions of the Heuristics

Table 7 provides statistics on the removal and insertion heuristics. We ran
each instance �ve times while excluding one heuristic and keeping the others.
Whenever a heuristic is excluded, the whole block of operators using that
heuristic are disabled. For each instance, we recorded the average result over
the �ve runs of the 64 instances of the representative set. The comparison is
done based on the average percentage of solution degradation (columns Best
sol. deg. over �ve runs and Avg. deg. over �ve runs) and also the maximum
percentage of solution degradation (columns Max best sol. deg. over �ve runs
and Max avg. deg. over �ve runs). The maximum degradation shows the
maximum loss corresponding to the exclusion of the block of operators using a
speci�c heuristic in at least one of the instances of the representative set. Note
that the values in the �rst two columns of Table 7 indicate the degradation
in the geometric mean of the values obtained for all the instances in the
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considered subset. We use the geometric mean because the subset includes
problems of di�erent sizes with varying objective values. With the geometric
mean the degradation's in smaller instances' objectives is not dominated by
the larger ones.

Table 7: Evaluation of contribution (%) of each heuristic

Heuristic
Best sol. deg. Avg. deg. Max best sol. deg. Max avg. deg.
over �ve runs over �ve runs over �ve runs over �ve runs

Worst Removal 0.02 0.11 0.97 0.85
Cluster Removal 0.02 0.07 0.72 0.65
Route Removal 0.12 0.21 1.40 1.73
Smart Removal 0.03 0.11 0.74 0.90
Paired-Related Removal 0.08 0.13 1.37 1.23
Solution-Cost-Based Related Removal 0.10 0.16 1.53 1.35
Route-Cost-Based Related Removal 0.04 0.09 0.68 1.07
Depot-Producer-Related Removal 0.09 0.15 1.50 1.21
Plant-Producer-Related Removal 0.15 0.20 1.75 1.44
Regret Insertion 0.18 0.32 1.27 2.27
Best-First Insertion 0.03 0.08 0.92 0.86
Minimum-Loss Insertion 0.13 0.19 1.39 1.10

These results indicate the usefulness of all of our destruction and con-
struction heuristics in the case of this problem setting. Overall, the plant-
producer-related removal is the most e�cient removal heuristic, followed by
the route removal and Solution-Cost-Based Related Removal heuristics. Re-
gret insertion is the most useful insertion heuristic, followed by the minimum-
loss insertion heuristic.

6.3.3 Evaluating the Performance of Destruction-Construction Heuris-
tics Pairing

Table 8 synthesizes results on the contribution of particular algorithmic com-
ponents. It provides, in particular, the average deterioration of the variant
of the algorithm in which destruction and construction heuristics are con-
sidered individually rather than in pairs for di�erent instance sizes. This
is equivalent to consider two separate pools of heuristics (destruction and
construction), while the choice of heuristics from each pool is performed in-
dependently. In this variant, at the end of each iteration of the algorithm,
the scores of the two heuristics used are incremented using the bonus factors,
presented in Section 4.4.

The �gures in Table 8 show that when no pairing is used to de�ne the
operators, the results observed deteriorate, on average, by 0.12% to 0.40%,
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and 0.23% to 0.29% respectively for the best solution observed over �ve runs
and the average solution quality obtained over �ve runs, depending on the
instance size. While the improvement in terms of solution quality does not
seem to be signi�cant, the saving in CPU time seems quite favorable. In fact,
heuristic pairing allows us to improve the total CPU time by 11.88-30.07% on
average. Based on these results the use of the heuristics pairing is motivated.

6.3.4 Evaluating the Contribution of the Local Search

Table 8 compares the results of our algorithm with the variant in which
the local search operators at the end of each segment are disabled. The
absence of the local search operators in the algorithm incurs a degradation
of 0.02% to 1.28% in the value of the best solution over �ve runs as well as
a degradation of 0.03% to 1.08% in the average value of the �ve runs for the
instances with 40 to 200 producers. Moreover, the local search causes an
increase in the CPU time ranging from 0.24% to 10.23% for instances with
40 to 200 producers. While the local search operators' contribution seems to
be marginal in the case of smaller instances (where ALNS can often �nd the
optimal solution), their inclusion in the algorithm appears more promising
in the case of larger instances. Considering the trade-o� between CPU time
increase and improved solution quality, it seems valuable to include the local
search operators in the algorithm.

6.3.5 Evaluating the Performance of the basic ALNS

We also compare the results obtained from our implementation of the basic
ALNS introduced by Pisinger and Ropke (2007) with those obtained from our
proposed algorithm. This translates in disabling several additional features
proposed in this paper. These modi�cations are:

• Destruction-construction heuristics pairing is disabled. Each destruc-
tion or construction heuristic is treated separately;

• At each iteration, instead of ϕ neighbors of the current solution, only
one neighbor is explored. In return the number of iterations before
stopping the algorithm is set to 25000ϕ;

• The repetition schedule in the master level is disabled. This is equiv-
alent to lowering the temperature in the SA mechanism at the end of
each iteration.;

33

An Adaptive Large-Neighborhood Search Heuristic for a Multi-Period Vehicle Routing Problem

CIRRELT-2016-35



• Following the previous point, the weight adjustment of the heuristics is
not performed dynamically: we adjust the weights after δγ iterations;

• The local search operators are disabled;

• A noise to the insertion cost was added as described in Ropke and
Pisinger (2006);

• A large penalty associated with infeasible solutions is added, as Pisinger
and Ropke (2007) consider only feasible solutions;

• The list of employed destruction and construction heuristics in this
variant is:

• Random Removal;

• Worst Removal;

• Cluster Removal;

• Route Removal;

• Solution-Cost-Based Related Removal (Historical node-pair re-
moval);

• Paired-Related Removal (Historical request-pair removal);

• Regret Insertion;

• Best Insertion.

Note that the historical request-pair removal proposed by Pisinger and
Ropke (2007) is based on the memory of the top 100 solutions. Accordingly,
we replace our central memory with a list of the top 100 solutions.

As reported in Table 8, our proposed algorithm improves the best solution
over 5 runs compared to the basic ALNS algorithm of Pisinger and Ropke
(2007) from 0.76% to 4.76 % for the instances with the number of producers
ranging from 40 to 200. The improvement of the average solution cost over
5 runs ranges from 1.91% to 6.32% depending on the size of the instances.
The larger CPU time (76.39-80.24% more) can be explained by the use of a
larger number of iterations.
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6.3.6 Price of Consistency

We �nally investigate the price of forcing consistency of the routing plan
over the horizon. More precisely, we would like to see how the routing cost
would change if we had the capacity of reoptimizing our routing plan for
every period. It is worth mentioning that in many real-world contexts, such
as the milk collection problem introduced in Dayarian et al. (2015b), the
contractual procedure does not allow multiple routing plans as the basis of
negotiations. Moreover, due to the �xed cost associated with each contract
sign o� procedure, it would be unrealistic to sign a contract per period.
However, we believe that comparing the results of the routing plans where no
consistency is imposed over di�erent periods of the horizon would give some
managerial insights into how often di�erent stakeholders should undergo a
contract sign o� procedure.

Towards this end, every period is considered independently, while allowing
at most one failure per route per period. That is, while the number of routes
may remain the same from one period to another, the structure of routes
and therefore their cost may be very di�erent. Consequently, a producer
may be served by di�erent drivers in di�erent periods. Also, note that due
to the high �xed cost of vehicles, it might still be bene�cial for vehicles to
perform an extra round trip to the depot, rather than enlarging the �eet size
in periods with high production. Let xξ and Cξ(xξ) be the routing solution
and the total cost of that solution associated with period ξ ∈ Ξ. The total
cost, CH , over horizon H can be obtained using the following equation:

CH =
∑
ξ∈Ξ

WξCξ(xξ). (32)

Table 8 reports the potential cost savings for di�erent size classes of in-
stances, if the consistency restriction over the horizon was removed. Note
that when the problems associated with each period are solved separately,
the total CPU time is obtained by adding up the time spent to solve each
period. Therefore, an increase in the total CPU time of the version with no
consistency is expected.

6.4 Computational Results

Detailed results obtained by applying our algorithm to the instances de-
scribed in Section 6.1 are given in Tables 9 �16, where:
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Table 8: Evaluation of contribution of algorithmic components

Algorithm
Instance Best sol. degradation Ave. degradation

CPU time degradation (%)
size over �ve runs (%) over �ve runs (%)

No Heuristic Pairing

40 0.12 0.23 28.24
50 0.16 0.28 28.59
60 0.20 0.27 30.07
100 0.40 0.29 18.88
200 0.36 0.29 21.22

No Local Search

40 0.02 0.03 -0.24
50 0.08 0.17 -2.75
60 0.38 0.33 -0.87
100 0.76 0.57 -3.82
200 1.28 1.08 -10.23

Basic ALNS

40 0.76 1.91 76.39
50 1.17 2.21 71.48
60 2.13 3.36 38.84
100 4.31 5.40 76.82
200 4.76 6.32 80.24

No Consistency

40 -4.62 -4.43 347.77
50 -4.09 -3.97 361.24
60 -3.94 -3.99 357.90
100 -3.34 -3.56 327.52
200 -2.09 -1.53 326.75

Bounds on opt. sol. are the lower and upper bounds obtained as described
in Section 5;

BP LP bound DCGR is the solution of the linear relaxation of the branch-
and-price of Dayarian et al. (2015b), whenever their algorithm was able
to provide a bound in a 10-hour CPU time limit (reported for instances
with 100 or 200 producers);

BKS DCGR is the optimal solution from Dayarian et al. (2015b), whenever
it is available;

T (s) DCGR is the computational time of the branch-and-price algorithm
of Dayarian et al. (2015b);

ALNS best over 5 is the best solution found over 5 runs of the ALNS;

ALNS avg. over 5 is the average of the solutions found over the 5 runs;

% dev. total cost is the standard deviation of the total cost from the
ALNS best over the 5 runs;
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% dev. routing cost is the standard deviation of the routing cost from the
ALNS best over the 5 runs;

T (s) ALNS avg. is the average computational time of the �ve runs;

% dev. ALNS best from DCGR is the deviation of the ALNS best from
the BKS DCGR;

% dev. ALNS best from LB is the deviation of the ALNS best from the
lower bound reported in column �Bounds on opt. sol.�;

% dev. DCGR from LB is the deviation of the BKS DCGR from the
lower bound reported in column �Bounds on opt. sol.�.

For the smaller instances (with 40, 50, and 60 producers), some optimal
solutions are reported in Tables 9 � 13 in column BKS DCGR. We also gen-
erate lower and upper bounds as described in Section 5. The lower bound
has two parts: 1) the value of the optimal solution for the VRP for the ref-
erence period, and 2) a lower bound on the total recourse cost, based on the
bin-packing formulation described in Section 5. For the �rst part, we adapt
the algorithm proposed by Dayarian et al. (2015a) for the deterministic vari-
ant of the problem to solve the VRP corresponding to the reference period.
This algorithm can solve some instances with up to 60 producers; we do not
report bounds for larger problems. We solved the bin-packing formulation
using Cplex 12.6. We compute the upper bound by evaluating the cost of
the solution to the reference period, based on the objective function of the
multi-period problem.

Table 9 gives the results for the instances with 40 producers. Results
show that in the case of 20 out of the 29 instances with known optimal
solutions, the best solution obtained by ALNS over 5 runs corresponds to
the optimal solution. Moreover the average optimality gap of the best ALNS
solutions over these 29 instances is 0.02%. The average deviation of the best
ALNS solutions from the lower bound over the 34 instances for which the
lower bound is available is 1.29%. We also calculated the deviation of the
BKS DCGR from the lower bound, for the cases where both these values are
available. The average deviation BKS DCGR from the lower bound over the
24 instances for which the BKS DCGR and the lower bound are available was
1.28 %. The similitude between the deviations from the lower bound in the
case of the BKS DCGR and the ALNS Best shows the quality of the ANLS
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Best even when the BKS DCGR is not available for the basis of comparison.
In terms of CPU time, in the case of the instances with 40 producers, the
gain of using the ALNS compared to the exact solution method is signi�cant
(29 seconds vs. 6128 seconds on average).

Tables 10 and 11 report the results for the instances with 50 producers.
We divided these instances into two groups with 2/3 or 4/6 depots and plants.
Results show that, on average, an increase in the number of depots or plants
does not necessarily a�ect the performance of the ALNS. A smaller number
of available optimal solutions in the case of the BKS DCGR for the instances
with a larger number of depot/plant shows the limits of the exact method.
However, the comparison of the average optimality gap (% dev ALNS best
from DCGR) in Tables 10 and 11, 0.05 % vs. 0.03 %, shows that the ALNS
dealt well facing an increase in the number of depots/plants. Moreover,
in Table 10, in the case of 17 out of 24 instances for which the optimal
solutions are available, the ALNS best coincides with the optimal value. In
terms of CPU, comparing the computation time of those 24 instances reached
optimality using the algorithm of DCGR and the 40 instances solved by the
ALNS, we observe a signi�cant reduction (4509 vs. 42 seconds). As for
the second part of instances with 50 producers, reported in Table 11, the
ALNS best corresponds to the optimal solution BKS DCGR in the case of
7 instances out of 12 with known optimal solutions. The comparison of
CPU based on only those 12 instances solved by the algorithm DCGR and
all the 40 instances solved by the ALNS reveals a decrease from over 6300
seconds to 80 seconds. Similar to the case of the instances with 40 producers,
comparable values representing the average deviation of ALNS best from the
lower bound and the average deviation of DCGR from the lower bound ,
whenever the corresponding values are available. This further supports the
claim that our ALNS is able to provide high-quality results (1.24 vs. 1.34
and 1.13 vs. 0.80).

Tables 12 and 13 show results for instances with 60 producers. The
analyses of the results are more limited, as less information regarding the
optimal solution values and the lower bounds is available for these instances.
It can be observed that increasing the number of depots/plants made the
problems harder on average. This is obvious from a larger average deviation
of ALNS best from BKS DCGR in the case of instances with larger numbers
of depots/plants. Moreover, an increase in the value of the average deviation
of the routing cost from the best ALNS comparing to instances with 40 and 50
producers shows the higher di�culty of these instances. Similar to the results
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obtained for the instances with 40 and 50 producers, a signi�cant reduction
in CPU time is observed in the case of the instances with 60 producers (part
1: 8164 seconds for the exact algorithm vs. 55 second for the ALNS, part 2:
6297 seconds for the exact algorithm vs. 111 seconds for the ALNS).

Overall, an increase in the number of depots and/or plants (which po-
tentially leads to a larger number of routes to be included in the solution),
increases the average CPU time (e.g., in the case of instances with 40 pro-
ducers: 22 seconds for 2D2P4S vs. 32 seconds for 3D3P4S, in the case of
instances with 50 producers: 33 seconds for 2D2P4S vs. 100 for 6D6P4S, and
in the case of instances with 60 producers: 41 second in the case of 2D2P4S
vs. 145 seconds in the case of 6D6P4).

The results for the instances with 100 and 200 producers, reported in
Tables 14 � 16, show that larger problems are more di�cult. Increasing the
number of plants has a greater impact than increasing the number of depots,
on both the computational time and the deviation from the best solution
obtained by restarting. In order to better evaluate the performance of our
metaheuristic for the instances with 100 and 200 producers, we also report
the value of the linear relaxation obtained based on the branch-and-price
approach of Dayarian et al. (2015b). Note that their branch-and-price was
only able to solve instances with up to 60 producers. In Tables 14 � 16, we
only report those bounds which were attained within a 10-hour CPU time
limit. The results show that the average gaps between the total routing cost
obtained using our ALNS and the LB based on the linear relaxation of the
problem are 0.54% and 0.77% for the instances with 100 and 200 producers,
respectively. It is noticeable that the metaheuristic we propose is able to
generate high quality solutions within low computational e�orts even for
these di�cult instances.

7 Conclusions

We have investigated the design of tactical plans for a transportation prob-
lem inspired by real-world milk collection in Quebec. To take the seasonal
variations into account, we modeled the problem as a multi-period VRP. We
developed an ALNS algorithm incorporating several heuristics for this VRP.

We tested the algorithm on a large set of instances of di�erent sizes.
The results for the smaller instances were compared with the existing exact
solutions in the literature. For the larger instances, where optimal solutions
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were not available, we computed lower and upper bounds on the value of the
solution.

While the problem investigated in this paper is rather speci�c, we believe
that many insights gained from the application of the proposed method to
this problem could be extended to other complex vehicle routing problems.

Future research will include more attributes and constraints such as soft
time windows on the collection, restrictions on the route length, and het-
erogeneous �eets of vehicles. We also plan to consider the situation where
a vehicle may perform several deliveries to more than one plant per day. It
would also be interesting to take into account the daily variations in the
production levels. This transforms the problem into a VRP with stochastic
demands.
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Table 14: Results for instances with 100 producers (1)

Instance BP LP bound ALNS best ALNS avg. % dev % dev % dev T (s)
DCGR over 5 over 5 total cost routing cost BP LP

pr-100-2D2P4S-T1 - 29519.2 29532.1 0.05 0.21 - 72
2 depots pr-100-2D2P4S-T2 - 29831.6 29838.2 0.03 0.14 - 71
2 plants pr-100-2D2P4S-T3 - 30193.8 30204.8 0.05 0.18 - 73
4 periods pr-100-2D2P4S-T4 - 29968.2 29988.2 0.09 0.35 - 74

pr-100-2D2P4S-T5 - 30251.3 30268 0.07 0.28 - 77
pr-100-2D2P5S-T1 - 29580.4 29591.2 0.04 0.18 - 79

2 depots pr-100-2D2P5S-T2 - 29892.1 29910.4 0.07 0.29 - 78
2 plants pr-100-2D2P5S-T3 - 29965 29988.7 0.09 0.37 - 77
5 periods pr-100-2D2P5S-T4 - 30100.9 30119 0.07 0.29 - 83

pr-100-2D2P5S-T5 - 30228.9 30248.8 0.08 0.33 - 85
pr-100-2D3P4S-T1 26309.3 26407.4 26416.5 0.04 0.22 0.37 57

2 depots pr-100-2D3P4S-T2 26501 26585.5 26609.1 0.1 0.48 0.32 56
3 plants pr-100-2D3P4S-T3 26722.1 26830.6 26857.3 0.12 0.56 0.41 60
4 periods pr-100-2D3P4S-T4 26586.6 26666.9 26710.9 0.19 0.92 0.30 60

pr-100-2D3P4S-T5 26812.8 26925.1 26939.5 0.07 0.32 0.42 57
pr-100-2D3P5S-T1 - 26415.1 26430.8 0.07 0.36 - 61

2 depots pr-100-2D3P5S-T2 26544.4 26626.5 26648.8 0.09 0.45 0.31 63
3 plants pr-100-2D3P5S-T3 26592.7 26671.8 26691.4 0.09 0.43 0.30 61
5 periods pr-100-2D3P5S-T4 26694.2 26786 26832.1 0.22 1 0.34 63

pr-100-2D3P5S-T5 26779.1 26859.8 26920 0.27 1.26 0.30 66
pr-100-2D6P4S-T1 26725.9 26940.4 26964.9 0.1 0.47 0.80 98

2 depots pr-100-2D6P4S-T2 26933.4 27148.6 27179.1 0.14 0.6 0.80 99
6 plants pr-100-2D6P4S-T3 27143.1 27418.9 27462.9 0.19 0.81 1.02 113
4 periods pr-100-2D6P4S-T4 26832.8 27164.5 27178.7 0.08 0.35 1.24 119

pr-100-2D6P4S-T5 27035 27413.6 27464.6 0.25 1.05 1.40 114
pr-100-2D6P5S-T1 26759.7 26946.5 26980.7 0.15 0.67 0.70 114

2 depots pr-100-2D6P5S-T2 26986.6 27171.6 27218.3 0.2 0.87 0.69 116
6 plants pr-100-2D6P5S-T3 27021.4 27225.8 27248.9 0.11 0.47 0.76 121
5 periods pr-100-2D6P5S-T4 27023.7 27338.8 27347.6 0.04 0.18 1.17 130

pr-100-2D6P5S-T5 27020.4 27430.4 27451.9 0.1 0.44 1.52 131
pr-100-3D2P4S-T1 23727.7 23774.1 23791.6 0.11 0.43 0.20 89

3 depots pr-100-3D2P4S-T2 23949.1 24038.8 24049.3 0.05 0.2 0.37 86
2 plants pr-100-3D2P4S-T3 24200 24269.8 24296.2 0.14 0.52 0.29 92
4 periods pr-100-3D2P4S-T4 23971.2 24070.5 24084.5 0.08 0.33 0.41 83

pr-100-3D2P4S-T5 24189.1 24289.4 24300.6 0.06 0.24 0.41 85
pr-100-3D2P5S-T1 23761.5 23808.4 23811 0.02 0.07 0.20 86

3 depots pr-100-3D2P5S-T2 23999.2 24062.1 24073.7 0.06 0.22 0.26 97
2 plants pr-100-3D2P5S-T3 24051.7 24110.6 24127.9 0.1 0.38 0.24 97
5 periods pr-100-3D2P5S-T4 24130.5 24204.8 24233.4 0.14 0.53 0.31 106

pr-100-3D2P5S-T5 24186.1 24311 24315.2 0.03 0.11 0.52 107
Avg. 26986.1 27008.2 0.10 0.44 0.56 (29) 86.4
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Table 15: Results for instances with 100 producers (2)

Instance BP LP bound ALNS best ALNS avg. % dev % dev % dev T (s)
DCGR over 5 over 5 total cost routing cost BP LP

pr-100-3D3P4S-T1 27622 27704.8 27740 0.14 0.59 0.30 101
3 depots pr-100-3D3P4S-T2 27822.5 27904.7 27927.7 0.11 0.45 0.30 102
3 plants pr-100-3D3P4S-T3 28013.4 28143.9 28163.3 0.09 0.35 0.47 101
4 periods pr-100-3D3P4S-T4 27704.3 27803.8 27852.6 0.2 0.82 0.36 107

pr-100-3D3P4S-T5 27937.4 28037.4 28081.3 0.18 0.7 0.36 110
pr-100-3D3P5S-T1 27677.3 27768.7 27779.1 0.05 0.19 0.33 107

3 depots pr-100-3D3P5S-T2 27909.5 27990.1 28015.9 0.1 0.42 0.29 107
3 plants pr-100-3D3P5S-T3 27902 28006.1 28023.4 0.07 0.28 0.37 111
5 periods pr-100-3D3P5S-T4 27937.7 28038 28067.5 0.14 0.54 0.36 119

pr-100-3D3P5S-T5 27920.5 28067.9 28076.4 0.04 0.15 0.53 121
pr-100-3D6P4S-T1 33350.2 33482.8 33489.6 0.03 0.14 0.40 134

3 depots pr-100-3D6P4S-T2 33472.6 33605.1 33652.9 0.16 0.81 0.40 136
6 plants pr-100-3D6P4S-T3 33373.1 33501.3 33534.9 0.11 0.59 0.38 148
4 periods pr-100-3D6P4S-T4 33047.9 33185.2 33195.4 0.04 0.22 0.42 150

pr-100-3D6P4S-T5 33248.2 33413.7 33435.1 0.08 0.42 0.50 157
pr-100-3D6P5S-T1 33411.3 33531.2 33560.7 0.1 0.52 0.36 139

3 depots pr-100-3D6P5S-T2 33572.9 33751.2 33760.5 0.04 0.19 0.53 141
6 plants pr-100-3D6P5S-T3 33381.5 33512.3 33540.2 0.09 0.48 0.39 154
5 periods pr-100-3D6P5S-T4 33361.9 33500.2 33519.6 0.07 0.35 0.41 163

pr-100-3D6P5S-T5 33211.4 33345.4 33362.3 0.06 0.3 0.40 162
pr-100-6D2P4S-T1 26212.7 26283.4 26289.4 0.03 0.15 0.27 95

6 depots pr-100-6D2P4S-T2 26397.2 26482.9 26487.5 0.02 0.1 0.32 94
2 plants pr-100-6D2P4S-T3 26610.1 26721.2 26724.1 0.01 0.06 0.42 110
4 periods pr-100-6D2P4S-T4 26448.8 26557 26572 0.07 0.34 0.41 89

pr-100-6D2P4S-T5 26675.5 26790.2 26812.8 0.1 0.45 0.43 116
pr-100-6D2P5S-T1 26251.7 26319.1 26324.4 0.03 0.12 0.26 100

6 depots pr-100-6D2P5S-T2 26464.9 26533.7 26541.4 0.03 0.17 0.26 121
2 plants pr-100-6D2P5S-T3 26491.9 26592 26598.1 0.03 0.13 0.38 116
5 periods pr-100-6D2P5S-T4 26605.6 26710.7 26729.7 0.08 0.39 0.40 122

pr-100-6D2P5S-T5 26661 26793.7 26801.2 0.04 0.16 0.50 113
pr-100-6D3P4S-T1 26739.7 26829.5 26838.3 0.04 0.18 0.34 109

6 depots pr-100-6D3P4S-T2 26936.1 27056.5 27069 0.05 0.24 0.45 112
3 plants pr-100-6D3P4S-T3 27129.2 27256.4 27289.8 0.14 0.6 0.47 115
4 periods pr-100-6D3P4S-T4 26865.5 26980.3 26994.1 0.06 0.27 0.43 122

pr-100-6D3P4S-T5 27088.5 27225.3 27239.1 0.07 0.3 0.51 125
pr-100-6D3P5S-T1 26778.6 26852.4 26858.2 0.03 0.13 0.28 114

6 depots pr-100-6D3P5S-T2 27004.1 27089.7 27110.9 0.09 0.4 0.32 117
3 plants pr-100-6D3P5S-T3 27013.2 27140.4 27152.4 0.05 0.23 0.47 120
5 periods pr-100-6D3P5S-T4 27067.7 27147.4 27177.6 0.13 0.57 0.29 129

pr-100-6D3P5S-T5 27065.8 27176.4 27190.5 0.06 0.28 0.41 132
pr-100-6D6P4S-T1 30406.2 30673 30705.2 0.15 0.68 0.88 210

6 depots pr-100-6D6P4S-T2 30601.6 30878.8 30919.7 0.16 0.7 0.91 208
6 plants pr-100-6D6P4S-T3 30687.2 31076 31109.8 0.15 0.66 1.27 218
4 periods pr-100-6D6P4S-T4 30402.6 30795.9 30824.8 0.12 0.53 1.29 226

pr-100-6D6P4S-T5 30613.5 31072.9 31099.1 0.1 0.46 1.50 231
pr-100-6D6P5S-T1 30463.5 30729 30754.4 0.1 0.47 0.87 215

6 depots pr-100-6D6P5S-T2 30684.8 30929.2 30974.6 0.19 0.83 0.80 216
6 plants pr-100-6D6P5S-T3 30623.7 30995.4 31027.9 0.13 0.58 1.21 223
5 periods pr-100-6D6P5S-T4 30656.6 30964.4 31026.3 0.24 1.07 1.00 233

pr-100-6D6P5S-T5 30614 30943.6 31002.7 0.27 1.19 1.08 240
Avg. 29197.8 29220.5 0.09 0.42 0.53 141.22
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Table 16: Results for instances with 200 producers

Instance BP LP bound ALNS best ALNS avg. % dev % dev % dev T (s)
DCGR over 5 over 5 total cost routing cost BP LP

pr-200-3D3P4S-T1 - 53888 53915.7 0.06 0.26 - 167
3 depots pr-200-3D3P4S-T2 - 54490.3 54514.3 0.06 0.22 - 165
3 plants pr-200-3D3P4S-T3 - 55283.6 55326.7 0.1 0.36 - 172
4 periods pr-200-3D3P4S-T4 54656.5 54907 54985.3 0.17 0.63 0.46 186

pr-200-3D3P4S-T5 - 55642 55682.7 0.09 0.33 - 192
pr-200-3D3P5S-T1 - 53968.6 53995.9 0.06 0.24 - 174

3 depots pr-200-3D3P5S-T2 - 54525.8 54564.7 0.08 0.33 - 176
3 plants pr-200-3D3P5S-T3 - 54817.5 54860.6 0.09 0.35 - 182
5 periods pr-200-3D3P5S-T4 - 55176.1 55210.7 0.08 0.3 - 184

pr-200-3D3P5S-T5 - 55519.3 55551.3 0.08 0.29 - 195
pr-200-3D6P4S-T1 - 49392.1 49440.8 0.11 0.54 - 207

3 depots pr-200-3D6P4S-T2 - 49871.4 49977.6 0.26 1.2 - 202
6 plants pr-200-3D6P4S-T3 - 50415.7 50505.7 0.21 0.95 - 194
4 periods pr-200-3D6P4S-T4 - 50163.1 50193.6 0.08 0.36 - 202

pr-200-3D6P4S-T5 - 50753.3 50767.6 0.04 0.17 - 204
pr-200-3D6P5S-T1 - 49435.4 49509.5 0.17 0.82 - 217

3 depots pr-200-3D6P5S-T2 - 49913.3 50014.5 0.23 1.06 - 215
6 plants pr-200-3D6P5S-T3 - 50124.4 50178.7 0.12 0.56 - 213
5 periods pr-200-3D6P5S-T4 - 50382.9 50439.2 0.13 0.56 - 212

pr-200-3D6P5S-T5 - 50668.5 50700.9 0.08 0.35 - 218
pr-200-6D3P4S-T1 49775.3 50071.9 50118 0.1 0.47 0.6 189

6 depots pr-200-6D3P4S-T2 50237.5 50576.1 50606.9 0.08 0.33 0.67 194
3 plants pr-200-6D3P4S-T3 - 51270.7 51318.6 0.11 0.46 - 200
4 periods pr-200-6D3P4S-T4 - 50913.8 50987.5 0.16 0.69 - 216

pr-200-6D3P4S-T5 - 51526.7 51605.9 0.18 0.75 - 211
pr-200-6D3P5S-T1 49836.2 50113 50152.8 0.1 0.46 0.56 188

6 depots pr-200-6D3P5S-T2 50336.3 50644.7 50688.8 0.11 0.46 0.61 198
3 plants pr-200-6D3P5S-T3 50533.4 50942.2 50967.5 0.07 0.29 0.81 202
5 periods pr-200-6D3P5S-T4 50801.7 51235.6 51311.9 0.18 0.74 0.85 217

pr-200-6D3P5S-T5 - 51426.1 51537 0.26 1.06 - 224
pr-200-6D6P4S-T1 57539.4 57968.5 58008.4 0.08 0.37 0.75 318

6 depots pr-200-6D6P4S-T2 58028.9 58522.4 58565.8 0.09 0.38 0.85 329
6 plants pr-200-6D6P4S-T3 - 58977.3 59060.3 0.16 0.69 - 351
4 periods pr-200-6D6P4S-T4 57808.6 58463.3 58536 0.15 0.65 1.13 359

pr-200-6D6P4S-T5 58305.8 59006.3 59039.8 0.07 0.29 1.2 369
pr-200-6D6P5S-T1 57598.2 58006.9 58058.9 0.11 0.49 0.71 331

6 depots pr-200-6D6P5S-T2 58155.4 58597.2 58654.8 0.12 0.5 0.76 330
6 plants pr-200-6D6P5S-T3 - 58701.8 58742.1 0.09 0.36 - 344
5 periods pr-200-6D6P5S-T4 - 58880.1 58907.4 0.05 0.23 - 363

pr-200-6D6P5S-T5 - 58891.3 58969.3 0.17 0.72 - 379
Avg. 53601.9 53654.3 0.12 0.51 0.77 (13) 235
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Appendix A: Two-stage mathematical formula-

tion for the MPVRPSF

To introduce the ��rst-stage formulation� of the problem, we de�ne binary
variables xdpijk equal to 1 if and only if vehicle k, departing form depot d
and delivering to plant p, visits producer nj immediately after visiting ni.
Therefore, the �rst-stage formulation takes the following form:

min mck +
∑
p∈P

∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

cijx
dp
ijk + F(x) (33)

subject to

m =
∑
p∈P

∑
d∈D

∑
k∈K

∑
j∈V

xdpdjk; (34)∑
i∈V

xdpihk −
∑
i∈V

xdphik = 0 (h ∈ V , k ∈ K, d ∈ D, p ∈ P); (35)∑
p∈P

∑
d∈D

∑
j∈V

xdpdjk ≤ 1 (k ∈ K); (36)∑
i∈V

orefi
∑
j∈V

xdpijk ≤ Q (k ∈ K, d ∈ D, p ∈ P); (37)∑
d∈D

∑
k∈K

∑
i∈V

orefi
∑
j∈V

xdpijk ≥ Dref
p (p ∈ P); (38)∑

i∈V

∑
j∈V

xdpijk ≤ |S| − 1 (k ∈ K, d ∈ D, p ∈ P ,S ⊆ V , |S| ≥ 2);(39)

xdpijk ∈ {1, 0} (i, j ∈ V , k ∈ K, d ∈ D, p ∈ P). (40)

In this formulation, the objective function computes the total cost of a
solution, which has three components: 1) the �xed vehicle costs; 2) the �rst-
stage routing cost, obtained by summing the costs of the planned routes; and
3) the second-stage routing cost F(x), which is de�ned as the average recourse
costs computed over the di�erent periods of the horizon (a full de�nition of
F(x) is provided in equation (41) and model (42)-(50)). Constraint (34)
counts the number of vehicles. The role of constraints (35) is to ensure that
when a vehicle arrives at a producer it also leaves that producer. Constraints
(36) specify that each vehicle is used at most once. Limits on vehicle capacity
are imposed through constraints (37). Constraints (38) guarantee that the
plant demands are satis�ed. Finally, constraints (39) are standard subtour
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elimination constraints
To de�ne the �second-stage� problem, let dk and pk indicate the original

depot and the plant visited by vehicle k, respectively. For the sake of sim-
plicity, in the second-stage formulation, the �xed �rst-stage variable xdkpkijk is
reduced to xijk, as the information regarding dk and pk is encoded in index
k. The parameter vector oξ represents the supplies in period ξ. We also
de�ne zξijk as the �ow on arc (i, j) for all i, j ∈ V traveled by vehicle k in
period ξ. Finally, de�ne the intermediate variable wξik that takes the value
1 when a failure occurs as producer ni is serviced by vehicle k in period ξ
and 0 otherwise. Therefore, zξ and wξ represent the vectors of zξijk and w

ξ
ik,

respectively. The recourse problem is de�ned using the �ow-based formula-
tion (42)-(50), assuming that parameterM is a large constant such that both
MQ and termsMoξj for all j ∈ N , and ξ ∈ Ξ, are integers (Such a constant is
guaranteed to exist as long as all problem data are rational numbers). This
second-stage formulation was �rst proposed by Dayarian et al. (2015b) for
the same problem.

F(x) =
∑
ξ∈Ξ

WξF (x, oξ) (41)

where

F (x, oξ) = min
∑
k∈K

∑
i∈N

2cipkw
ξ
ik (42)

subject to

zξijk ≤ Qxijk (i, j ∈ V , k ∈ K), (43)

wξik ≤
∑
j∈N

xijk (i ∈ V , k ∈ K), (44)∑
j∈N

zξdkjk = 0 (k ∈ K), (45)∑
j∈N∪P

zξijk =
∑

j∈N∪D

zξjik + oξi −Qw
ξ
ik (i ∈ N , k ∈ K), (46)

Mzξijk ≥ xijk (i, j ∈ N ∪ P , k ∈ K), (47)∑
j∈N

wξjk ≤ 1 (k ∈ K), (48)

zξ ≥ 0, (49)

wξik ∈ {0, 1} (i ∈ N , k ∈ K). (50)
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Equation (41) de�nes F(x) as the average recourse cost over the consid-
ered planning horizon. In a given period, for a speci�c �rst-stage solution,
the recourse cost is obtained by solving model (42)-(50). The objective func-
tion (42) returns the recourse cost given a �rst-stage solution x with respect
to the production level in a given period ξ. As mentioned before, the re-
course cost corresponds to the cost of a return trip to the plant from the
failure point. Constraint (43) shows that the �ows are nonzero only on the
arcs of the planned routes and do not exceed the vehicle capacity. Constraint
(44) speci�es that a failure at producer ni on route k can occur only if ni is
visited through route k. Constraints (45) assure that vehicles depart from
the depots with empty tanks. Constraints (46) de�ne when a failure occurs
at a given producer ni on a route. Constraint (47) guarantees that in any
route only the initial arc leaving from the depot can have a zero �ow. Based
on constraints (46) and (47), if a vehicle is �lled exactly by the load collected
in a producer nj, route failure will not occur at nj, but rather at the next
producer in the route. Constraints (50) guarantee that each vehicle faces at
most one failure per period.
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