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Abstract. Over the past few years, much attention has been paid to computing flows for 

multi-class network equilibrium models that exhibit uniqueness of the class flows and 

proportionality (Bar-Gera et al, 2012). Several new algorithms have been developed such 

as origin based method (Bar Gera, 2002), bush based method (Dial, 2006), and LUCE 

(Gentile, 2012), that are able to obtain very fine solutions of network equilibrium models. 

These solutions can be post processed (Bar Gera, 2006) in order to ensure proportionality 

and class uniqueness of the flows. Recently developed, the TAPAS algorithm (Bar Gera 

2010) is able to produce solutions that have proportionality embedded, without a post 

processing. It was generally accepted that these methods for solving UE traffic 

assignment are the only way to obtain unique path and class link flows. The purpose of 

this paper is to show that the linear approximation method and its bi-conjugate variant 

satisfy these conditions as well. In particular, some analytical results regarding the 

behaviour of the path flows entropy are presented which may be useful in an eventual 

theoretical proof that the linear approximation equilibrium flows maximize the entropy of 

the path flows. 

Keywords. Network equilibrium, path flows entropy, uniqueness of path flows, 

proportionality. 
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1. Introduction 

The network route choice models most commonly used in transportation planning 

methods are steady state models, in spite of the fact that all traffic phenomena are 

temporal. A given period of time for which the demand for travel is quantified is 

considered and then the flow pattern which results from the action of the demand and the 

performance of the transport infrastructure available needs to be determined.  

Deterministic network equilibrium assignment model of route choice are usually based on 

Wardrop’s (1952) user optimal principle. Based on the seminal work of Beckmann 

(1956) a large body of research and literature on the structure and solution algorithms for 

various versions of the network equilibrium model (variable demand, multi-class, 

asymmetric cost functions) has been contributed (see for instance Patriksson, 1994, 

Florian and Hearn, 1995, Marcotte and Patriksson, 2007). 

Over the past few years, much attention has been paid to computing flows for multi-class 

network static equilibrium models that exhibit proportionality and hence uniqueness of 

the path (also known as route) and class flows (Bar-Gera et. al, (2012)). Several fast 

converging algorithms have been developed, as alternatives to the slow converging 

adaptation of the linear approximation method (Frank and Wolfe, 1956) for computing 

network equilibrium flows. These include the origin based method (Bar Gera, 2002) and 

the bush based methods (Dial 2006), and LUCE (Gentile, 2012), that are able to obtain 

very fine solutions of network equilibrium models. These solutions can be post-

processed (see Bar Gera, 2006) in order to ensure proportionality and class uniqueness of 

the flows. The proportionality property ensures that all the path flows, from all O-D 

pairs, when splitting between the same two alternative route segments (sub-paths), will 

be distributed over two alternative route segments in the same proportions as the 

demand. This assumption (Bar-Gera and Boyce (1999)) is a sufficient condition that 

characterizes entropy maximizing path flows.  A more recent development, the TAPAS 

algorithm (Bar Gera, 2010) is able to produce solutions that have proportionality 

embedded, without requiring post processing. It was generally accepted (Boyce and Xie, 

2013) that these methods for solving for user equilibrium flows are the only way to 

obtain unique path and class link flows. A comparative study of TAPAS and several 

commercially available versions of the linear approximation for solving network 

equilibrium problems (Boyce et al. (2010) or Bar Gera et al (2012)) present comparisons 

between them in terms of proportionality. These results indicate that the linear 

approximation method results are close to proportionality, but not close enough. It is 

worth mentioning that in this study, a single class assignment was carried out on the 

Chicago network to a relative gap of 10
-4

 with the linear approximation method and from 

~10
-4

 to ~10
-12 

with TAPAS. Recently, the convergence of the linear approximation 

algorithm (Frank-Wolfe (1956)) has been improved with the conjugate / bi-conjugate 
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variant of Mitradjieva and Lindberg (2013). This allows one to solve the traffic 

equilibrium problem to a finer solution, which in turn significantly improves the 

proportionality and class flows uniqueness of the obtained solution. 

In this paper, we show, by comparing the results of a two-class assignment obtained with 

TAPAS to that of the linear approximation and the bi-conjugate variant of the linear 

approximation method, that these methods exhibit, within the solution precision, both 

class uniqueness and proportionality. This discovery is very useful since the bi-conjugate 

variant of the linear approximation method can be multi-threaded and executed on 

multiprocessor computing platforms, requiring small data storage. Therefore, it provides 

a more attractive and computationally efficient method for solving multi-class 

assignments that bush based methods, for convergence levels used in practice. 

In the next section some numerical results are presented, which provide empirical 

evidence of near proportionality of the equilibrium flows and unique class flows for a 

two-class instance. Section 3 presents some theoretical results regarding the path flows 

entropy value during the linear approximation algorithm. The paper ends with a short 

conclusion and acknowledgments. 

 

2. Some empirical evidence of proportionality 

The computational experiments reported here are using the Chicago test database with 

two classes of traffic, cars and trucks, that was used in the application of a bush based 

method by Boyce and Xie (2013). This data as well class flows obtained by the execution 

of the TAPAS code (Bar Gera (2010)) to a convergence criterion of relative gap of less 

than 10
-12

 were kindly made available to us by David Boyce.   

This database is widely used as a benchmark for the traffic assignment algorithms (see 

Figure 1). It has 1,790 zones 11,192 nodes and 39,018 links. There are 563 links where 

trucks are not permitted. 
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Figure 1. The Chicago test network 

We ran the same two-class assignment by using both a multi-threaded version of the 

linear approximation method to a relative gap of 2.3·10
-6

 and a multithreaded variant of 

the bi-conjugate linear approximation method
1
 up to a relative gap of 10

-6
. Figures 2 and 

3 show plots of car and truck link flows obtained with a linear approximation method 

versus the flow obtained with TAPAS. Figures 4 and 5 show plots of car and truck link 

flows obtained with the bi-conjugate variant of the linear approximation method versus 

the flow obtained with TAPAS. The computation of this two-class assignment required 

approximately 3.5 hours with the linear approximation method and 18 minutes with the 

bi-conjugate variant on a hyper-threaded 16 Xeon, 2.9 Ghz processor computing 

platform, using 32 threads.  

                                                           
1
 Implemented as SOLA in Emme 4.1 software package. 
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      Figure 2. Comparison of car flows (linear approximation vs. TAPAS) 

                                  

Figure 3. Comparison of truck flows (linear approximation vs. TAPAS) 
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Figure 4. Comparison of car flows (bi-conjugate linear approximation vs. TAPAS) 

                                      

Figure 5. Comparison of truck flows (bi-conjugate linear approximation vs. TAPAS) 
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Figures 2, 3, 4, and 5 clearly show that both the linear approximation method and the bi-

conjugate variant are producing almost the same class flows as TAPAS. Since the 

assignments are not run to the same precision, the fit is not perfect. The bi-conjugate 

variant of the linear approximation converges in a reasonable time to a relative gap of 10-6 

and it was not considered necessary to obtain a relative gap of 10-7 in view of these 

results. 

We also studied the proportionality property using the two methods of solving for 

equilibrium. Recall that this property assumes that all the path flows, from all O-D pairs, 

when splitting between the same two alternative route segments (sub-paths), it will be 

distributed over two alternative route segments in the same proportions as the demand.. 

To help verify this property, the ratio of travelers traversing the lower to upper alternative 

route segment, should form a straight line on the chart that plots O-D demand that uses 

each segment. 

For that purpose we analyzed a pair of alternative segments identified by Bar-Gera, H., 

Boyce, D. and Nie, Y., in their study report of 2012. The flow on the pair of alternative 

segments is shown in Figure 6. The O-D pairs that contribute flows to each segment were 

computed by appropriate path analyses. 

 

Figure 6. Flows on a pair of alternative segments 

The charts from Figure 7 and 8 show plots of the O-D demands that contribute to the flow 

of each one of the segments for cars and trucks. The relatively straight line of these plots 

indicates that the condition of proportionality is approximately satisfied. In Figure 7, the 

matrices of the O-D demand that contribute flows to the two segments of the pair 
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alternative segments for car flows are plotted. In Figure 8, the matrices of the O-D 

demand that contribute flows to the two segments of the pair alternative segments for 

truck flows are plotted. The proportionality is not perfect but may be considered to be 

close enough. 

 

 

Figure 7. O-D pairs using each alternative segment for cars 
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Figure 8. O-D pairs using each alternative segment for trucks 

 

Two more O-D matrices, referred to as M2 and M3, were provided for the Chicago 

network, each resulting in an increasingly congested network. The TAPAS flows for an 

equilibrium assignment with a relative gap of 10
-12

 were also made available to us by 

David Boyce. The total vehicle hours of the equilibrium flows obtained with first O-D 

matrix are 330,815, while the use of O-D matrices M2 and matrices results in total 

vehicle-hours of 433,222 and 568,362 respectively. The more congested the network, the 

more iterations are required to obtain the equilibrium flows. The computation times for 

these two assignments were 32 and 51 minutes respectively in order  to attain a relative 

gap of 10
-6

. The comparison of the flows obtained for cars and trucks with the bi-

conjugate variant versus the TAPAS flows are shown in Figures 9, 10, 11, and 12. 
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Figure 9. Comparison of car flows (bi-conjugate linear approximation vs. TAPAS) 

Matrix M2  

 

Figure 10. Comparison of truck flows (bi-conjugate linear approximation vs. 

TAPAS)    Matrix M2 
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Figure 11. Comparison of car flows (bi-conjugate linear approximation vs. TAPAS) 

Matrix M3 

 

Figure 12. Comparison of truck flows (bi-conjugate linear approximation vs. 

TAPAS) Matrix M3 
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It is rather evident that the flows produced by the two algorithms are nearly the same: 

large valued flows are practically equal but some of the lower valued flows differ from 

the TAPAS flows. This is probably due to the higher level of congestion generated by 

these O-D matrices. 

 

3. Some analytical results 

In order to introduce the analytical results, some minimal notation is required. A 

transportation network is modelled as a directed, weighted graph ( , )G N A , which has 

origins p P N   and destinations q Q N  . The links a A carries positive flow av , 

which is used to establish the link weight via monotonically increasing positive cost 

functions  a as v . The origin to destination demands for each origin-destination (O-D) 

pair pq  are pqg  and give rise to path flows kh , on paths 
,p qk K . The one-class, static 

traffic equilibrium problem can be formulated as a non-linear convex optimization 

program (Beckmann et al (1956)): 

 

0

,

( ) ,

subject to:

,

,

0,

a

pq

v

a

a A

k pq

k K

a ak k

a A

a

Min s x dx

h g p P q Q

v h a A

v a A









  

 

 







 (1) 

For non-trivial instances of the problem, the link equilibrium flows vector is unique but 

the path flows are not necessarily unique. This can be easily verified by using the Karush-

Kuhn-Tucker conditions. Nevertheless, maximizing the path flows entropy makes the 

solution in the paths space unique (see Lu and Nie (2010), for example).  

Among the many algorithms developed to solve the above optimization problem, the first 

one, and the most commonly used over the years is the linear approximation method of 

Frank and Wolf (1956). The adaptation of this algorithm for solving the network 

equilibrium model and its bi-conjugate variant were used in the empirical tests reported 

above. It has the advantages of modest data storage requirements and suitability for 

parallelization. The generic adaptation of the linear approximation method to solve (1) is 

relevant for the following and is stated as follows: 

Step 0. Initialization 

An initial solution 0
v  is obtained by an all-or-nothing assignment of the demand 

g  on shortest paths computed with arc costs  0 0s s . Set iteration 0k  . 
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Step 1. Update link costs 

1k k  ;  1k ks s v . 

Step 2. Compute descent direction 

Find extreme solution k
y , which is the all-or-nothing assignment of demand g  on 

the shortest paths, computed with arc costs k
s ; compute the descent direction

1k k k d y v . 

Step 3. Compute optimal step size 

Compute the optimal step  0,1k   on the line starting at  1k
v  in direction k

d . 

Step 4. Update link flows 

 1 11k k k k k          v v d v y  

Step 5. Stopping criterion 

If a stopping criterion is satisfied, STOP; otherwise return to Step 1. 

An important contribution by Bar-Gera and Boyce (1999) was to link the entropy 

measure of the path flows 

  
,

ln 1
p q

k
k

pq k K pq

h
E h

g

 
   

 
 

 h  (2) 

to the condition of proportionality. Essentially, it is proved that, for a given solution of 

the network equilibrium link flows, maximizing the path flows entropy implies the 

proportionality property.  

Even though the results presented in Section 2 strongly suggest that the path flow entropy 

is maximized due to the uniqueness of the class flows and the proportionality obtained by 

using a linear approximation method, the entropy is not monotonically increasing at each 

iteration of the linear approximation method. Consider the three-link network in Figure 

13, which contains one O-D pair with a demand of 1000 trips from p to q.  

 

Figure 13. Three-link network 
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The link cost functions are: 

 

 

 

 

4

1
1 1

4

1
2 2

4

1
1 1

10 1 0.15
200

20 1 0.15
400

25 1 0.15
300

v
s v

v
s v

v
s v

      
  

      
  

      
  

 (3) 

The link flows and the path flows entropy obtained after the first nine iterations of the 

linear approximation method are shown in Table 1; the last row corresponds to the 

optimal solution, where all paths used are of equal cost. In this simple example, the 

entropy converges to the value corresponding to its optimal solution, but it is not 

monotonically increasing (see the highlighted cells). 

Table 1. Link flows and path flows entropy at each iteration 

Iteration k v1 v2 v3 step size entropy 

0 1000 0 0 1.00000 1000.000000 

1 403 597 0 0.59654 1674.209328 

2 338 500 161 0.16113 2006.247859 

3 362 483 155 0.03555 2008.301137 

4 355 473 173 0.02040 2026.289654 

5 359 469 171 0.00719 2023.877620 

6 357 467 176 0.00536 2029.062658 

7 359 466 175 0.00200 2028.614491 

8 358 465 177 0.00156 2030.298574 

9 358 465 177 0.00059 2030.298574 

... ... ... ... ... ... 

optimal 358 465 177 - 2030.298574 

 

In the following, some properties of the path flows entropy during a linear approximation 

type algorithm are derived. 

Proposition 1. During a linear approximation algorithm, as long as only new shortest 

paths are discovered for a given O-D pair, the corresponding entropy at iteration n is: 

  
0

ln 1
n

n

pq pq i i

i

E g  


   , (4) 
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where 

  
1

1
n

i i j

j i

  
 

  , (5) 

pqg  is the demand, 
i  is the step size at iteration i , 

0 1  . 

Proof  

At iteration 0, the step size is 1, that is, the entire demand is assigned to one path to 

obtain an all-or-nothing assignment. This path flow is 
0 0 pq pqh g g   . The 

corresponding entropy is: 

 0 0
0 0ln 1pq

pq

h
E h h

g

 
    

 
 

 (6) 

At iteration 1, assuming that a new path has been discovered, and a step size 1  has been 

computed, the flow of path 0 is weighted by  11   and a the new path is added with a 

weight of 1 . The demand will decompose into two paths with flows  11o pqh g    

and  

1 1 pqh g  . Their corresponding entropy will be 

       1

1 1 1 11 ln 1 1 ln 1pq pq pqE g g              

        1 1 1 11 ln 1 1 ln 1pqg              

     0 0 1 1ln 1 ln 1pqg          , (7) 

with 0 11    and 1 1  . 

Assume that at a iteration n , the path decomposition is 
0

n

pq i

i

g h


 , with 
i i pqh g  , 

and  
1

1
n

i n i j

j i

  

 

  . If at iteration 1n   a new path is discovered, its weight will be 

1n  , whereas all the previous paths will be weighted by  11 n  . Denoting by i  the 

coefficients of the newly obtained paths, the path flows decomposition at iteration 1n   

can be written as 
1

0

n

pq i pq

i

g g




  , where  

        
1

1 1

1 1

1 1 1 1
n n

i i n i n j n j

j i j i

       


 

   

             (8) 

for all  0,i n , and 1 1n n  
  , which concludes the proof. □ 
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Proposition 1 mainly states that, a) the path flows entropy for a given OD pair is directly 

proportional to the demand of that OD pair, and b) as long as only new shortest paths are 

discovered during a linear approximation algorithm, the constant for the direct 

proportionality of the path flows entropy of a given OD pair is an algebraic combination 

of the step sizes, regardless of a particular network topology.  

Proposition 1 does not give direct information on the variations of the path flows entropy 

value during an assignment. Moreover, if the same path is discovered again at a certain 

iteration, the path entropy for an O-D pair cannot be expressed as done in Proposition 1. 

This is due to the fact that splitting the flow on the same path into two will not split the 

corresponding entropy into the same proportion. Consider a path with flow h ;  its 

corresponding entropy is  

 ln 1
pq

h
E h

g

 
   

 
 

 (9) 

Splitting the path flow into two 1 2h h h  , the corresponding entropy becomes  

 1 2
1 2ln 1 ln 1

pq pq

h h
E h h

g g

   
         

   
   

 

 1 2
1 2ln ln ln

pq pq pq

h h h
E h h h E

g g g
        . (10) 

Therefore, Proposition 1 provides an overestimate of the entropy when the same path is 

discovered. Moreover, the path flows entropy might decrease, in such a case. The 

following two propositions identify the conditions for the path entropy to increase at a 

given iteration if a new shortest path or if the same shortest path is discovered.  

Proposition 2. During a linear approximation algorithm, if a new path is discovered for a 

given O-D pair at iteration n, the path entropy increases if the step size   satisfies 

    
1

ln ln 1 ln 1
m

i i

i

      


    , (11) 

where i  are the path flows proportions at iteration 1n   , 
1

1
m

i

i




 , 0 m n  . 

Proof  

Assume that, at iteration 1n  , the demand is decomposed into m paths, 
1

m

pq i

i

g h


 , with 

i pq ih g   , m n . The corresponding path flows entropy is 

On Uniqueness and Proportionality in Multi-Class Equilibrium Assignment

CIRRELT-2014-08 15



 
 

  1

1 1

ln 1 ln 1
m m

n i
pq i pq i i

i ipq

h
E h g

g
 

 

 
      

 
 

  . (12) 

Applying a step size of   on a new path, the path flows proportions become 

 1i i       1,i m , and 1m 
  . The corresponding entropy will be 

 
1

1

ln 1
m

n i
pq i

i pq

h
E h

g





 
    
 
 

  

        
1

ln 1 1 ln 1 1
m

pq i i

i

g      


 
       

 
 . (13) 

Imposing 
1n n

pq pqE E   implies 

          
1 1

ln 1 1 ln 1 1 ln 1
m m

pq i i pq i i

i i

g g       
 

 
         

 
  , (14) 

or equivalent 

          
1 1

ln 1 ln 1 1 ln 1 1 0
m m

i i i i

i i

       
 

         . (15) 

Taking into account that 
1

1
m

i

i




  and separating the terms in   the claimed inequality 

(11) is obtained.□ 

Proposition 3. During a linear approximation algorithm, if path m n  is discovered 

again for a given O-D pair at iteration n, the corresponding path entropy increases if the 

step size   satisfies 

         
1

ln ln 1 ln ln 1
m

i i m m m m m m m

i

           


       , (16) 

where i  are the path flows proportions at iteration 1n  , 1m m   , 
1

1
m

i

i




 , with  

0 m n  . 

Proof  

Assume that, at iteration 1n  , the demand is decomposed into m paths, 
1

m

pq i

i

g h


 , with 

i pq ih g   , m n . The corresponding path flows entropy is 

  1

1 1

ln 1 ln 1
m m

n i
pq i pq i i

i ipq

h
E h g

g
 

 

 
      

 
 

  . (17) 
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Without loss of generality, assume that path m is discovered again. Applying a   step 

size on this path, the path flows proportions become  1i i     , for  1, 1i m  , and 

   1 1m m m m m m                   . The corresponding entropy will be  

1

ln 1
m

n i
pq i

i pq

h
E h

g

 
    
 
 

  

            
1

1

ln 1 1 ln 1 1
m

pq m m m m i i

i

g        




 
         

 
 . (18) 

Imposing 
1n n

pq pqE E   implies 

                 
1

1 1

ln 1 1 ln 1 1 ln 1
m m

m m m m i i i i

i i

         


 

          . (19) 

Taking into account that 
1

1
m

i

i




 , denoting 1m m    and rearranging the terms the 

claimed inequality (16) is obtained.□ 

Note that properties 2 and 3 also give some information about the variation of the entropy 

between two consecutive iterations close to the equilibrium. It is clear that  the step size 

tends to 0 close to the equilibrium. Starting from inequalities (11) and (16), define the 

following functions of the step size: 

      2

1

ln ln 1 ln 1
m

i i

i

f        


      (20)   

and 

           3

1

ln ln 1 ln ln 1
m

i i m m m m m m m

i

f             


        , (21) 

which cover both cases of a linear approximation iteration: when a new shortest path or a 

previously known path are discovered at a certain iteration. It can be seen that 

 2
0

lim 0f





  and  3
0

lim 0f





 , that is, the variation in the path flows entropy 

approaches to 0 as the step size tends to 0.  

The three analytical properties presented above may be useful in providing a rigorous 

proof that the equilibrium flows obtained with the linear approximation algorithm 

maximize the path flows entropy. They mainly show that the path flows entropy value of 

an OD pair during the linear approximation algorithm iterations is directly proportional 

only to the demand of that O-D pair. As this value can increase or decrease at certain 

iterations, a rigorous proof that the total path flows entropy converges to a maximum 

value, as the experiments presented in this paper suggest, is still an open problem.  
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4. Conclusions 

From the empirical results provided in this paper, it can be safely concluded that linear 

approximation method and its conjugate variants yield approximately unique path and 

class flows since they approximately satisfy the condition of proportionality. This is a 

new finding as since it was not known that some of the linear approximation algorithms 

used in this study possess these properties. The computing times that can be realized on 

multi-processor computing platforms for convergence levels of up to 10
-6

 render the bi-

conjugate variant of the linear approximation method an attractive alternative for solving 

large scale multi-class assignments problems on which bush based methods are still 

relatively untested. The flow comparisons between equilibrium flows at a relative gap of 

10
-6

 and a relative gap of less than 10
-12

 shed some light on the benefit of computing 

equilibrium flows with very small relative gaps. 
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