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Abstract.  We determine whether there is an endogenous Hidden Markov Regime (HMR) 

in the operational loss data of banks from 2001 to 2010. A high level regime is marked by 

very high loss values during the recent financial crisis. There is therefore temporal 

heterogeneity in the data. If this heterogeneity is not considered in risk management 

models, capital estimations will be biased. Levels of reserve capital will be overestimated 

in periods of normal losses, corresponding to the low level of the regime, and 

underestimated in periods of a high regime. Variation in capital can go up to 30% during 

this period of analysis when regimes are not considered. 
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1 Introduction 

 
Since the inception of operational risk modeling, authors have regularly highlighted the fact that 

the amount of reserve capital calculated is very fragile, even unstable. Ames, Schuermann and 

Scott (2014) clearly show this fragility with operational loss data related to the recent financial 

crisis that began in 2007. 

 

Before that, Neslehová, Embrechts and Chavez-Demoulin (2006) had affirmed the risk of working 

with “extreme value” distributions when preliminary estimates tend to exhibit an infinite mean 

or variance for the data (see also Dahen et al, 2010). These studies argue for more conventional 

base models to better estimate the distributions and consider the presence of switching regimes 

in the data endogenously. In this paper, we build on the scaling model of Dahen and Dionne 

(2010) by detecting and incorporating endogenous Hidden Markov regimes for losses of one 

million dollars and more. 

 

We show that the operational loss data of American banks are indeed characterized by a Hidden 

Markov switching model. The distribution of monthly losses is asymmetric, with a normal 

component in the low regime and a Skew t type 4 component in the high regime. Statistical tests 

do not allow us to reject this asymmetry. We then introduce the regimes obtained in the 

estimation of operational losses and verify that their presence significantly affects the 

distribution of losses in general. These results are particularly important for some operational 

losses, particularly those linked to financial product pricing errors, over which several large banks 

have been sued during and after the recent financial crisis. We also analyse the scaling of the 

data to banks of different sizes and risk exposures, and present the results of backtesting of the 

model in different banks. 

 

The general message of our contribution is that there is temporal heterogeneity in the data. If 

this heterogeneity is not considered in the risk management models, capital estimations will be 
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biased. Levels of reserve capital will be overestimated in periods of normal losses corresponding 

to the low level of the regime, and underestimated in a high regime period. Overall banks used 

too much capital for operational risk when the regimes are not considered in our period of 

analysis. 

 

In Section 2, we present the database used. Section 3 discusses identification models of regimes 

and presents their estimation. Section 4 measures the effect of regimes detected on the 

estimation of the distribution of operational losses, and Section 5 proposes a backtest of 

estimated parameters. A short conclusion ends the article. 

 

2 Data 
 
We use the Algo OpData Quantitative Database for operational losses of $1 million and more 

sustained by US banks. The study period is from January 2001 to December 2010. We examine 

the operational losses of US Bank Holding Companies (BHC) valued at over $1 billion. The source 

of information on these banks is the Federal Reserve of Chicago. Statistics on the sample built 

from the two databases are summarized in three Tables: 1, 2, and 4. 

 
Table 1 presents the size distribution of banks with $1 billion or more in assets that sustained 

operational losses of $1 million or more during the study period. We note a major increase in the 

mean size of banks during this period; maximum size has also grown significantly. Table 2 shows 

that the largest banks accumulated the largest losses. Table 3 presents the Event Types and 

Business Lines codes subject to operational losses, as defined for the Basel regulation. Table 4 is 

a cross-loading table linking Event Types and Business Lines. We note that the largest mean losses 

are in Corporate Finance, Retail Brokerage and Trading and Sales for Business Lines, and in 

Clients, Products and Business Practice, Damage to Physical Assets, and Execution Delivery and 

Process Management for Event Types. 
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Table 1: Number of BHC banks per year and their assets 

Assets (in billions $) 

Year Median Mean Max Sd Number 

2001 2.1 19.7 944.3 82.3 356 

2002 2.1 19.5 1,097.2 84.8 378 

2003 2.0 20.3 1,264.0 93.0 408 

2004 2.0 25.4 1,484.1 122.1 421 

2005 2.0 24.4 1,547.8 121.9 445 

2006 2.1 26.0 1,884.3 140.5 461 

2007 2.1 28.9 2,358.3 168.1 460 

2008 2.0 28.5 2,251.5 182.5 470 

2009 2.1 33.8 2,323.4 190.6 472 

2010 2.1 34.7 2,370.6 198.3 458 

Note: Sd is for standard deviation. 

Table 2: Operational losses of BHC banks with bank asset in deciles 

Asset deciles 
(in billions $) 

Loss (in millions $) 
Min Max Median Mean Sd Number 

2,022.7 to 2,370.6 1.0 8,045.3 26.3 265.9 1,129.5 51 
1,509.6 to 2,022.7 1.0 8,400.0 14.0 268.3 1,207.5 49 
1,228.3 to 1,509.6 1.0 2,580.0 7.5 94.5 357.8 53 
799.3 to 1,228.3 1.0 3,782.3 24.0 199.8 610.7 48 
521.9 to 799.3 1.0 8,400.0 7.4 218.9 1,156.4 53 
1,247.1 to 521.9 1.1 210.2 7.2 17.0         31.1 50 
98.1 to 247.1 1.0 663.0 6.0 45.3 115.4 51 
33.7 to 98.1 1.0 775.0 10.2 55.2 152.8 51 
8.31 to 33.7 1.1 691.2 8.6 32.2         98.6 51 
0.96 to 8.31 1.0         65.0 4.3 9.9         14.5 51 
All 1.0 8,400.0 8.6 120.1 680.7 508 

Note: Sd is for standard deviation. 
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Table 3: Nomenclature of Event Types and Business Lines codes 

Variables Codes 
Event Types  
  Clients products and business practice CliPBP 
  Business disruption and system failure BusDSF 
  Damage to physical asset DamPA 
  Employment practices and workplace safety EmpWS 
  External fraud EF 
  Internal fraud IF 
  Execution delivery and process management ExeDPM 
  
Business Lines  
  Retail brokerage RBr 
  Payment and settlement PayS 
  Trading and sales TraS 
  Commercial banking ComB 
  Retail banking RBn 
  Agency services AgnS 
  Corporate finance CorF 
  Asset management AssM 
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3 Identification of regimes 
 

We assume that there are regimes in operational loss data. To support this assertion, we present 

Figures 1, 2, and 3. The hatched area in Figure 1 identifies the dot-com recession in 2001 and the 

recent recession corresponding to the financial crisis that began in 2007. We also note that the 

number of operational losses increased significantly during the last financial crisis, which did not 

occur during the 2001 recession. We observe another spike in the number of losses in 2010, one 

year after the recession ended. The losses in 2010 may be explained by delays linked to lawsuits. 

Indeed, several banks were sued after the financial crisis for having marketed complex financial 

products that were poorly structured, with incorrect prices and dubious ratings. Figure 2 presents 

similar evolutions in loss volatility. Figure 3 shows that the trend for number of losses of one 

million dollars and more is a sawtooth, but there is no major increase during and after the 

financial crisis. The year 2003 exhibits the highest frequencies. 

 
 

Figure 1: Changes in monthly mean operational losses 
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Figure 2: Changes in monthly variance of operational losses 

 

 
 

Figure 3: Changes in number of operational losses 
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3.1 Markov Switching Regimes  

3.1.1 Literature 

 

Several researchers have attempted to detect the presence of unobservable regimes by using a 

Markov process (Hamilton, 1989; Rabiner, 1989). Since then, increasingly rich developments of 

the model have emerged in all fields of research. Siu (2007) shows the advantage of applying this 

methodology in finance and actuarial science to better price insurance products. Korolkiewicz 

and Elliott (2007) propose a credit rating model based on the concept of Markov Switching. Siu 

and Yang (2007) model the Conditional Value at Risk (CVaR) advantageously for market and credit 

risk models using a complete procedure. Liechty (2013) presents another example of Markov 

Switching as a risk management tool. The origins of HMM (Hidden Markov Modeling) date back 

to the 1960s, with Baum and Petrie (1966) and Baum et al. (1970). Hamilton (1989) made a dual 

contribution: he paved the way for the use of HMM in economics and finance, and developed his 

own estimation method called the Hamilton Filter. This method is very useful in cases where 

different levels of the regime are modeled with normal distributions.  

 

The Hamilton Filter implicitly supposes that observations come from distributions with a 

sufficient number of draws to notably consider that the initial conditions describing the system 

at starting time t = 1 has only a small effect on its evolution. This hypothesis has been studied in 

depth by Psaradakis and Sola (1998), who show that one would need a sample of at least 400 

observations to guarantee that the estimate works well, especially in the presence of known fat-

tailed data. For this reason, we use the Baum-Welch algorithm, which we describe below, to 

estimate our model. As Mitra and Date (2010) and Bulla (2011) showed, this algorithm does not 

use a priori assumptions of distributions. 

 

3.1.2 Markov Switching Model 

 

The basic idea behind this model is intuitive. We suppose that the data under study represent a 

system that possesses n possible distinct states. At any given moment, the system may be in 
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either state. For a given state, the system can move to another state or remain in place. There 

are two probabilities that describe each state. Given that states are not observable, the model is 

called a Hidden Markov Model, or HMM. For our data, the objective is to identify and characterize 

“high loss” periods (state 2, for example) and separate them from “normal loss” periods 

endogenously (state 1). We inject information of loss severity and frequency that comes uniquely 

from the data, such that the model will show the unobservable underlying dynamics. We also 

analyse a three-state application in the robustness section of the paper. 

 

3.1.3 Estimation of the HMM with the Baum-Welch method 

 

To develop the estimation, we follow Zucchini and MacDonald (2009), Mitra and Date (2010), 

and Visser and Speekenbrink (2010). We now define the necessary notations. The variables are 

indexed by time { }∈ −1,2,..., 1,t T T . Observations are noted as tx . The sequence of observations 

from =  to t a b  is noted as ( )+ −= =: 1 1, ,..., , , 1 to a b a a b bx x x x x a b T . The variable ts  represents the 

state where the system is situated at time { }∈, 1,...,tt s n . We suppose that n states exist. 

Similarly, + −=: 1 1, ,..., ,a b a a b bs s s s s  is the sequence of states of the system in the time interval a to 

b. The estimation will give a vector of the parameters θ . The model is supposed to depend on 

the covariables noted as tz . According to Proposition 2 of Mitra and Date (2010), a HMM is well 

defined when the parameters { }, ,A B π  are known, A being the transition matrix n n×  whose 

elements are written as ( )1ij t t ta Pr s j s i ,z ,θ+= = = , B is a diagonal matrix whose elements 

( ) ( )i t t t tb x Pr x s ,z ,θ=  are written according to the densities that describe tx  when the system 

is in the state i = 1 to n, and π is a row vector ( )1 n×  of the probabilities related to each state at  

1t = , ( )1i tPr s i z ,π θ= = , ( )1 i n,..., ,...,π π π π= . To simplify the presentation, we examine the 

case of two states ( )2n = , 1f  being the density function of a normal law for the low loss regime 

(state 1), 2f  being the density function of the Skew t-distribution type 4 representing the high 
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loss regime (state 2). The choice of this mixture of distributions will be justified at the end of this 

section. For now, note that 
( )

( )
1

2

0
0

t
t

t

f x
B

f x
 

=  
 

 such that: 

 ( ) ( )2
1

1 1 2 2
1 1

1
2 2

t
t

xf x exp, µµ σ
σ π σ

 −=  
  

 (3.1) 

where 1 0σ >  and 1µ ∈ . 

 

The Skew t-distribution type 4, noted as ST4, is defined as in Rigby et al (2014):  

   ( ) ( )
( )

( ) ( )
( )

( )
2 21 12 2

2 2
2 22 2 22 2

2 2 2

1 1t t
t t

c x xf x I I x, , , x
ν τ

µ µ µµ σ ν τ µ
σ νσ τσ

− −+ +    − − = + ≥<+ +    
        

 (3.2) 

where 

( ) ( )
11 2 1 2

2 20 2 1 2 2 1 2 2, , , ,c B , B ,σ ν τ µ ν ν τ τ
−

 > ∈ = +  . 

B is the beta function ( ) ( ) ( ) ( )B a,b a b a b= Γ Γ Γ +  where Γ  is the gamma function. 

 

Concerning the matrix 
( )
( )

1212

2222

1
1t

aa
A

aa
− 

=  − 
, the elements ija  will be modeled according to the 

m  independent covariables ( )1 m
t t tz z ,...,z= . We posit that: 

 ( )ij tij za logistic η=   (3.3) 

 

where ( )logistic


 is the logistic function 
( )
( )

( )0 01 ij , ij ,k ij ,mij ij ,

exp ,..., ...,, ,
exp

η η ηη η  = + 




 is a constant 

and ij ,kη  is the coefficient to estimate for the kth covariable k
tz  relative to the conditional 

probability ija . Regarding the initial distribution π , a priori, it may depend on 1 1tz z= = . However, 

below we will estimate π  as a vector of constants. We can separate the θ  parameters into three 

independent parts. Accordingly, we rewrite ( )0 1 2, ,θ θ θ θ=  where 0 1,θ θ  and 2θ  are, respectively, 

the parameters to estimate for the initial distribution π , the parameters related to matrix A and 

those concerning matrix B representing the conditional densities if . We now write the 
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probability of jointly observing the sequence of observations 1:Tx  and that of the states of the 

system 1:Ts . 

 

 ( ) ( ) ( ) ( )1 1 1 1 1 0 2 1 1 1 1 2
T T

:T :T :t t t t t t t t tPr x ,s z , Pr s z , Pr s s ,z , Pr x s ,z ,θ θ θ θ= − − == ∏ ∏  (3.4) 

 ( ) ( ) ( ) ( )1
1 1 1 1 1 0 1 1 1 1 2

T T
:T :T :t t t t t t t t tlogPr x ,s z , logPr s z , logPr s s ,z , logPr x s ,z ,θ θ θ θ−

= + == + ∑ +∑  (3.5) 

 

Given that equation 3.5 is formed of a sum of three independent quantities, the maximum 

probability can be estimated for each of the vectors of parameters 0 1,θ θ  and 2θ  separately. In 

addition, if we consider that the initial distribution is independent from 1z , we can estimate the 

n probabilities of the vector ( )1 n,...,π π π=  as constants ( )( )0 1 n,...,θ π π= . 

 

Note that the probability function to maximize depends on the sequence 1:Ts  which is not 

observable. Our objective is to extract it from the sequence 1:Tx . One technical solution is to use 

the EM (Expectation Maximization) concept, which is better known as the Baum-Welch algorithm 

in the HMM context. We start with a vector of initial arbitrary values ( )0θ . EM is an iterative 

process. Each loop is made up of two steps, E and M. For each loop ( )k , step E is to calculate a 

function Q defined as the mathematical expectation of the log probability, if we know the 

sequence 1:Tx  and using the value of the parameters ( )kθ  such that: 

 ( )( ) ( ) ( ) ( )
1 1 1 1k

kk
:T :T :T :TQ E logPr x ,s z , x ,, θ

θ θθ θ  =   . (3.6) 

 

Then, in step M, we look for the value of the vector θ  that maximizes ( )( )kQ ,θ θ . This gives us a 

new set of parameters to find, namely: 

 ( ) ( )( )1k kargmaxQ .,
θ

θ θ θ+ =   (3.7) 

( )1kθ +  will be compared with ( )kθ  to verify the convergence criteria. In the absence of 

convergence, ( )1kθ + will serve as an entry for the following loop 1k + , and so on. The Baum-Welch 

algorithm has been shown to always converge (Rabiner, 1989). 
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Because it is a mathematical expectation, the quantity Q corresponds to computing a weighted 

sum of all of the possible probabilities for each of the three members to the right of equation 

(3.5). This gives: 

( )( ) ( ) ( )
( ) ( )

( ) ( )

1 1 1 1 0

2 1 1 1 1 1

1 1 2

nk
j

T n n
t j k t t t t

T n
t j t t t t

Q logPr s j z ,j,

logPr s k s j ,z ,j ,k

logPr x s j ,z ,j

γ θθ θ

δ θ

γ θ

=

= = = − −

= =

= ∑ =

+∑ ∑ ∑ = = +

∑ ∑ =

 

where functions tδ  and tγ  represent the weights to calculate the mathematical expectation. 

Using the notation ( ){ }1
k

:TM z ,θ=  to simplify the expressions, these weights tδ  and tγ  are 

written as: 

 ( ) ( )1 1t t t :TPr s k ,s j x ,Mj ,kδ += = =  (3.8) 

 ( ) ( )1t t :T tPr x s i ,Mjγ += =  (3.9) 

 

To calculate the probabilities tδ  and tγ , let us define two probabilities tα  and tβ  such that for 

all 1i =  to n regimes): 

 ( ) ( )1t :t tPr x ,s ii Mα = =  (3.10) 

 ( ) ( )1t t :t tPr x ,s i ,Miβ += =  (3.11) 

 

In the literature, tα  is called a forward probability because of the relationship of recurrence 

( ) ( ) ( )1i t ijt j ta f x .j iαα −∑=     Similarly, tβ  is called a backward probability because of the 

relationship: 

( ) ( ) ( )1 1j t ijt j ta f xji ββ + +∑=     with ( ) 1T iiβ = ∀ . 

 

The derivation of these relationships with vector notation is almost immediate, as in Zucchini and 

MacDonald (2009), by writing the probability function: 

 ( ) 1 2 21 1T t t T T:TL Pr B A B ...A B ...A B 'x M π= = . (3.12) 
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By cutting the cross-product of equation 3.12 at time t, we have 1 2 2t t tB A B ...A Bα π=  and 

1 1 1t t t T TA B ...A B 'β + +=  (with 1'
T 'β = ). Hence 1t t t tA Bα α −= ×  and 1 1 1t t t tA Bβ β+ + += × , which is the 

equivalent, in matrix notation, of the preceding forward and backward recurrence relationships. 

Now that our vectors tα  and tβ  have been calculated, we can calculate the weight tδ  given that 

( ) ( ) ( ) ( )1 1 1t t k t t jk Tf x a 'j ,k j kδ α β α+ += × × ×  as derived here: 

( )t j ,kδ  ( )1 1t t :TPr s k ,s j x ,M+= = =  

 ( ) ( )1 1 1t t :T :TPr s k ,s j ,x Pr xM M+= = =  (3.13) 

 ( )1 1 2 1 1:t t t :T t t :T TPr x ,x ,x ,s k ,s j ,x LM+ + += = =  (3.14) 

 ( ) ( )1 1 2 1 1:t t t t :T t :t t TPr x ,s j Pr x ,x ,s k x ,s j ,M LM + + += = = =  (3.15) 

 ( )1:t tPr x ,s j M= =  (3.16) 

 ( )1 2 1 1t t :T t :t tPr x x ,s k ,x ,s j ,M+ + +× = =  (3.17) 

 ( )2 1 1t :T t :t tPr x s k ,x ,s j ,M+ +× = =  (3.18) 

 ( )1 1t :t t TPr s k x ,s j ,M L+× = =  (3.19) 

 ( ) ( ) ( )1 1 1t k t t jk Tf x a 'j kα β α+ += × × ×  (3.20) 

 

Equation (3.13) is obtained by simple application of Bayes’ theorem. In (3.14) the sequence 1:Tx  

is cut into three pieces: from 1 1 1:t t :tx ,x + +  and 2t :Tx +  using ( )1T :TL Pr x M=  defined in (3.12). 

Equation (3.15) and equations (3.16) to (3.19) also use the Bayes model. Equation 3.16 is the 

direct expression of ( )t jα . Equation (3.17) is simplified to ( )1 1t tPr x s+ +  because 1 1t tx s+ +  is 

known independently from 2t :Tx +  and from ts  (by the very construction of the HMM). In equation 

(3.18), the sequence 2 1t :T tx s+ +  is independent from 1:tx  and from ts . Lastly, on line (3.19), 

because 1t ts s+  do not depend on 1:tx  , the expression is reduced to ( )1t tPr s k s j ,M+ = =  which 

is equal to jka  in (3.20). It now remains to be shown that ( ) 1T j T TL ' .jα α= ∑ =  Based on definition 
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(3.10) applied to ( ) ( )1T :T Tt T , Pr x ,s ii Mα= = = , the sum of ( )T iα  on all i possible states must 

give the probability ( )1:TPr x M , because the system is necessarily and exclusively in one or the 

other of the i states. The same reasoning permits us to find ( )t jγ  in function of tδ  noticing that  

( ) ( )11 1t k t t:T :TPr s j Pr s k ,s jx ,M x ,M+= = ∑ = = . 

Hence, 

 ( ) ( )t t
k

j j ,kγ δ= ∑ .  (3.21) 

 

To summarize the construction of probabilities tα  and tβ , we first calculate tδ  which in turn 

yields tγ . From this point, we can calculate the function ( )( )kQ ,θ θ  to find ( )kθ θ=  which 

maximizes Q. This advances the EM process until convergence to obtain the vector θ  of the final 

application parameters of the HMM. For our estimation, we have used the functions available in 

the package depmixS4 (Visser and Speekenbrink, 2010) with the Skew t type 4 function of the 

gamlss package (Rigby et al, 2014), in R language by r-project.org. 

 

Concretely, we construct the sequence 1:Tx  from monthly mean losses (in log). We already know 

that the means are far from following a normal distribution. We consequently use a mixture 

where the first “normal” state will be modeled by a normal distribution and the second state of 

the high regime (abbreviated as HR) will be represented by a Skew t-distribution type 4 (ST4). We 

want to capture the asymmetry and thickness of the distribution tail during this state. We also 

use the number of losses per quarter. To do so, we create a variable called lc123 as a natural 

logarithm of the number of losses announced during the three previous months. The idea is to 

capture whether the number of losses announced affects the intensity of transitions of the 

regime from one level to the other. Because the transition matrix is not constant, our model can 

be called non homogeneous. In short, we use four distributions as follows: 
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  (3.22) 

 

Lastly: 

( ) ( ) ( )12 0 12 1 22 0 22 10 11 1 1 2 2, , , , 2n , , ,,  and =,..., , , , , ,η η η ηθ θ θπ π µ σ µ σ ν τ= = . 

 

3.1.4 Results and discussion 

The results of the estimation of the model are presented in Table 5. We begin with the 

parameters of the two distributions that we use. The Normal distribution, which models phases 

of low losses, has a mean of 2.4172 and a standard deviation of 0.7653. The two corresponding 

coefficients are very significant at all degrees of confidence chosen. Regarding the Skew-t type 4, 

its mean is estimated at 3.7872, whereas its standard deviation can be considered equal to 1 (its 

log can be considered statistically null because it is non-significant). In a high regime, we 

therefore have a significant and simultaneous increase in the mean and an increase in the 

standard deviation. In addition, the asymmetry of the Skew-t type 4 is confirmed by the 

log(Shape.nu) coefficient significant at 10%. We will return to the validation of these distributions 

below by performing a robustness analysis of our statistical results. 

 

Table 5: Estimation of the Hidden Markov Model 

Variable  Coefficient 
Probability of transition to High Regime 
 

Intercept 
lc123 

0.9772 
-1.7371*** 

Probability of staying in High Regime Intercept 
lc123 

-25.7285*** 
11.7434*** 

Estimation of Normal distribution mu 
sigma 

2.4172*** 
0.7653*** 
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Estimation of ST4 distribution mu 
log (sigma) 
log(shape.nu) 
log(shape.tau) 

3.7872*** 
-0.0415 
2.7734* 
0.9492 

Estimation of HMM model Log max likelihood 
AIC criteria 
Number of  
  observations 

-148.838 
319.677 

 
120 

       Note: *indicates significant at 10% and *** indicates significant at 1%. 

 
Figure 4: Markov transition probabilities 
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Figure 5: Markov Regimes detected from January 2001 to December 2010 

 

The estimation of Table 5 gives a value of ( ) 2 1670 7734exp ..ν = =  and ( ) 2 5840 9492exp . ,.τ = =  

which measures a very large thickness of ST4 distribution tails. Nonetheless, given that the 

estimation of ( )log τ  in Table 5 is not significant, ( )log τ  can be considered null, therefore 1.τ =  

The right distribution tail would be thicker in this sense. Given these estimated two degrees of 

freedom markedly below 30, this is confirmation that we are far from a normal law where 30ν >  

and 30τ > .  

 

We now discuss the stages of the transition probability in Table 5. The coefficient of the variable 

lc123 is very significantly negative. This means that the larger the number of losses, the lower 

the probability of starting from a high regime, which would be a bit odd. To understand what is 

happening, we draw in Figure 4 the curves of the two transition functions: move to or stay in a 

high regime. Note that the number of losses is historically limited to between 7 and 20 per 

quarter (where lc123 is included between 2 and 3). In this case, in Figure 4, the section to the left 

of the point lc123 = 2 would be meaningless, and was therefore cut from the figure. The part to 

the right of this point presents a barely declining curve, nearly parallel with the X axis, with a 
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value of about 5% as a probability of moving to a high regime (HR). We can reasonably assume 

that the number of loss announcements does not play a role in predicting movement to a HR, 

nor does the increase (or not) in operational losses. Consequently, by reformulating the foregoing 

in statistical terms, we have found evidence to support the hypothesis of independence of 

distributions of frequencies and severities, which is an important contribution of this research. 

To continue with the probability of remaining in a high regime, if the number of loss 

announcements is between 7 and 12 per quarter, the mean probability of staying is about 50%. 

At between 12 and 24 mean quarterly losses, the probability of remaining in a high regime state 

is practically 99%.  

 

Let us now consider Figure 5, which shows the Markov switching states detected. Three facts 

emerge from the figure. First, there was almost no reaction for the recession of 2001 (2001-03 

to 2001-11), and only a few fluctuations in probability transition around 2003-2005. In contrast, 

there is indeed a high regime detected during the recession starting in 2007 (2007-12 to 2009-

06), with a first impetus lasting one month in December 2007, followed by two other variations. 

The first lasts five months, from July to November 2008 inclusively, and the second lasts six 

months, from August 2009 until January 2010 inclusively. The latter happens after the end of the 

recession. 

 

It is interesting to document this fact by analyzing what happened for the two variations. To do 

so, we take the individual losses at the largest amounts, which represent at least 80% of the total 

lost during each period analyzed. We obtained information on what happened for these losses 

by gathering comments inserted in the loss database, which includes the Bloomberg and SEC 

(U.S. Securities and Exchange Commission) sites. As reported in Table 6, there were two losses of 

$8.4 billion each for the first variation. This amount is an all-time record for operational losses of 

BHC banks. The first loss was incurred by Wachovia Bank in July 2008. It comprises a series of 

final writedowns linked to mortgages. The class action suit filed in federal court in California on 

June 6, 2008 alleges that the bank distorted its standards for underwriting option adjustable rate 

mortgages (ARMs), with payment structures that lacked the usual guarantees that were 
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nonetheless stipulated in the contracts. This is a CliPBP type loss. The second loss, for the same 

amount, i.e. $8.4 billion, concerns CFC of Bank of America. In October 2008, it was accused of 

illegal practices concerning products related to bank loans; 400,000 buyers were affected. CFC 

had to agree to settle the lawsuits filed against it by a group of attorneys general in 11 states, 

including California, Florida, Illinois, Connecticut, and Washington. The two losses represent over 

81% of the $20.6 billion lost during this first variation from July to November 2008. Both cases 

pertain to problems related to subprime loans. In addition, both banks agreed to settle the class-

action suits without waiting for a decision from the courts. There was thus no gap between the 

time the problems were observed and the date the losses were reported. We will see that this is 

not the case for most of the large losses in the period of the second variation, from August 2009 

to January 2010. 

 

Table 7 shows six major losses for this period, which account for more than 80% of the total 

losses. We begin with Citigroup, which announced a loss of $840 million in January 2010. This 

loss results from an accounting error related to the way the bank calculated its CVA (Credit Value 

Adjustment). The bank claimed that this correction should reduce the earnings announced in the 

previous quarters, without specifying which. This implies that the decision is linked to credit 

problems that occurred during the 2008 crisis. The second loss concerns Discover Financial 

Services, which announced on February 12, 2010, that it would pay its former parent corporation 

Morgan Stanley $775 million to settle a breach of a contractual agreement. The case started in 

October 2008, when Morgan Stanley filed a complaint against Discover Financial Services 

concerning the distribution of proceeds from the resolution of antitrust litigation against rival 

issuers of Visa and MasterCard credit cards. 

 

The third loss is $722 million. On November 4, 2009, the SEC announced a settlement whereby 

JP Morgan Securities paid a fine of $25 million to the SEC, and $50 million to Jefferson County, 

and dropped its claim for $647 million in termination fees linked to bonds and interest rate 

swaps. This settlement follows the sentencing of a former civil servant for accepting bribes. 

Originally, Jefferson County was verging on bankruptcy in February 2008. The $3 billion 

Endogenous Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis

20 CIRRELT-2015-29



refinancing of its sewage system collapsed during the credit crisis. JPMorgan was the leader in 

banking transactions.  

 

Fourth, in February 2010, the SEC and the Massachusetts authorities announced that the State 

Street Bank and Trust agreed to pay damages and fines under a judgment following allegations 

that the bank had misled some bonds investors about "Limited Duration Bond Fund" in 2007. The 

SEC also accused the bank of having provided information on these funds internally, which would 

have let some investors redeem the bonds early to the detriment of others who did not have this 

information. According to the SEC, the State Street Bank and Trust began to market the Limited 

Duration Bond Fund, which it described as "enhanced cash," in 2002. Many investors saw it as an 

interesting alternative to the money market. The problem was that in 2007, these funds were 

almost entirely invested in subprime residential securities and derivatives, which is much riskier 

than what the bank suggested in its communications. 

 

For the fifth loss, according to the SEC, Bank of America omitted to accurately report to 

shareholders the losses on Merrill Lynch’s books before the final ratification vote of the 

acquisition of Merrill Lynch. Bank of America was ordered to pay $150 million. The sixth and final 

loss occurred in September 2009: a businessman pled guilty and was sentenced to 12 years in 

prison for defrauding Bank of America ($142 million), Citigroup ($75 million) and HSBC ($75 

million), a case of external fraud totaling more than $292 million. Apart from this case, the losses 

cited are linked to problems with information disclosure or errors related to risk management of 

financial products, particularly pricing, during the financial crisis. All of these losses were subject 

to varying delays due to lawsuits. Consequently, the second peak fundamentally consists of a 

series of problems that arose during the financial crisis. The gap in time between the two 

variations seems to stem uniquely from legal procedures. 

 

Further, credit risk always exists, and is highly influenced by Shadow Banking. Largely comprising 

false declarations and improper transactions, Shadow Banking is quite prominent in credit 

portfolios. Over $500 billion in credit “left” the banks’ balance sheets and somehow transformed 
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into Asset-Backed Commercial Papers between 2004 and 2007. This new way of skirting capital 

regulation, which bankers found too costly, reached a total of $1.3 trillion in July 2007 (Kroszner 

and Strahan, 2013; Acharya, Schnabl, and Suarez, 2013). Kindelberger and Aliber (2005) argue 

that "... as the monetary system gets stretched, institutions lose liquidity and unsuccessful 

swindles are about to be revealed, the temptation to take the money and run becomes virtually 

irresistible." 

 

We now examine more losses from the 2008 crisis. Citigroup paid a total of $8.045 billion in 

March 2008 for the Enron scandal. Earlier, in October 2007, CFC lost $1.2 billion following the 

first waves of default in the subprime market. Bank of America intervened and ultimately bought 

out CFC. To continue this historical review, Goldman Sachs sustained a loss of $768 million in 

August 2008 concerning ARS (Auction Rate Securities). This bank was obliged to buy back 1.5 

billion of these market instruments and paid penalties on this transaction. In another case of 

CliPBP, Bank of America had the same experience on a larger scale, and bought back 4.5 billion 

in ARS, for a total loss of $720.7 million in January 2009. OpVar categorizes the latter two losses 

as Trading and Sales business, which represents most CliPBP cases with Corporate Finance 

business. 

 

In conclusion, in 90% of cases of operational losses, credit is pivotal to a history of improper 

transactions, along with Corporate Finance, Trading and Sales and/or Retail Banking. 80% of the 

amounts in question are attributable to two (Table 6) to six (Table 7) cases. In addition, it is often 

the same banks that are involved. Note that these historical spotlights were done by following 

“special” periods underscored by the regime shift detected. In other words, the regime detected 

seems to concern a set of banks in particular. We have documented 80% of the severity of 

operational losses by about only 20 cases, involving less than eight banks. 
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Table 6: Summary of losses of BHC banks from July 2008 to November 2008  

 Bank Loss EventType BusLine Date % Loss 
1 Wachovia Bank 8.4 billion CliPBP RBn 2008-07-21 40.73 
2 CFC – Bank of America 8.4 billion CliPBP RBn 2008-10-06 40.73 
 Others (< 80%) 3.4 billion 30 losses    
 All 20.6 billion 32 losses    

 

 
Table 7: Summary of losses of main BHC banks from August 2009 to February 2010 

 Bank Loss EventType BusLine Date % Loss 
1 Citibank N.A. 840 million ExeDPM TraS 2010-01-19 20.77 
2 Discover Financial Service 775 million CliPBP RBn 2010-02-12 19.16 
3 JP Morgan Securities Inc. 722 million CliPBP CorF 2009-11-04 17.85 
4 State Street Global Advis 663 million CliPBP AssM 2010-02-04 16.39 
5 Merrill Lynch and Company 150 million CliPBP CorF 2010-02-22 3.71 
6 Bank of America Corporation 142 million EF ComB 2009-09-21 3.51 
       

 Others (< 80%) 753 million 21 losses    
 All 4.05 billion 27 losses    

 

 

3.1.5 Specification Test of the Hidden Markov Model 

 

We now statistically test the validity of the HMM specification for our data. To do so, we follow 

Zucchini and MacDonald (2009). In general, if a random variable y follows a law ℑ  whose 

cumulative function is F, the random variable defined by ( )u F y=  must follow a uniform law 

( )0 1U , . By noting as Φ  the cumulative function of the normal law, we should then have: 

( ) ( ) ( )( ) ( )10 1 0 1y u F U NFy y, ,−ℑ⇒ = ⇒Φ   . 

The variable obtained by ( )( )1z F y−= Φ  is called a pseudo-residual. If the specification ℑ  suits 

the data, the pseudo-residuals should follow a normal distribution. 
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In our case, the vector of the pseudo-residuals of our Hidden Markov Model can be calculated 

with ( ) ( )1
1 1 0 1t t t t tz Pr y y y y z N .,−
− + = Φ ≤ = ⇒    For details, we refer to Zucchini and 

MacDonald (2009). 

 

Figure 6 shows the following points. The distribution of the monthly losses (in log) is asymmetrical 

(upper panel). The Skew t type 4 component is situated to the right of the mean to take this 

asymmetry into account (middle panel). The distribution of pseudo-residuals looks quite close to 

normal (bottom panel). This will be confirmed by the statistical tests. We now consider the 

statistical results in Table 8. We use three tests—Kolmogorov-Smirnov, Anderson-Darling and 

Shapiro-Wilk—, to ensure the normal distribution of the pseudo-residuals. For comparison 

purposes, Table 8 shows the result of the same tests done on the series of monthly mean losses 

(monthly losses, in log). Because of high asymmetry, the three tests reject normality at 10% for 

this series of losses, as expected.  

 

As for our model (pseudo-residuals), the Anderson-Darling test gives a p-value of 0.0682. This 

rejects normality even if this p-value is not far from 10%. Conversely, the Kolmogorov-Smirnov 

and Shapiro-Wilk tests do not allow us to reject the normality of these pseudo-residuals with p-

values of 0.1540 and 0.1560 respectively. This seems to show that despite a problem of a fat-

tailed distribution demonstrated by the Anderson-Darling test, we can validate our Hidden 

Markov specification given the two other tests and especially the Shapiro-Wilk test, which 

measures the global probability relative to a normal distribution. 

 

Table 8: Statistical tests  

 Test Monthly losses Pseudo-residuals 
       Statistic      p-value      Statistic      p-value 
1 Kolmogorov-Smirnov 0.1035 0.0039 0.0718 0.1540 
2 Anderson-Darling 0.3101 0.0020 0.6940 0.0682 
3 Shapiro-Wilk 0.9331 0.0000 0.9831 0.1560 
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Figure 6: Histograms of monthly losses and pseudo-residuals 

 

4 Measuring the effect of regimes detected  
 

We start with the loss estimation model of Dahen and Dionne (2010): 

 ( ) ( )log log BusinessLines EventTypesLoss Assetsα β λ δ= + + + +∈. (4.1) 

 

The dependent variable is log(Loss). The independent variables are log(Assets), category 

variables Business Lines, BL, and category variables EventTypes, ET. The fixed time effects are 

years. 
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The regressions results are presented in Table 9. Model (1a) is the reference model. To simplify 

the presentation of the estimates, we do not report the coefficients of the year fixed effects (Year 

FE), because they are not pertinent to the discussion. A “yes/no” indication for their presence is 

presented in the table. We add the variable of the HMM regime only in model (2a) and its cross-

loadings (interaction) with Business Lines and Event Types in (3a). 2 All standard deviations and 

p-values are robust to the presence of heteroskedasticity and clustering in the sense of White 

(1980). 

 

Table 9: Effect of regimes detected on log(Loss) 

 
(1a) 

Reference model 

(2a) 
Adding HMM 

regime 

(3a) 
Adding HMM 
regime and 
crossings 

Intercept -0.297 
(0.433) 

-0.260 
(0.446) 

-0.160 
(0.436) 

Log(Assets) 0.139*** 
(0.037) 

0.139*** 
(0.038) 

0.126*** 
(0.036) 

High Regime  0.977*** 
(0.331) 

1.538* 
(0.791) 

Paymt and Settlmnt 1.261*** 
(0.438) 

1.199*** 
(0.438) 

1.196** 
(0.466) 

Trading and Sales 1.104*** 
(0.290) 

1.026*** 
(0.304) 

0.906** 
(0.372) 

Comm. Banking 1.182*** 
(0.167) 

1.117*** 
(0.164) 

1.159*** 
(0.172) 

Retail Banking 0.930*** 
(0.207) 

0.867*** 
(0.207) 

0.827*** 
(0.171) 

Agency Services 1.223*** 
(0.413) 

1.161*** 
(0.435) 

1.532*** 
(0.443) 

Corp. Finance 2.056*** 
(0.237) 

2.063*** 
(0.250) 

1.999*** 
(0.294) 

Asset Mngmt 1.358*** 
(0.274) 

1.321*** 
(0.254) 

1.307*** 
(0.283) 

Bus.Disrup. syst.Fail. -1.080 
(0.687) 

-0.926 
(0.569) 

-0.878 
(0.630) 

2 The model has also been estimated using Heckman’s model to consider potential endogeneity of firms that 
sustained losses, as in Dahen and Dionne (2010). The results are available from the authors. They indicate that the 
inverse Mills ratio is not significant in the second step; the other results remain comparable to those in Table 9. 
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Damage Phy.Assets -0.086 
(1.925) 

-0.044 
(1.923) 

0.047 
(1.953) 

Employ.Prac.Wrkplac.Saf. -0.676*** 
(0.252) 

-0.622** 
(0.254) 

-0.476** 
(0.224) 

External Fraud -0.502*** 
(0.157) 

-0.489*** 
(0.161) 

-0.433** 
(0.170) 

Internal Fraud -0.593*** 
(0.227) 

-0.524** 
(0.226) 

-0.304 
(0.211) 

Exer. Deliv. Proc. Mnmt -0.214 
(0.228) 

-0.217 
(0.230) 

-0.130 
(0.256) 

High Regime ×  
Employ.Prac.Wrkplac.Saf. 

  -2.321*** 
(0.513) 

High Regime ×  External Fraud   0.120 
(1.088) 

High Regime ×  Internal Fraud   -3.314*** 
(0.547) 

High Regime ×  Exec. Deliv. Proc. Mnmt   0.115 
(1.228) 

High Regime ×  Paymt and Settlmnt   -0.561 
(1.584) 

High Regime ×  Trading and Sales   0.317 
(1.248) 

High Regime ×  Comm. Banking   -1.511 
(1.266) 

High Regime ×  Retail Banking   0.401 
(1.075) 

High Regime ×  Agency Services   -4.491*** 
(1.114) 

High Regime ×  Corp. Finance   0.645 
(1.565) 

High Regime ×  Asset Mngmt   -0.249 
(0.963) 

Year FE yes yes yes 
Adj. R2 0.170 0.186 0.223 
AIC 1993.5 1985.2 1978.04 
Log Likelihood 
p-value Chi2 

-971.8 -966.6 
0.001 (2a vs 1a) 

-952.0 
0.002 (3a vs 2a) 

Num. obs. 508 508 508 
 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Clients products and business practice and retail brokerage are 
the omitted categories for Event Types and Business Lines, respectively. 
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The variable log(Assets) is very significant, which is consistent with this type of model. The 

coefficient tends to keep the same magnitude in all regressions. The coefficient of the high 

regime variable is very significant at 1% in model 2a but less significant in model 3a, where it is 

significant at 10%. In contrast, three interaction variables are significant at 1%. The presence of 

year fixed effects does not prevent the regimes from being significant. This suggests that the 

regimes detected cannot be explained by time. Comparison of the adjusted R2 of the models 

shows an advantage in injecting the high regime variable in 2a or cross-loaded in 3a. The AIC 

statistic and the Log Likelihood ratio test also confirm the superiority of model 3a. That being 

said, we must perform backtesting on these models to evaluate their validity and calculate the 

reserve capital. Note that in the loss database there were no observations concerning BusDSF or 

DamPA where the Markov regime is high. This is why the coefficients corresponding to the cross-

loadings are not presented in column 3a. 

 

We must measure the effect of the regime levels on the loss frequencies to perform the backtest. 

We build the model around the zero-inflated negative binomial as in Dahen and Dionne (2010). 

Let Y  be a random variable that follows a negative binomial law with average λ  and the 

dispersion parameter θ . If NBf  is the probability mass function of this law, then the probability 

that Y  is equal to a value k is written as: 

 ( ) ( ) ( )
( )

1
1 1

, , ,
! 1 1 1NB

k
Pr Y k f k

k
θθ θλλ θ λ θ

θ θλ θλ
Γ +    = = =    Γ + +   

 (4.2) 

where ( )0,1,2,...,k = Γ ⋅  designates the conventional gamma function. Note that 0θ >  and that 

the negative binomial converges toward a Poisson law when 0θ →  (Dionne, 1992). When there 

are reasons to think that there are too many 0 values relative to a negative binomial, we should 

envision a model with a negative zero inflated binomial law. Let Yij be a variable representing the 

number of losses sustained by bank i for the year j. If ijY  follows a zero-inflated negative binomial 

law, we can write: 

 ( ) ( ) ( )
( ) ( )

1 0, , 0
1 , , 1,2,...

ij ijij NB
ij

ij ijNB

qq f k
Y kPr

q kf k
λ θ

λ θ
 −+ == =  − =

  (4.3) 
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where ijλ  is the mean and θ  is the dispersion parameter of the basic negative binomial law, and 

ijq  represents the proportion of zeros that would be too many relative to a negative binomial 

law. Conditionally on the explanatory variables chosen, the regression component of the 

negative binomial model ijλ , and ijq  are estimated using the two following equations: 

 
( ) ( )0 1 2 3

4 5_ _
ij ij

ij ij

Assetslog log RegimeHMM GDP

Bank Cap Mean Salary

λ ζ ζ ζ ζ

ζ ζ

= + + +

+ +
 (4.4) 

 ( )0 1 2 3 4 _ .
1

ij
ij ij

ij

q
Assetslog log RegimeHMM GDP Mean Salary

q
ξ ξ ξ ξ ξ

 
= + + + + − 

 (4.5) 

 
The last formula is equivalent to the modeling of ijq  using the logistic distribution. The variable 

log(Assets) is the total assets of the bank (in log) and the variable HMM is for the High Regime. 

Mean-Salary is the mean salary paid in the bank, Bank_Cap is the bank capitalization and GDP is 

Gross Domestic Product during the period. 

 
The estimates are presented in Table 10. The dependent variable is the number of annual losses. 

In (1b) we present the benchmark model to compare the effect of adding regimes: 4,329 

observations from January 2001 to December 2010, as documented in Table 1. We want to 

measure the effect of the HMM (high) regime in both the counting and zero parts. The idea is 

that during high regimes, we want to see whether inflated zeros are more numerous or not. 

Model (2b) adds this dimension in both parts. Its coefficient is negative and significant at 10% in 

the count, and very significantly positive for zeros. Apparently, during high levels of the Markov 

regime, losses would be less numerous because the zeros come more from the inflation of the 

zeros (outside the negative binomial). The variable GDP is also very significant to explain excess 

zeros. We want to measure whether deflation of zeros provides statistical value. To do so, we 

compare this deflation model with the base model 1b. Knowing that they are embedded, we can 

test it with the likelihood ratio whose results appear below in the same table. The likelihood ratio 

test of model 2b versus 1b is conclusive, with a statistic of 46.53 and a p-value of almost 0. Model 

2b using the Markov regime seems to provide more information than the reference model (1b) 

given the substantial decrease in the AIC criterion and the result of the likelihood ratio test. A 
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final comment concerns the values of the log theta dispersion parameter of the negative deflated 

binomial model. Starting with a value of 2.097 in model 1b, we reach 1.085 for 2b, which is a 

clear improvement in the specification in the sense that there is less unobserved heterogeneity 

in 2b. We can proceed to the backtesting of the model. 

 

Table 10: Effect of regimes on frequencies 

 (1b) 
Reference model 

(2b) 
Adding HMM regime 

Count model   
  Intercept -10.969*** 

(0.741) 
-11.370*** 

(0.424) 
  Log(Assets) 0.885*** 

(0.053) 
0.916*** 

(0.034) 
  High Regime  -0.531* 

(0.291) 
  GDP 0.018 

(0.034) 
0.011 

(0.039) 
  Bank Cap 4.428*** 

(0.933) 
4.103*** 

(0.705) 
  Mean Salary -0.751 

(0.913) 
-1.642* 
(0.841) 

  Log(theta) 2.097*** 
(0.634) 

1.085*** 
(0.417) 

Zero model   
  Intercept 1.176 

(1.681) 
-4.580* 
(2.712) 

  Log(Assets) -0.176 
(0.120) 

-0.149 
(0.202) 

  High Regime  7.888*** 
(2.502) 

  GDP 0.001 
(0.109) 

2.734*** 
(0.787) 

  Mean Salary 1.466 
(2.569) 

-48.468** 
(23.625) 

AIC 1640.089 1597.558 
Log Likelihood -810.044 -786.779 
Log-Likelihood ratio test   
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- Statistic 
- p.value 

46.530 
0.000 

Number of observations 4329 4329 
 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 

5 Backtesting 

5.1 Operational loss capital 

 

This section has a dual objective. First we want to construct a backtesting procedure for our 

models with regimes to determine their validity. We also want to measure the extent that 

ignoring the existence of regimes in our operational loss data biases calculation of reserve capital 

if this reality is not formally considered. The period selected to calculate coverage is January 2010 

to December 2010. This period will be designated by Couv0. The regime is high for the month of 

January and low for the 11 other months. We number our three models as follows: #1 base 

model; #2 Markov regime; #3 Markov regime + cross-loading with Business Lines and Event 

Types. To extend Dahen and Dionne (2010), we construct our backtesting by taking into account 

regimes detected. There will be an In-Sample backtesting calculation, in the sense that the history 

will include the period Couv: from January 2001 to December 2010 (called Hist1). Further, by 

definition, Out-of-Sample backtesting does not include the period covered in the history, and will 

last from January 2001 to December 2009 (designated by Hist2). For each model, the data from 

the periods Hist1, Hist2 and Couv are scaled according to the estimated coefficients in Table 9. 

For a given bank, scaling is based on the mean value of log(Assets) of the bank during the period 

Couv. Once scaled for a given bank, the historical losses (Hist1 or Hist2) can be considered to 

follow a lognormal distribution. If we consider the bank U.S. Bancorp (Table 11), the Kolmogorov-

Smirnov test gives a statistic of D = 0.1328 and p-value = 0.1979. Because the lognormal law is 

the null hypothesis, the test does not allow us to reject it. Given the linearity in log(Assets) of the 

three models, we can conclude that the lognormal is valid for all banks in our BHC sample. We 

estimate the frequency according to Table 10. We performed 200,000 observations from the 
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lognormal in question, for which we calculate the convolution for 2,000 numbers drawn from the 

negative binomial of the corresponding frequency model. This gives us a distribution for which 

we calculate the reserve capital for four degrees of confidence: 95%, 99%, 99.5% and 99.9%. The 

99.5% degree of confidence lets us evaluate the thickness of the distribution tail, and gives us an 

idea of what is happening in the case where the VaR at 99.9% is not exceeded.  

 

Regarding statistical tests for the VaR, we performed the Kupiec (1995) test, which evaluates the 

number of values in excess of VaR, followed by the DQ test by Engle and Monganelli (2004) to 

measure the independence of number of such values; and lastly the Christoffersen (1998) test, 

which helps us determine the conditional simultaneous coverage of frequency and independence 

of the values in excess of VaR. This gives us a complete and robust view of the validity of our 

backtesting. To provide figures, we have 445 losses recorded for the period Hist1 and 63 for the 

period Cov, which gives us 508 = 445 + 63 losses for Hist2. We must calculate the probable losses 

that a given bank incurs during the period Couv. To do so, the 63 losses of Couv are scaled to the 

size of the bank, and each loss is multiplied 56 times by the scaling of the models to simulate all 

8 BusinessLines and 7 possible EventTypes according to the Basel nomenclature (see Table 3). 

This lets us manage operational risk in all possible cases. The 63 losses therefore generate 3,528 

possible losses, on which we perform statistical backtesting. Note that the scaling will cover all 

historical losses of Hist1 (in-sample) or Hist2 (out-of-sample) and all possible losses during the 

period Couv. Consequently, the model that passes backtesting is automatically that which 

successfully allows simultaneous scaling of all the loss observations in question. 

 

We perform the calculations for two banks. The first is U.S. Bancorp (as in Dahen and Dionne, 

2010). Table 11 indicates that the Kupiec test rejects the VaR at 95% in in-sample for base model 

#1 (no regime). The reason for this is that the excess values observed are too few, at 3.4% versus 

5% theoretical. For the rest of the degrees of confidence of model #1 for in-sample and out-of-

sample, all seems to function properly. The same pattern is seen regarding independence of the 

values in excess of VaR except for the VaR at 99.5% in out-of-sample, where the DQ test rejects 

the validity at 5%, whereas the Christoffersen test still does not allow us to reject it at 5%. Capital 
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at 99.9% is $2,957.4 million. The bank’s total assets are $290.6 billion, and reserve capital 

represents 1.02% of assets. Model #2 shows a weakness in the frequency of values in excess of 

VaR at 95% and 99.5% in in-sample, and VaR at 95% in out-of-sample. We observe the same 

weaknesses in model #3 concerning VaR at 95%, 99.5% in in-sample, and 99% in out-of-sample. 

For the independence of draws, the DQ test is rejected at 5% for VaR at 99.5% in-sample, and all 

else is correct at 5%. The Christoffersen test shows the same weakness in in-sample for VaR at 

5% and at 99.5%, and the rest is correct at 5%. Concerning the reserve capital calculated, it is 

lower than for benchmark model #1, with $2,480.5 million and $2,060.7 for VaR at 99.9% in 

model #2 and model #3 respectively. 

 

We conclude with two important remarks. The first is that all capital calculated is below that 

calculated for model #1, which does not take into account the existence of regimes. This finding 

supports what we said at the beginning of the paper: that there is an endogenous Hidden Markov 

regime in our data and that ignoring it amounts to injecting a positive bias to calculate capital 

when the regime is at a low level. Conversely, a negative bias increases the risk of 

underestimating the reserve capital required when the regime level is high. Using the calculation 

of model #3, this bias for U.S. Bancorp is (2957.4-2060.7)/2957.4, which is 30.3% too high. The 

second comment is that the various weaknesses shown by the tests above seem to mainly arise 

in VaR at 95%, and always concern excess (very high) reserves. We thus consider that models #2 

and #3 are validated by backtesting. In addition, model #3 stands out from the others by allowing 

considerable savings in capital. 

 

As further proof, we do the same process for a second BHC bank: Fifth Third Bancorp (Table 12). 

Its size is $111.5 billion. We obtain largely the same pattern. Model #3 is still the least capital 

expensive. Note this time that models #2 and #3 do not pass the Kupiec test in out-of-sample at 

99.9%. The same comment can be made for the DQ and Christoffersen tests. However, VaR at 

the intermediate level of 99.5% seems to respond well in the same tests. Note that model #1 is 

also at the limit of rejection at 5% for the same VaR at 99.9% in out-of-sample with a p-value of 

0.0506. If we consider model #3 valid, the savings in reserve capital at 99.9% would be (1722.6-
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1291.5)/1722.6 = 25%. Further, the cross-loading of regimes with business lines and event types 

seems to capture the fact that these variables do not have the same effects during different 

phases of the regimes. Consideration of Markov regimes thus provides an irrefutable 

improvement. 

 

5.2 Number of states in HMM model 

 

To further backtest own research, we raise two questions. The first would be whether we can 

statistically justify that a combination of two normals, instead of one normal and an ST4, would 

have been insufficient. The second question is to ask whether the regime should have three levels 

rather than two. A three-level regime would be a mixture of two normals plus an ST4 (Skew-t 

type 4). To summarize, we want to compare our model N+ST4 to two other models: 2N and 

2N+ST4. The estimates imply that we would not have a better specification than N+ST4. We 

tested the normality of the pseudo-residuals of the three models as shown in Table 13. First, 

concerning the model 2N with two levels, all three p-values are below 10%. The data clearly show 

that this model is not adequate. Regarding the three-level model 2N+ST4, we have p-values of 

0.0559, 0.0678 and 0.1863 for Kolomogorov-Smirnov, Anderson-Darling and Shapiro-Wilk 

respectively. If we reason at 10%, we have two tests that reject normality whereas only 

Anderson-Darling showed a problem for the two-level N+ST4, as seen above. In addition, the 

value of the AIC criterion of the model 2N+ST4 is 325.59 versus 321.93 for our two-level model 

N+ST4, which indicates deterioration in performance. This deterioration is more evident when 

we use the criterion BIC, which becomes 380.66 for the three-level, whereas it was 352.22 for 

the model N+ST4. We therefore reject the three-level model 2N+ST4 at a level of confidence of 

10%. Consequently, we definitively retain the two level specifications with a normal law and one 

Skew t type 4 for our extreme observations. 

 

Another comment is necessary. A priori, if the data allow a sufficient number of observations and 

quality, we should have a better goodness of-fit if we increase the degrees of freedom of a given 

model. In our case, according to Figure 3.6, there are 18 observations representing high loss 
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regime. The addition of a third level would have divided up these 18 observations into two levels. 

The three resulting levels would be "normal losses,” "large losses" and "very large losses.” 

However, the 18 observations are too few to model two distinct levels. In addition, very few 

periods start from the ST4 level, which makes this level non-significant.  Lastly, in this case it is as 

if we had a first level represented by a normal, followed by a second with a second normal. This 

three-level model is therefore effectively reduced to two-level regime with two normals only, 

because the ST4 level is not representative. Hence the p-values of the three-level regime let us 

reject the three-level model, together with the two-level model built with two normal 

distributions. 
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Table 13: Statistical tests on pseudo-residuals presuming the existence of three-level model 

 (1) 3-level model (2) 2-level model (3) 2-level model 

 2 Normals + 1 ST4 1 Normal + 1 ST4 2 Normals 

1   Kolmogorov-Smirnov 0.0819 0.0559 0.0718 0.1540 0.0849 0.0408 
2   Anderson-Darling 0.6950 0.0678 0.6940 0.0682 0.7873 0.0400 

3   Shapiro-Wilk 0.9839 0.1863 0.9831 0.1650 0.9790 0.0678 
 

 

Conclusion 
 

In this article, we analyze the effect of business cycles in operational loss data on optimal capital 

of banks. We show that considering business cycles can reduce capital for operational risk by 

redistributing it between high regime and low regime states. The variation of capital is estimated 

to be in the range of 25% to 30% in our period of analysis. We also demonstrate that court 

settlements significantly affect the temporal distribution of losses. Several large losses were 

reported after the financial crisis of 2007-2009 owing to these delays. This phenomenon is not 

new; it is also observed for significant losses sustained by insurance companies whose settlement 

payments are often determined by the courts.  

 

Several extensions of our study are possible. The most promising would be to verify the stability 

of the results using different regime detection methods (Maalaoui, Chun et al., 2014). How can 

an approach to detect regimes in real time improve the results, and in particular take the 

asymmetry detected in this article into account?  The value of this approach is that it allows 

separate analysis of level and volatility regimes. 

 

Another possible extension is to use a different approach than that of scaling of operational 

losses to generate a larger number of observations at each bank. Some banks use the Change of 

Measure Approach proposed by Dutta and Babbet (2013). This method combines scenario 

analysis with historical loss data. It would be interesting to examine whether the results of this 
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approach can remain stable by introducing cycles in the data. It would also be worth extending 

the analyses to stress testing of models. 
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