
 
 

           
  
  

 _______________________________ 
   

Scenario Clustering in a Progressive 

Hedging-Based Meta-Heuristic for 

Stochastic Network Design   

      
Teodor Gabriel Crainic 
Mike Hewitt 
Walter Rei 
 
                                
August 2012 
 
 
CIRRELT-2012-41 
 
 
 

 
                              
 

 
 
 

G1V 0A6 

Bureaux de Montréal : Bureaux de Québec : 

Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

 www.cirrelt.ca 



Scenario Clustering in a Progressive Hedging-Based Meta-Heuristic for 
Stochastic Network Design 

Teodor Gabriel Crainic1,*, Mike Hewit3 , Walter Rei1 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
and Department of Management and Technology, Université du Québec à Montréal, P.O. Box 
8888, Station Centre-Ville, Montréal, Canada H3C 3P8 

2 Kate Gleason College of Engineering, Rochester Institute of Technology, James E. Gleason 
Building, 77 Lomb Memorial Drive, Rochester, NY, USA 14623-5603 

Abstract. We present a technique for enhancing a progressive hedging-based 

metaheuristic for a network design problem that models demand uncertainty with 

scenarios. The technique uses machine learning methods to cluster scenarios and, 
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extensive computational study we see that solving multi-scenario subproblems leads to a 

significant increase in solution quality and that how you construct these multi-scenario 

subproblems directly impacts solution quality.  
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1 Introduction

Network design models define an important class of combinatorial optimization problems
which have a wide gamut of applications. These problems naturally appear in various
forms in the planning of complex systems (e.g., logistics, transportation and telecom-
munications), and at the strategic, tactical and operational levels. In such contexts,
network design models are used to produce plans that can define the structure, alloca-
tion of resources or adjustments to be applied to the networks. As such, plans are used
for varying periods of time depending on the decision level considered. In the case of ei-
ther strategic or tactical planning, decisions are made for relatively long periods of time.
Therefore, managers responsible for such planning decisions generally face uncertainty
(i.e., stochastic parameters) at the moment when plans are being drawn.

In the case of network design models, demands usually entail a certain level of un-
certainty and define stochastic parameters (i.e., origins, destinations or volumes of the
demands). In this paper we assume origins and destinations are known, but volumes are
uncertain. To account for such uncertainty, forecasting is traditionally used to obtain
estimates in replacement of stochastic parameters. Managers may also apply some form
of sensitivity analysis to provide alternative plans (i.e., networks). However, this type
of approach can lead to arbitrarily bad solutions, see Wallace (2000). Recent studies
conducted by Lium et al. (2009) and Thapalia et al. (2012) have clearly shown that cost-
effective networks obtained in stochastic settings are structurally different then the ones
obtained in deterministic settings.

Stochastic programming has become the methodology of choice to properly account
for uncertainty in planning problems. The goal of stochastic programming approaches
for network design is to build a single design that remains cost-effective when different
demand realizations are encountered. To do so, uncertainty in demand is typically mod-
eled with a finite set of scenarios, which must be generated with care to ensure that they,
collectively, closely approximate the uncertainty in the planning setting. As an example,
see Crainic et al. (2011b). Once the appropriate set of scenarios is generated, a two-stage
stochastic network design problem is solved, with the first stage modeling the choice of
design and the second modeling its cost-effectiveness for each scenario.

However, such problems remain notoriously hard to solve with off-the-shelf optimiza-
tion software, both because deterministic network design models are difficult to solve, and
because modeling uncertainty with scenarios can yield very large instances. Thus, much
like with the deterministic case, we need heuristic methods for producing high-quality de-
signs for realistically-sized instances. Progressive hedging (Rockafellar and Wets, 1991)
has (computationally) proven (Crainic et al., 2011b) to form the basis of an effective
meta-heuristic for two-stage, scenario-based, stochastic network design problems. As
such, the progressive hedging algorithm proposed in Crainic et al. (2011b) can either be
used as a stand-alone solution procedure for the considered problem, or, as an integral
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part of larger sampling-based solution strategies Birge and Louveaux (2011).

In an iteration of a progressive hedging approach for network design, multiple sub-
problems are solved, with each subproblem solution representing a (potentially different)
design. These designs are reconciled in order to create a single reference point, and,
at the beginning of the next iteration the fixed cost associated with each arc is altered
with an augmented lagrangian-type technique in hopes that the solutions to the resulting
subproblems will match the current reference point. A progressive hedging approach con-
verges when all subproblems yield the same design. While convergence is guaranteed for
continuous optimization problems, the presence of integer variables in stochastic network
design models eliminates that guarantee.

In the approach presented by Crainic et al. (2011b), a subproblem was solved for each
scenario and took the form of a deterministic network design problem with demand levels
corresponding to those seen in that scenario. We build on this work to develop a pro-
gressive hedging-based approach that instead solves subproblems comprised of multiple
scenarios. We do so for two reasons: (1) By solving fewer subproblems at an iteration
fewer designs need to be reconciled and potentially fewer iterations needed to reach con-
vergence, and, (2) By solving multi-scenario subproblems the differences between subsets
of scenarios are considered explicitly, yielding a design for each subproblem that may be
closer to the final, consensus design.

Knowing how to group scenarios to form multi-scenario subproblems in a manner
that reduces the number of iterations required to converge is not obvious. Should groups
consist of scenarios that are “similar” or “dissimilar?” We study these questions com-
putationally and develop techniques for grouping scenarios that, while derived in the
context of solving stochastic network design problems, can be applied to other stochastic
programs. To group “similar” scenarios, we use a k-means clustering technique (Mars-
land, 2009) to partition scenarios into clusters, with the clusters then used to define the
multi-scenario subproblems. We develop a similar technique for grouping “dissimilar”
scenarios. We also study whether the groups of scenarios should partition or cover the
set of scnearios. We cluster scenarios based on various statistical representations, such as
the vector of commodity demands for scenario s, and structural properties of the solutions
to the individual scenario problems. We study the effectiveness of the methodologies that
we have developed computationally. Using instances solved in Crainic et al. (2011b), we
evaluate the impact of the various strategies for clustering scenarios on the effectiveness
of the resulting progressive hedging approach.

The rest of this paper is organized as follows. In Section 2 we review the literature
related to stochastic programming for network design. In Section 3 we define the problem
we wish to solve and a progressive hedging-based metaheuristic that can solve subprob-
lems comprised of multiple scenarios. In Section 4 we discuss how we group scenarios in
order to create these multi-scenario subproblems. In Section 5 we computationally study
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the effectiveness of our methodologies, and in Section 6 we draw conclusions based on
these experiments and outline future efforts.

2 Literature Review

In this section, we first review the main stochastic network design models that have been
proposed and then discuss solution approaches for such models. Two subsections are
included here. In subsection 2.1, we present the models by focussing on the diversity
of applications for which they are used. As for subsection 2.2, we provide a general
description of the algorithmic strategies used to develop the solution methods proposed
for these problems.

2.1 Stochastic Network Design Models

Network design models entail two general groups of decisions: design decisions, that
define the structure and characteristics of the network, and flow decisions, which relate
to how the network is used to perform the operational activities considered, see Crainic
and Laporte (1997). When using the a priori approach (Birge and Louveaux, 2011) in a
stochastic setting, decisions are made in stages according to when stochastic parameters
become known. Therefore, problems are formulated by defining which decisions are
taken before all information is available (i.e., first stage decisions) and which decisions
are made afterwards (i.e., second stage decisions and onwards). Traditionally, in the case
of stochastic two-stage network design models, design decisions define the first stage (i.e.,
the a priori solution) and flow decisions the second (i.e., the available recourse), see Klibi
et al. (2010).

Various applications of stochastic network design models can be found in the litera-
ture. Most, but not all, of the existing research may be found in the fields of logistics or
telecommunications. In transportation service network design with stochastic demands,
two stage formulations decide on the structure of services to offer in the first stage, while
the routing of flows is decided at the second stage (e.g., Lium et al., 2009; Crainic et al.,
2011b). More complex formulations are encountered in multi-tiered transportation sys-
tems, e.g., two-tier City Logistics, where the first stage targets the design of the first tier
service network, and the second stage addresses both the design of the corresponding
service network and the routing of flows (Crainic et al., 2011a).

In the context of logistics, two-stage models have been proposed to formulate a wide
range of planning problems related to the design of multi-echelon supply chain networks
under uncertainty, e.g., see Alonso-Ayuso et al. (2003) and Bidhandi and Yusuff (2011)
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for thorough studies on the subject of strategical and tactical planning in this context.
In such models, the first stage traditionally involves decisions that define the topology
and capabilities of the supply chain. Such decisions may include: the choice of facilities
(plants, warehouses and distribution centers) (Tsiakis et al., 2001), the selection of ma-
chinery to use at processing points (Santoso et al., 2005), the choice of market segments
to target (Vila et al., 2007) and the selection of operational processes to apply at each
location in the supply chain (Schütz et al., 2009). The second stage variables generally
group all flow decisions that define how the supply chain is used to perform a given
set of operations (i.e., the supply, production and distribution of commodities) once all
stochastic parameters become known. Finally, the objective in such models is usually to
minimize the sum of both the total fixed cost incurred given the designed supply chain
and the resulting expected total flow cost.

As for applications in telecommunications, stochastic programming models have been
proposed to solve a wide gamut of network-related problems, see Gaivoronski (2005)
for a thorough review. However, when compared to the supply chain context, fewer
design models, where either the size or the structure of the network is changed, have
been proposed. This is explained by the fact that in telecommunications applications,
it is usually assumed that a physical network already exits and that it cannot be easily
expanded or reduced. Stochastic models are therefore used to determine what equipment
to install in the network to provide services when given parameters are stochastic (e.g., the
demands for the considered services). Many such problems take the form of stochastic
location models where in the first stage a series of equipment is installed, while the
following stages formulate the operations performed to provide the considered services.
The planning of an internet based information service, as presented in Gaivoronski (2005),
defines such a problem. Stochastic network models can also be used to solve capacity
planning problems under uncertainty. Riis and Andersen (2002) propose a two-stage
formulation for such a problem when demands are stochastic. In this case, the first stage
decisions determine how much capacity is included on the links of the network and the
second stage contains the flow decisions that establish how the information transits in
the network to satisfy demands. Finally, specific design models have also been proposed,
as in the case of Smith et al. (2004), who developed an integer stochastic programming
model for a ring design problem in an optical network. Consider a network, defined
here as a set of client nodes, a set of client-pair demand edges and, for each client-pair
demand, a set of rings on which the data of the demand can transit. The ring design
problem consists in choosing which rings to use in order to satisfy demands which, in this
case, are stochastic. A two-stage model is proposed in Smith et al. (2004) to formulate
this problem. The first stage decisions define the assignment of the client nodes to rings
that are then used in the second stage to transit the demands. In the model proposed in
Smith et al. (2004), it is assumed that all demands are not necessarily satisfied (a penalty
being applied for unfulfilled demands). Therefore, the second stage decisions are defined
as the proportions for each demand that are either satisfied or not.
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2.2 Solution Approaches

The solution methods developed to solve stochastic network design problems generally
share two common features. First, as is traditionally done in stochastic programming,
scenarios are used to estimate the distributions of the stochastic parameters. Therefore,
stochastic network design problems are either formulated using a static set of scenarios,
or, they are solved using algorithms that employ sampling. If a static set of scenarios
is used, then either such a set is assumed available (Tsiakis et al., 2001; Alonso-Ayuso
et al., 2003; Smith et al., 2004), or, it needs to be generated using appropriate methods.
For example, in Høyland and Wallace (2001) and Høyland et al. (2003), methods are
proposed to generate sets of scenarios that enforce specified statistical properties. In
contrast to using a static set of scenarios, sampling based solution methods, such as the
sample average approximation (SAA) algorithm, dynamically generate sets of represen-
tative scenarios for the problem. In the SAA algorithm, these sets are used to obtain
different approximations of the original stochastic model that are then solved to produce
feasible solutions. In this method, sampling is also applied to evaluate the optimality
gaps associated with the solutions obtained. In the context of solving stochastic network
design models, the SAA solution approach has been widely applied Santoso et al. (2005);
Azaron et al. (2008); Vila et al. (2007); Schütz et al. (2009); Bidhandi and Yusuff (2011).
Finally, whenever scenarios are used, an important and related topic is the problem of
scenario reduction. It may happen that the set of scenarios that is considered produces a
model whose solution time is prohibitive. When such a situation occurs, scenario reduc-
tion techniques, as the frameworks defined in Heitsch and Römisch (2007) and Heitsch
and Römisch (2009), can be applied to obtain smaller sets that, while producing easier
models to solve, limit the errors caused by such reductions.

Once a scenario set is defined, it can be used to formulate the stochastic problem as a
large-scale deterministic model. The resulting model, referred to as the extensive form in
Birge and Louveaux (2011), can then be solved using various solution strategies. In the
case of stochastic network design problems, commercial solvers have been applied directly
to the models formulated using scenario sets, see Tsiakis et al. (2001); Vila et al. (2007);
Azaron et al. (2008). However, given the complexity of these problems, the direct use of
commercial solvers may limit the size of the instances that can be solved in acceptable
times. Therefore, a second common feature among algorithms specifically developed for
stochastic network design models is the use of decomposition strategies. Given the block
structure characterizing the extensive form models (blocks being defined according to the
considered scenarios Birge and Louveaux (2011)), various decomposition strategies have
proven efficient to solve these problems.

In the particular case of network design models, two such strategies have been success-
fully applied. The first is based on Benders decomposition (Benders, 1962) which, when
applied in the stochastic setting, is referred to as the L-shaped algorithm, see Birge and
Louveaux (2011). Following this strategy, the stochastic network design model is first
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projected onto the space defined by the first stage variables (i.e., the design variables).
By doing so, the problem decomposes according to the considered scenarios (i.e., a flow
model for each scenario). The problem is then solved by reformulating the scenario sub-
problems using an outer linearization approach and then applying a relaxation algorithm
on the resulting equivalent model, see Riis and Andersen (2002); Smith et al. (2004);
Santoso et al. (2005); Bidhandi and Yusuff (2011). The second decomposition strategy
that is used for stochastic network design models is referred to as scenario decomposi-
tion, see Birge and Louveaux (2011). Scenario decomposition is obtained by applying
Lagrangean relaxation to the non-anticipativity constraints (i.e., the constraints ensuring
that a single design is used under all considered scenarios). The original stochastic prob-
lem is again decomposed per scenario (i.e., a deterministic network design defined for
each scenario). The resulting scenario subproblems can then be used to obtain a general
lower bound, by solving the Lagrangean dual as in Schütz et al. (2009), or as a means to
produce a more efficient solution approach, as in the case of the branch-and-fix algorithm
developed in Alonso-Ayuso et al. (2003) or the progressive hedging-based metaheuristics
proposed in Crainic et al. (2011b).

3 A Progressive Hedging-Based Metaheuristic

The solution approach we propose in this paper seeks to solve a problem that includes
a finite set of known scenarios. Therefore, it is assumed that the process of producing
the scenarios has been applied (i.e., sampling, scenario generation and reduction) and we
now solve the problem with the resulting scenarios. In this section we formally define
this problem and present the approach.

Given a directed network with node set N, arc set A, commodity set K, and scenario
set S, we wish to

minimize
∑

(i,j)∈A

fijyij +
∑
s∈S

ps(
∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij )

subject to ∑
j∈N+(i)

xksij −
∑

j∈N−(i)

xksji = dksi ∀i ∈ N, ∀k ∈ K, ∀s ∈ S, (1)

∑
k∈K

xksij ≤ uijyij ∀(i, j) ∈ A, ∀s ∈ S, (2)

yij ∈ {0, 1} ∀(i, j) ∈ A, (3)

xksij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K, ∀s ∈ S. (4)

Here, yij indicates whether arc (i, j) is installed in the network, fij is the cost (often called
the fixed charge) of doing so, xksij is the amount of commodity k’s demand that flows on

6

Scenario Clustering in a Progressive Hedging-Based Meta-Heuristic for Stochastic Network Design

CIRRELT-2012-41



arc (i, j) in the resulting solution for scenario s, and ckij is the cost per unit of demand
flowed on arc (i, j). Constraints (1) ensures that in each scenario s, each commodity’s
demand may be routed from its origin node to its destination node. Constraints (2)
ensure that the same design is used in each scenario, and that arc capacity (uij) is never
violated. When dks < uij, the disaggregate inequalities xksij ≤ dksyij can be added to
the formulation to strengthen its linear relaxation. We refer to this problem as the
CMND(S); its optimal solution is a single design that is cost-effective for all scenarios.

We next present in Algorithm 1 a metaheuristic that generalizes the method proposed
by Crainic et al. (2011b) for solving CMND(S), as it allows for the subproblems solved
at an iteration to be comprised of multiple scenarios. Specifically, when the algorithm
begins, it creates a list of scenario groups, S̄ = (S1, . . . , Sg), where Sτ ⊆ S and ∪gτ=1Si =
S.

Note that in Algorithm 1 the list S̄ is static throughout the course of the algorithm.
At an iteration of Algorithm 1, we solve CMND(Sτ ) for τ = 1, . . . , g to produce the
design ySτν . When solving CMND(Sτ ) we set ps = ps/pSτ where pSτ =

∑
s∈Sτ ps.

Having determined the design ySτν for τ = 1, . . . , g at iteration ν, we can derive a
single design for CMND(S), ySν , by setting the design variables ySνij to

ỹij =

{
1, if ySτν = 1 for any τ = 1, . . . , g
0, otherwise,

∀(i, j) ∈ A. (5)

In Step 11 of Algorithm 1, we use the same update strategy as presented in Crainic
et al. (2011b). Namely, with parameters, clow, chigh, and β, we set

f̃ νij =


βf ν−1

ij , if ȳν−1
ij < clow,

1
β
f ν−1
ij , if, ȳν−1

ij > chigh,

f ν−1
ij , otherwise

∀(i, j) ∈ A. (6)

We consider consensus to have been reached regarding arc (i, j) at iteration ν when
ȳνij ∈ {0, 1}. We use similar stopping criteria in Step 6 as presented in Crainic et al.
(2011b). Namely, we stop after 1,000 iterations, 25 iterations without an improving
solution, 10 hours of CPU time, or there are fewer than γ (0 ≤ γ ≤ 1) of the arcs for
which consensus has been reached. To implement Algorithm 1, we must determine how
to construct the list of scenario groups, S̄ = (S1, . . . , Sg). We next discuss the methods
we have developed for doing so.
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Algorithm 1 Grouped Scenario Meta-heuristic

Require: Number of scenario groups, g.
1: Initialization: We first determine scenario groups.
2: ν ← 0
3: f νij ← fij, ∀(i, j) ∈ A.
4: Construct list of scenario groups, S̄ = (S1, . . . , Sg).
5: First phase: We next seek consensus on which arcs (i, j) should exist in the design
6: while stopping criterion not met do
7: for all τ = 1→ g do
8: Solve CMND(Sτ ) for design ySτν

9: end for
10: ν ← ν + 1
11: global update of fixed costs f νij
12: ȳνij ←

∑g
τ=1 pSτy

Sτν
ij , ∀(i, j) ∈ A

13: Update best solution, yBest = ySν when appropriate
14: end while
15: Let ȳ = ȳν

16: Second phase: We next solve a restriction of CMND(S) as a mixed integer program
17: Fix design variables for which consensus is obtained
18: Solve CMND(S) as a restricted mixed integer program

4 Scenario Grouping

We view grouping scenarios as a type of clustering problem, and use a methodology
similar to k-means clustering (Marsland, 2009). The purpose of k-means clustering is to
partition n data points into m clusters such that each data point is in the cluster whose
mean is closest. Often times, and in our application, m is not fixed ahead of time, and
thus the appropriate number of clusters must also be determined. While determining
the optimal set of k clusters is NP-Hard, many computationally effective and efficient
heuristics have been developed. In particular, we use the heuristic k-means++, (Arthur
and Vassilvitskii, 2007) which has been shown to have approximation guarantees.

In Section 4.1 we discuss the methods we use for clustering scenarios and determining
the number of clusters. To use them to partition the |S| scenarios into g groups, S̄ =
(S1, . . . , Sg), we represent each scenario with a vector of descriptive statistics. Then, we
cluster those vectors, and create groups of scenarios that correspond to the clusters of
descriptive statistics. While it is these vectors of statistics, ws, for scenarios s = 1, . . . , |S|,
that are clustered, we refer to a scenario s being in a cluster Ci when in fact its vector
ws is in that cluster. We describe the different types of descriptive statistics we use for
clustering in Section 4.5.
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4.1 Grouping Similar Scenarios

In Algorithm 2 we present the standard k-means clustering algorithm. In general, when
determining the distance from a point to another point or a point to the mean of a
cluster, we do so based on Euclidean distance. The error associated with a clustering is
the total distance of points from the mean of the cluster to which they are assigned.

Algorithm 2 K-Means

Require: n data points
Require: The number of clusters to create, m
1: Find an initial clustering of n points into m clusters
2: while have a new clustering do
3: Calculate the mean of each cluster
4: Assign each point to the cluster with the closest mean
5: end while

To begin the k-means algorithm we must create an initial set of k clusters. We
do so by first identifying k core scenarios, each of which will represent the mean of a
cluster. We then assign each remaining scenario to the closest core scenario. To identify
the k core scenarios, we use the methodology developed by Arthur and Vassilvitskii
(2007), which iteratively chooses the core scenarios randomly from the set of scenarios,
but with weighted probabilities that reflect each scenarios’ distance from the previous
core scenario chosen. Along with approximation guarantees relating to the error of the
resulting clustering, Arthur and Vassilvitskii (2007) provide compelling computational
evidence that this methodology for choosing an initial set of core points is superior to
simply choosing at random. We present the methodology in detail in Algorithm 3.

Algorithm 3 Choose Initial Set of Core Points

Require: Statistics ws for describing scenario s = 1, . . . , |S|
Require: Number of core points, k to find
1: Take one scenario, s1, chosen randomly from s1, . . . , s|S|.
2: Take a new scenario, si, randomly, with the probability of choosing sp =

‖wsp−wsi−1‖P|S|
q=1 ‖wsq−wsi−1 |

3: Repeat Step 2 until k core points are found.

Lastly, to determine the number of clusters, we assume we are provided with a lower
and upper bound on the number of clusters, and execute Algorithm 2 for each number
of clusters between those bounds. We then choose the number k such that the difference
between the error associated with k and k − 1 clusters is the greatest. For example, if
we were considering between 4 and 8 clusters, with the error of the resulting cluster for
each size given in Figure 4.1, then we would choose k = 6.
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Figure 1: Comparing Errors of Clusterings to Choose k

4.2 Introducing Dissimilarity into Groups of Similar Scenarios

We also consider systematically introducing dissimilarities into the clusters of similar
scenarios produced by Algorithm 2, and do so by creating one more cluster that consists
of one scenario from each of those created clusters. We illustrate this method with Figures
2(a) and 2(b). Here, Algorithm 2 has output 4 scenario clusters, C1, C2, C3, and C4. A
fifth scenario group, (C5 in Figure 2(b)) called the Dissimilarity Group, is created by
choosing one scenario from each of the clusters. Whether the scenarios chosen for the
Dissimilarity Group are removed from their initial clusters (C1, . . . , C4) is an algorithm
parameter. In our experiments, we choose the scenario from each cluster that is closest
to the center of that cluster.

4.3 Grouping Dissimilar Scenarios

Instead of introducing dissimilarities into groups of similar scenarios we can instead
consider grouping together scenarios that are dissimilar. Our methodology for creating
such groups is very similar to how we group similar scenarios. Specifically, for a fixed
number of groups, we execute an algorithm for grouping dissimilar scenarios that only
differs from Algorithm 2 in Step 4, where points are instead assigned to the cluster whose
mean is the furthest away. Similarly, when finding the initial clustering, we use Algorithm
3 to find the initial cluster centers and then assign the remaining points to the centers
that are the furthest away. To choose the number of groups, we again assume a lower
and upper bound on the possible number of groups, and execute our methodology for
each number between those bounds. We then evaluate the quality of a grouping of fixed
cardinality by calculating for each group the distance between the mean of that group
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Figure 2: Introducing Dissimilarity Into Similar Scenario Groupings

and the scenario closest to that mean and then finding the average of these distances.
We choose the number k such that this average distance is greatest.

4.4 Grouping Scenarios into Covers or Partitions

In (nearly) all of the methods we have discussed so far we create groups of scenarios that
partition the set of scenarios. However, we could also consider covers, or that a scenario
may appear in multiple groups. To create covers of scenarios, we first creaate groups of
scenarios by clustering similar scenarios with Algorithm 2. Next, for each scenario si, we
find the cluster Cj other than the one it was assigned to by Algorithm 2 that minimizes
‖wsi − µj‖. We then add si to the group corresponding to Cj. We note that we do not
update the mean of Cj after adding this new scenario. Thus, we have that each scenario
will appear in exactly two groups. Previously, Algorithm 1 calculated the probability of
scenario grouping pSτ as

∑
s∈Sτ ps. With each scenario appearing in exactly two groups

we let pSτ =
∑

s∈Sτ ps/2.

4.5 Descriptive Statistics

To execute Algorithm 2 we need statistics describing each scenario. Such statistics can
relate either to structural properties of the scenario, or, of a solution to the deterministic
network design problem associated with that scenario. In this paper we consider the
following statistics for scenario s:
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Demand-based: The first descriptive statistic we use relates to commodity demands.
Thus, wdemands is a |K|−dimensional vector, with the jth element containing djs.

Solution-based: The second descriptive statistic we use relates to attributes of a solution,
(xs, ys), produced by solving CMND(s) with the original fixed charges, fij. Specifically,
we consider the total commodity demand that flows on each arc in the solution (xs, ys).
In this case, warc−flows is an |A|-dimensional vector, where the element corresponding to
arc (i, j) is calculated as

∑
k∈K x

ks
ij .

5 Computational Experiments

We computationally study whether grouping scenarios and, subsequently, solving multi-
scenario subproblems improves the performance of Algorithm 1. To focus our experiments
on the impact of grouping scenarios, we solve single and multi-scenario subproblems with
CPLEX (unlike what was done in Crainic et al. (2011b), where a Tabu Search heuristic
was used to produce high quality designs for each single-scenario subproblem). When
solving subproblems, CPLEX was executed with an optimality tolerance of 1% and a time
limit of 1,800 seconds. Other parameters were left at their default values. We provide
the disaggregate inequalities xksij ≤ dksyij to CPLEX as User Cuts, meaning CPLEX
will only add them to the formulation when they are violated by a solution to the linear
relaxation. Algorithm 1 was executed with γ = .1, meaning that Phase 1 of the algorithm
will terminate when consensus has been reached for at least 90% of the arcs.

All experiments were performed on a machine with 8 Intel Xeon CPUs running at
2.66 GHz with 32 GB RAM. Unless otherwise noted, computation times are reported
in seconds. To calculate the quality of the solutions produced by Algorithm 1 we also
solved these instances with CPLEX, in which case CPLEX was executed with an opti-
mality tolerance of 1% and a time limit of 10 hours. For the scenario grouping methods
that require the commodity flows on each arc (warc−flows ) in a deterministic solution to
each scenario-based instance, we solve the single scenario network design problem with
CPLEX.

For our computational study, we use 6 problem classes (4-9) from the set of R instances
seen in Crainic et al. (2011b). Attributes of each class are given in Table 1. Each of these
classes contains five networks, labeled 1,3,5,7, 9, yielding a total of 40 networks. The
labels 1,3,5,7, and 9 reflect an increasing ratio of fixed to variable charges. For each of
these networks, there are instances with 16 and 32 scenarios (|S| = 16, 32). While the
instances in our computational study are rather small, and in some cases, easily solved
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by CPLEX, we chose them because we want to run experiments where CPLEX can solve
both the single and multi-scenario subproblems to near-optimality in a reasonable time.
We believe that doing so will provide a clearer understanding of the impact of grouping
scenarios and solving multi-scenario subproblems.

Table 1: Problem Class Characteristics
Group |N | |A| |K|

4 10 60 10
5 10 60 25
6 10 60 50
7 10 82 10
8 10 83 25
9 10 83 50

5.1 Effectiveness of Grouping Similar Scenarios

To understand whether one should have Algorithm 1 solve subproblems in Step 8 that
contain multiple scenarios and how those groups of scenarios should be chosen we ran
Algorithm 1 multiple times for each instance, once with single scenario subproblems and
once for every strategy for creating multiple scenario subproblems. We report in Tables
2 and 3 summary statistics (averages) for these instances when solving single scenario
subproblems (Single), and multiple scenario subproblems when clustering is done based
on similarity with respect to the vectors wdemands , warc−flows . Table 2 contains results for
the instances with 16 scenarios and Table 3 contains results for those with 32. We allow
for between |S|/2 and |S|/4 clusters of scenarios of size between 1 and 8. We also study
the effectiveness of grouping scenarios randomly. To do so, we randomly determine the
number of groups (again between 4 and 8 for 16 scenarios and 8 and 16 for 32 scenarios),
and then randomly assign scenarios to groups.

We report the average number of seconds (P1 Time) and iterations (P1 # Iter)
required to complete Phase 1, the average time spent solving the restricted MIP in Phase
2 (P2 Time), the average optimality gap (P1 Gap CPLEX LB) of the best solution
produced during Phase 1 of Algorithm 1 as measured against the dual bound produced
by CPLEX, calculated as (Phase 1 Solution Value - CPLEX LB)/(Phase 1 Solution
Value), and the average optimality gap (Gap CPLEX LB) of the final solution produced
by Algorithm 1 as measured against the dual bound produced by CPLEX, and calculated
as (Phase 2 Solution Value - CPLEX LB)/(Phase 2 Solution Value).

For each table, by comparing the “Single” row with the others, we see that solving
multi-scenario subproblems in Algorithm 1, regardless of how the scenarios are grouped,
enables Phase 1 of Algorithm 1 to converge in significantly fewer iterations, and find
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Table 2: Performance when Grouping Similar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Single 3,682.34 91.28 5.48 4.22 1.51
Random 3,524.70 40.70 35.43 3.21 1.14
Similar
wdemand

1,701.97 5.53 9.63 2.14 1.07

Similar
warc−flow

1,224.93 36.07 3.00 2.04 1.08

Table 3: Performance when Grouping Similar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Single 7,176.86 128.55 44.62 4.65 1.85
Random 8,113.73 60.33 26.20 4.30 1.64
Similar
wdemand

5,459.50 25.73 9.97 3.02 1.37

Similar
warc−flow

4,371.77 48.70 69.37 2.91 1.26

a better solution. Overall, when solving multi-senario subproblems Algorithm 1 always
finds a better solution than when solving single scenario subproblems.

While grouping scenarios randomly is better (in terms of solution quality and number
of iterations required for Phase 1 to converge) than not grouping at all, clustering sce-
narios nearly always enables Algorithm 1 to produce an even higher quality solution and
for Phase 1 to converge in fewer iterations. We also see that clustering scenarios enables
Algorithm 1 to terminate more quickly than when solving single scenario subproblems
or multi-scenario subproblems created by grouping scenarios randomly. Ultimately, we
see that each clustering-based method outperforms both randomly grouping and not
grouping at all with respect to the quality of the solution produced and the number of
iterations and time required for Algorithm 1 to complete.

5.2 Effectiveness of Introducing Dissimilarity into Grouping

We next study whether introducing dissimilarity into a grouping of similar scenarios with
respect to wdemand and warc−flow vectors can improve the performance of Algorithm 1. In
Tables 4 and 5 we report results when introducing a Dissimilarity Group, as illustrated
in Figure 2(b), for instances with 16 and 32 scenarios. We report two variants of the
Dissimilarity Group approach. The first, Similar w− - DG (P), introduces the Dissimi-
larity Group and removes the scenarios in that group from the groups to which they were
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initially assigned. The second, Similar w− - DG (R), introduces the Dissimilarity Group
and does not remove the scenarios from their initial groups.

We see that for a given statistic, introducing the Dissimilarity Group often leads
to higher quality solutions at the expense of longer run times. In fact, for both the
16 scenario and 32 scenario instances a method that includes the Dissimilarity Group
yielded the highest quality solution (Similar wdemand- DG (P) for 16 scenario instances,
Similar warc−flow-DG(R) for 32 scenario instances). We also note that for a given statistic,
repeating the scenarios in the Dissimilarity Group (and thus having groups of scenarios
that are a cover as opposed to a partition) often results in fewer iterations needed for
Phase 1 to converge than not repeating them. However, the same conclusion can not be
drawn regarding solution quality.

Table 4: Impact of Introducing Dissimilarity - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Similar wdemand 1,701.97 5.53 9.63 2.14 1.07
Similar wdemand - DG (P) 1,872.73 10.20 4.53 2.63 0.93
Similar wdemand - DG (R) 2,021.27 6.90 5.70 3.33 1.02
Similar warc−flow 1,224.93 36.07 3.00 2.04 1.08
Similar warc−flow - DG (P) 3,026.83 83.63 4.47 2.72 1.03
Similar warc−flow - DG (R) 2,722.37 36.80 3.83 2.30 1.01

Table 5: Impact of Introducing Dissimilarity - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Similar wdemand 5,459.50 25.73 9.97 3.02 1.37
Similar wdemand - DG (P) 4,508.17 23.43 20.93 2.92 1.26
Similar wdemand - DG (R) 6,097.63 35.63 21.47 3.79 1.32
Similar warc−flow 4,371.77 48.70 69.37 2.91 1.26
Similar warc−flow - DG (P) 4,790.33 59.03 81.45 3.38 1.27
Similar warc−flow - DG (R) 5,035.63 56.47 48.10 4.10 1.25

5.3 Effectiveness of Grouping Dissimilar Scenarios

We next study whether it is better to group scenarios that are dissimilar (as discussed
in Section 4.3) or similar. Thus, we present in Table 6 and 7 results when dissimilar
scenarios are grouped together along with the results regarding when similar scenarios
are grouped together for instances with 16 and 32 scenarios. While it is difficult to draw
conclusions regarding the impact of grouping dissimilar scenarios on solution quality, it
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does appear that doing so can significantly reduce the number of iterations needed for
Phase 1 to converge.

Table 6: Group Similar or Dissimilar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Similar wdemand 1,701.97 5.53 9.63 2.14 1.07
Dissimilar wdemand 2,045.97 3.07 2.40 1.76 1.08
Similar warc−flow 1,224.93 36.07 3.00 2.04 1.08
Dissimilar warc−flow 1,926.03 7.10 3.90 2.42 1.17

Table 7: Group Similar or Dissimilar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB
Similar wdemand 5,459.50 25.73 9.97 3.02 1.37
Dissimilar wdemand 5,875.40 9.13 51.47 4.41 1.41
Similar warc−flow 4,371.77 48.70 69.37 2.91 1.26
Dissimilar warc−flow 4,708.30 11.43 14.23 3.28 1.35

5.4 Effectiveness of Covering Instead of Partitioning Scenarios

Lastly, we study whether one should create groups of scenarios that cover or partition the
set of scenarios. We report in Tables 8 and 9 results obtained with groupings of scenarios
that were created by first clustering similar scenarios and then adding each scenario to
the next nearest cluster as well as those obtained with groupings of scenarios that were
created by clustering similar scenarios. We see that for both 16 and 32 scenarios and
each statistic, using a cover of scenarios both increases solution quality and significantly
decreases the number of iterations necessary for Phase 1 of Algorithm 1 to converge.

Table 8: Cover or Partition Similar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

CPLEX LB CPLEX LB
Similar wdemand 1,701.97 5.53 9.63 2.14 1.07
Similar wdemand and Nearest 680.13 3.50 7.43 2.36 0.82
Similar warc−flow 1,224.93 36.07 3.00 2.04 1.08
Similar warc−flow and Nearest 2,386.63 4.50 14.50 2.50 1.03
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Table 9: Cover or Partition Similar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

CPLEX LB CPLEX LB
Similar wdemand 5,459.50 25.73 9.97 3.02 1.37
Similar wdemand and Nearest 6,299.00 12.27 84.93 4.07 1.20
Similar warc−flow 4,371.77 48.70 69.37 2.91 1.26
Similar warc−flow and Nearest 5,777.20 11.37 23.70 4.43 1.21

6 Conclusions and future work

We have presented a technique for enhancing a progressive hedging-based metaheuris-
tic for a network design problem that models demand uncertainty with scenarios. The
technique uses machine learning techniques to cluster scenarios and, subsequently, the
metaheuristic repeatedly solves multi-scenario subproblems (as opposed to single-scenario
subproblems as is done in existing work). With an extensive computational study we
saw that solving multi-scenario subproblems leads to an increase in solution quality,
and that how you construct these multi-scenario subproblems also has an impact. Ulti-
mately, we saw that creating a cover of the scenarios by first clustering them with respect
to commodity demands and then adding each scenario to one other group lead to the
highest quality solutions and the fewest number of iterations for the first phase of the
metaheuristic to converge.

The benefits seen from solving multi-scenario subproblems suggest multiple avenues
for future research. Network design problems of more than a modest size are notoriously
difficult to solve with even the best integer programming solvers, and thus many effec-
tive metaheuristics have been developed. Thus, adapting one of these to multi-scenario
network design problems will be one of our next efforts. We also think that grouping
scenarios dynamically, and with a method that incorporates memory, will be beneficial
for larger instances, and thus we will investigate methods for doing so. Lastly, we think
grouping scenarios can be incorporated into exact methods. For example we are in-
vestigating using groups of scenarios to aggregate optimality cuts in a Bender’s-based
method.

Acknowledgments

Partial funding for this project has been provided by the Natural Sciences and Engi-
neering Council of Canada (NSERC) and by the Fonds québécois de la recherche sur la
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