
 
 

 
   

____________________________ 
  

Modeling Approaches for the 

Design of Resilient Supply 

Networks under Disruptions  

 

 
 

Walid Klibi  
Alain Martel 
 

 
 
 CIRRELT-2009-27  

(Revised November 2010) 
 
 
 



Modeling Approaches for the Design of Resilient Supply Networks under Disruptions 
 
 
 
 

Modeling Approaches for the Design of Resilient Supply Networks 

under Disruptions  
 

Walid Klibi
1,2

 and Alain Martel
1,2,*

 
 

 

1
 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)  

2
 Département Opérations et systèmes de décision, Pavillon Palasis-Prince, Université Laval,  
Québec, Canada, G1V 0A6 

 

Abstract.    This paper studies various modeling approaches to design resilient Supply Net-

works (SN) for the location-transportation problem under uncertainty. The future environment of 

the SN is shaped by random demands, and by disruptions perturbing depots capacity and ship-to-

point demand processes. The paper proposes several stochastic programming models incorporat-

ing alternative resilience seeking formulations. A generic approach to model SN disruptions, and 

to elaborate and evaluate SN designs is also proposed. Experiments are made to compare the SN 

design models formulated, and recommendations are drawn on the approach to use to design ef-

fective and robust supply networks.  

   

Keywords. Supply Network Design, Uncertainty, Resilience, Scenario Planning, Network Dis-

ruptions, Multihazard, Stochastic Programming 

 

Acknowledgement.   This research was supported in part by NSERC grant no DNDPJ 

335078-05, by Defence R&D Canada and by Modellium Inc.       

 

 

 

Results and opinions in the publication attributed to named author(s) were not evaluated by CIRRELT. 

Les résultats et opinions contenus dans cette publication n’engagent que leur(s) auteur(s) et n’ont pas été 
évalués par le CIRRELT. 

_____________________________ 

* Corresponding author: alain.martel@cirrelt.ca  

 

Dépôt légal – Bibliothèque nationale du Québec, 
                     Bibliothèque nationale du Canada, 2009 

© Copyright Walid Klibi, Alain Martel and CIRRELT, 2009



Modeling Approaches for the Design of Resilient Supply Networks under Disruptions 

CIRRELT-2009-27 1

1. Introduction 

A Supply Network (SN) is a configuration of supply facilities geographically deployed in 

order to serve a customer base. Strategic SN design decisions involve the determination of the 

number, location and mission of these facilities. At that level, the main objective of the firm is to 

design a SN maximising shareholders’ value during an appropriate planning horizon. However, 

at design time the future environment under which the SN will evolve is unknown which com-

plicates the strategic evaluation of potential designs. Traditional SN design approaches assume 

that the environment is deterministic, which give rise to classical location models (Klose and 

Drexl, 2005). Typical extensions of these models take into account random factors using stochas-

tic programming (Birge and Louveaux, 1997) or depot failures using robust optimisation (Kou-

velis and Yu, 1997). A recent review of supply chain networks design problems under uncertain-

ty is found in Klibi et al., (2010a). However, to the best of our knowledge, no comprehensive SN 

design methodology considering both business-as-usual random events and high impact disrup-

tions is currently available.  

A major preoccupation of contemporary businesses is the consideration of risks when de-

signing SNs. In addition to the random variables associated to business-as-usual factors, several 

catastrophic events can disrupt supply chains. Rice and Caniato (2003) and Christopher and Peck 

(2004) investigate network vulnerability to extreme unforeseen events such as natural disasters 

and strikes, and Sheffi (2005) examines the case of several companies who suffered from fires, 

earthquakes, floods, intentional attacks, etc. SNs are geographically dispersed across large re-

gions which increase their exposure to extreme events and, in order to design robust SNs, the 

impact of such events must be considered. To this end, this paper examines the business-as-usual 

and the extreme random events that shape future SN environments. The challenge is to elaborate 

a SN design methodology taking all these event types into account while remaining sufficiently 

synthetic to be practical. The approach proposed is based on the modeling of multihazards: it in-

volves the definition of SN vulnerability sources and exposure levels, the estimation of multihaz-

ard arrival processes, and the assessment of multihazard consequences. The risk modeling con-

cepts applied are based on Haimes (2004), Grossi and Kunreuther (2005), Kleindorfer and Saad 

(2005) and Banks (2006).  

In these circumstances, responsiveness and resilience become key elements to enhance the 

robustness of SN designs. Response policies are operational rules adopted to deal with random 

demands as well as disruptions when they occur. Resilience is the ability of a SN to bounce back 

from disruptions (Sheffi, 2005). Resilience strategies are predispositions of network resources 

favouring risk avoidance and mitigation. Currently most SNs have difficulty coping with emer-

gencies (Lee, 2004), and they do not develop plans to protect against high-impact low likelihood 
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events (Chopra and Sodhi, 2004). Recently, SN risk management strategies incorporating redun-

dancy and flexibility have been proposed in the literature (Chopra and Sodhi, 2004; Sheffi, 2005; 

Tang 2006; Snyder et al., 2006; Tang and Tomlin, 2008; Pettit et al., 2010). However, these 

strategies were not explicitly incorporated in SN design models. Using the capacitated location-

transportation problem under uncertainty as a typical SN design problem, this paper proposes an 

approach to model the impact of multihazards on SN capacity and demand, it proposes alterna-

tive SN design models to anticipate response policies, to consider the risk-attitude of decision-

makers and to elaborate risk avoidance and resilience strategies, and it investigates the perform-

ance of the SN designs provided by these models. 

In the supply context considered, random customer orders are fulfilled from pre-assigned 

depots using different transportation means, and customers expect next day deliveries. When a 

disruption occurs, some depots may lose part of their capacity, and some orders may have to be 

reassigned based on the response policy of the company. It is through this order fulfilment proc-

ess that sale revenues and operational costs are generated. When designing the SN, these reve-

nues and costs must be anticipated to determine if the investments required to open depots will 

generate value. In classical location-allocation models, investment costs are associated to binary 

location variables, operational revenues and costs are anticipated by introducing aggregate depot-

to-customer flow variables, and risks are neglected. This is a very crude approximation. A better 

anticipation can be obtained by modeling transportation decisions more closely, risk can be taken 

into account by modeling demands and multihazards as stochastic processes and a more resilient 

SN can be designed by introducing risk mitigation constructs in the design model. The stochastic 

programming models thus obtained are clearly more difficult to solve than classical location-

allocation models. Is this extra effort worthwhile? This is the question we address in this paper.  

To answer this question, we need to elaborate several original stochastic SN design models 

and to evaluate them using an approach which replicates the network users supply operations as 

closely as possible. Some of the design models proposed are stochastic reformulations of classi-

cal location-allocation models, and others extend the location-transportation model proposed by 

Klibi et al., (2010) to take into account depots capacity, disruptions and resilience strategies. 

These models are solved using the Sample Average Approximation (SAA) method, as is com-

monly done in stochastic programming (Shapiro, 2003). The plausible future scenario samples 

required to formulate the stochastic design models, and to evaluate the designs provided by these 

models, are generated using Monte-Carlo methods. Moreover, the design evaluation process is 

not based solely on an expected value criterion but also on design robustness measures for low-

risk, high-risk and worst-case scenarios. The methodology adopted to address our research ques-

tion is summarized in Figure 1.  
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Figure 1- Research Methodology 

The rest of the paper is organized as follows. Section 2 describes the location-transportation 

problem (LTP) under uncertainty and characterizes underlying demand and hazard processes. 

Section 3 presents a scenario-based SN design approach and proposes two design models using 

stochastic programming. Section 4 discusses risk avoidance and SN resilience, and it proposes 

three design models to improve SN resilience. Section 5 proposes a generic approach to generate 

and to evaluate SN designs. Computational results are presented and analysed in section 6. Fi-

nally, section 7 concludes the paper.   

2. The Location-Transportation Problem under Uncertainty   

Problem Context 

The company considered purchases a product family from a number of vendors. This prod-

uct is sold to customers located in a large geographical area and hence it must be shipped to a 

large number of ship-to-points. In order to serve its customers, the company must implement a 

number of capacitated depots with similar processes and technology. For a given day, the capac-

ity of a depot reflects the maximum throughput sustained by its resources. In addition to its regu-

lar capacity level, we assume that under normal business conditions, the depot can provide an 

additional capacity per day using local recourses (ex. overtime).  

Customers order a varying quantity of product and the company wants to provide next day 

delivery from a single depot using common or contract carriers. To this end, several transporta-

tion options with different unit costs are available, namely:  
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• Full truckloads (FTL), i.e. using TL transportation for a customer order that requires 

all the truck capacity; 

• Single customer partial truckloads (STL), i.e. using TL transportation for a customer 

order that requires only a fraction of the truck capacity; 

• Multi-drop truckloads (MTL) i.e. using TL transportation to serve several customers 

on a route to be determined; 

• Less than truckload (LTL) transportation.  

On a given day, when all the orders are in, the company plans its transportation for the next 

day and it requests from its carriers the trucks required to deliver products to ship-to-points. 

However, the network’s depots are under the threat of disruptions and, consequently, their capac-

ity to respond adequately to ship-to-point’s orders can be perturbed. Therefore, in order to com-

plete the orders received for a given day, the company relies first on its regular capacity, and 

second on a local recourse such as overtime. If this is not sufficient, external resources can be 

used to satisfy all its customers. 

Let L  be the set of potential depots considered to perform distribution operations, P  the set 

of all ship-to-points and 
l

P  the subset of ship-to-points that could be served by depot l L∈ . 

Also, let 
l

a  be the capacity of depot l, i.e. the quantity of products it could ship during a day. At 

design time, strategic decisions are made on the subset of depots L L⊂
 
to use during the plan-

ning horizon, and on their mission , 
l l

P P l L⊂ ∈ . These decisions are denoted by the vector x . 

However, at design time, these decisions are taken under uncertainty and they must consider 

plausible future scenarios over a discrete planning horizon T . To model the daily ordering proc-

ess of customers adequately, we assume that the periods Tτ ∈  of this planning horizon are days. 

Demand and Disruption Processes  

Based on the information available at design time, two types of events shaping the business 

environment can be distinguished, namely business-as-usual random events and low-probability 

high-impact disruptions. In this paper, customer demands and network disruptions are modeled 

as compound stochastic processes. We assume that the demand of the SN ship-to-points p P∈  

follows a compound process with a random order inter-arrival time 
p

q  and a random order size 

p
ο . The cumulative distribution functions of inter-arrival times and order sizes are denoted re-

spectively by (.)q

p
F  and (.)

p
F

ο . Disruptions are first amalgamated into meta-events with generic 

impacts called multihazards (Scawthorn et al., 2006), and SN vulnerability sources are identi-

fied. Second, a compound stochastic process is defined to describe how multihazards occur in 

space and in time, and to specify incident’s intensity and duration. Third the impact of hits on the 

SN is modelled using recovery functions. 
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In our context, the depots L  and ship-to-points P  define a set of network locations 

N P L= ∪ . We assume that depots and ship-to points have different incident profiles in terms of 

impact and time to recovery and thus constitute two distinct vulnerability sources denoted, re-

spectively, by Ls  and Ps . The notation ( )s n  is used to identify the vulnerability source of loca-

tion n N∈ . To map potential threats, the geographical territory in which the SN operates is par-

titioned into a set of hazard zones Z delineating areas with similar exposure characteristics. Us-

ing an exposure measure, each hazard zone z Z∈  is assigned to a discrete exposure level ( )g z , 

g G∈ . Based on its geographical position each network location n N∈  is positioned in a hazard 

zone ( )z n Z∈  and it has an exposure level ( )g n g z n=( ) ( ) . We assume that multihazards occur 

independently in zones z Z∈ , and that the time between their successive occurrences is a ran-

dom variable 
z

λ  characterized by a stochastic arrival process with cumulative distribution func-

tion 
z

(.)F
λ .  

When zone z Z∈  is hit by a multihazard, the severity of the incident is characterized by two 

correlated random variables, expressed in terms of metrics depending on the vulnerability source 

{ , }
L P

s s s∈ , namely the impact intensity 
zs

β , with cumulative distribution function ( ) (.)g z sF
β , and 

the time to recovery 
zs

θ . The time to recovery is related to the impact intensity through an im-

pact-duration function ( )zs s zs sfθ β ε= + , where 
s

ε  is a random error term with probability dis-

tribution function ( )sF
ε . . Figure 2 illustrates this function for depots, in %-capacity loss, and for 

ship-to-points, in %-demand variation. Note that, following a hit on ship-to-points, first necessity 

products would see their demand raising but luxury products would see their demand dropping. 

Since a single product family is considered here, the impact intensity provides a net effect for the 

entire product family. We could have a demand surge for some zones and a drop for others, 

however. 
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Figure 2- Impact-Duration Functions for Depots and Ship-to-Points in a Zone 
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The occurrence of an incident in a hazard zone z Z∈  does not necessarily result in a hit of 

all the SN locations in that zone. Conditional attenuation probabilities ,
n z

n Nα ∈ , are defined to 

reflect location hit likelihood. When a location 
z

n N∈  associated to vulnerability source s is hit, 

the impact intensity and the time to recovery are provided respectively by 
n z n s n

β β=
( ) ( )

 and 

n z n s n
θ θ=

( ) ( )
. Consider a multihazard hitting location 

z
n N∈  at the beginning of period ' Tτ ∈ , 

and, to simplify the presentation, let the indexes i q o a= , ,  be associated respectively to the order 

arrival (q), the customer order size (o), and the depot capacity (a) processes. The impact of a hit 

is not necessarily felt uniformly during the time to recovery: several phases can be observed, de-

pending on the nature of the multihazard and of the vulnerability source (Sheffi, 2005). Such 

phase-dependent impacts can be characterized by defining discrete recovery functions 

( , , ), 1i i i

n n n n nτ τρ φ β θ ρ τ τ τ θ= = + −', ..., ' , where i

nτρ
 
is a capacity/demand amplification percent-

age for process i at location n in period τ. The i

nτρ  value used as an argument in the function re-

flects amplification percentages before the hit and the function returns percentages after the hit. 

As illustrated in Figure 3, if the periods affected by the multihazard are not still recuperating 

from a previous incident, then the a priori percentages are =100%, i

n
i nτρ ∀ , , 1

n
τ τ τ θ= + −', ..., ' . 

The amplitude of the amplification depends on the multihazard impact intensity 
n

β . Using these 

recovery functions, the capacity and the demand can be calculated for specific periods and loca-

tions. For the order inter-arrival times and sizes, this gives rise to the perturbed random variables 
q

p p p
q qτ τρ=  and o

p p p
o oτ τρ= , 1

p
τ τ τ θ= + −', ..., ' , and to their associated distributions functions 

( ).q

pF τ  and ( )pF
ο
τ . . For the depots, this yield perturbed capacity levels a

l l l
a aτ τρ= , 

1
l

τ τ τ θ= + −', ..., ' . 
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Figure 3- Recovery Function Examples for Depot l and Ship-to-Point p 

Plausible Future Scenarios  

The instantiation of the demand and multihazard processes described previously over all the 

possible values of the random variables involved yields a set Ω  of plausible future scenarios 

with associated probabilities ( )π ω , ω ∈Ω . The Monte Carlo procedure in Figure 4 can be used 

to generate a scenario instance ω ∈Ω . The procedure uses independent pseudorandom numbers 
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u, uniformly distributed on the interval [0,1] , first to generate multihazard arrivals, second to 

generate recovery functions, and third to generate daily ship-to-point demands 

, 
( ) [ ( )]

p p P T
d τ τω ω ∈ ∈=d  and depot capacities 

, 
( ) [ ( )]

l l L T
a τ τω ω ∈ ∈=a . The input parameters a and αααα 

are capacity and attenuation probability vectors, respectively, and F denotes the set of all the 

previously defined probability distributions.  
 

( )( ), , , , ,( , , , ) ( ), ( )i

z
N z Z T i q o aφ ω ω∈ =MonteCarlo a α F d a, ;  

1) For all z Z∈ , do: 

         Using the cumulative distribution of 
z

λ , generate multihazard arrival moments 
z

T⊆T   

         Set 1i

nτρ =  for all  
z

n N Tτ∈ ∈, , i q o a= , ,  

         For all 
z

τ ∈' T , do: 

                  Compute 
1

( )
( )

,zs g z s
uF ββ

−

=  and ( ) ( )
1

zs s zs s
f F u

εθ β
−

 = +
 

 , { , }
L P

s s s∈  

                  For all z nn N u α≤∈ , do:  

                           ( ) ( ) ( ) ( )
( , , ), 1i i i

n z n s n z n s n n nτ τρ φ β θ ρ τ τ τ θ= = + −', ..., '  , , ,i q o a=  

          End For 

     End For 

2) For all p P∈ , do: 

           0η = ; ( ) 0  
p

d Tτ ω τ= ∈, ; 1τ = ; q q

p pF Fτ =  

           While Tη ≤ , do: 

                    Compute the next order arrival time 
1

( )q

pF uτη η
−

= +  and τ η=     
                    For ,i q o= : Derive 

i

pF τ  from 
i

pF  and 
i

pτρ  

                    Compute the daily demand ( ) ( )
1

o

p p p
ud d Fτ τ τω ω

−

= + ( )  

            End While 

     End For 

    For all l L∈  and Tτ ∈ : Compute the daily capacity ( ) a

l l l
a aτ τω ρ=       

Figure 4- Scenario ω  Generation Procedure  

Some of the plausible future scenarios in Ω  may involve only a few multihazard over the 

planning horizon but others may be much more chaotic. An intuitive measure to assess the risk 

associated to a scenario ω ∈Ω  is the number of product-days of depot capacity ( )γ ω  lost during 

the planning horizon. For a given hit, this is given by the area under the full capacity line in the 

capacity lost function represented in Figure 3. A simpler measure which may be sufficient in 

some contexts is the number of hits during the horizon. The later does not take the duration and 

intensity of hits into account explicitly, but our numerical experiments have shown that it is 

strongly correlated with the former. Figure 5 illustrates the two measures for a large sample of 

scenarios, generated using procedure MonteCarlo with exponential multihazard inter-arrival 

times. In order to distinguish between the scenarios a decision-maker would consider as accept-

able, in term of the risks involved, and those that would raise a serious concern, we define a haz-
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ard tolerance level κ. This level is the maximum number of product-days lost (hits) the decision-

maker can tolerate without serious concern. This tolerance level is used to partition Ω  in two 

subsets: a set of low-risk scenarios ( ){ }L ω γ ω κΩ = ≤  with associated low-risk probability 

( )L

L

ω
π π ω

∈Ω
= Σ  and conditional scenario probabilities ( ) , L Lπ ω ω ∈Ω , and a set of high-risk 

scenarios \H LΩ = Ω Ω  with associated high-risk probability ( )H

H

ω
π π ω

∈Ω
= Σ  and conditional 

scenario probabilities ( ) , H Hπ ω ω ∈Ω . The risk associated to a SN depends on the size of the 

territory it covers and on its density in terms of number of depots/points per unit area (Craighead 

et al., 2007). For this reason, the distribution of product-days lost (hits) is increasingly skewed 

towards the right as the size of the network increases. Consequently, the value κ  selected also 

tends to increase with the size of the network considered. Also, the worst-case scenarios in the 

tail of the distribution are of particular interest to us. They will be useful to assess the robustness 

of the SN designs considered. 
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Figure 5- Distribution of the Product-days Lost (Hits) for a Large Scenario Sample 

Finally, note that for a given scenario ω , on day τ , the depots capacity ( ) ,la l Lτ ω ∈ , is 

known and the set of depots L  can be partitioned into operational depots ( ) ( ){ }l l
l a aLτ τω ω= =  

and partially operational depots ( ) ( ){ }d

l l
l a aLτ τω ω= < . Similarly, the ship-to-points demand 

( ), ,
p

d p Pτ ω ∈
 
is known and the set of ordering points ( ) ( ){ }0

p
P p dτ τω ω= >

 
can be specified.  

Response Policy and Demand Fulfillment Procedures 

Now let us examine more closely the daily operations of the SN under a given design x. In a 

single-sourcing delivery context, one would like to serve each ship-to-point p from a unique de-

pot denoted ( )l p . Due to hazards, short-term variations in capacity and demand occur and re-

course actions are necessary on a daily basis to provide an adequate response to customers. To 

respond in time, the company must decide on a daily basis if the primary mission of depots is 

maintained or adapted. In the latter case, the company makes order reassignment decisions and, 

ultimately, resort to external supply sources. Tomlin (2006) and Schutz and Tomasgard (2009) 
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discuss the value of delivery flexibility in supply chain operations. Once the order reassignment 

is done, the company makes shipping decisions, at each depot, with the objective to maximise 

sales net revenues. To implement this, based on the response policy of the company, order as-

signment and transportation procedures must be specified.  

For a given day τ  under scenario ω , the set of ordering ship-to-points ( )Pτ ω , their demand 

( ) ( ),pd p Pτ τω ω∈ , and the depots daily capacity ( ), ,
l

a l Lτ ω ∈  are known. Thus, based on de-

pots primary missions, revised daily assignment decisions ( ) , lP l Lτ ω ∈ , must be made to ensure 

that the depot capacity constraints ( ) ( )
( )

, ,
l

pp P ld l La
τ

τω τω ω
∈

∈≤∑  are respected. Additionally, in-

ternal recourses (ex: overtime) or external resources can be used to satisfy unfulfilled orders. 

When a depot l  is operational on day τ  under scenario ω , additional capacity 
l l
aζ , is available 

for use, where 
l

ζ  is a fixed proportion of regular daily capacity. As illustrated in Figure 6, the 

stochastic demand level and depot capacity on each day dictate the kind of response decisions to 

take. When depot l  is operational it serves its primary ship-to-point orders and it can process re-

assigned orders from other depots. When depot l  is partially operational, however, it serves only 

a subset of its primary ship-to-point orders and the remaining ones are transferred.  

T Day 

Demand level 

Depot 
capacity

( )lP τ ω

( )
l

Oτ ω

Local 
recourse 
capacity

l l
aζ

Time to recovery Served 

orders

Transferred 

orders 

τ

Depot partially operational Depot totally operational 

( ) ( )a

l l l
a aτ τω ρ ω=

Orders

τ ′ 1
l

τ θ′ + −
Reassigned 

orders

( )
( )l

p

p P

d

τ

τ
ω

ω
∈

∑

 
Figure 6- Demand Level at a Given Depot l under Scenario ω   

Let P  be a priority list ranking ship-to-points p P∈  in decreasing order of their importance 

for the company. When all the SN orders have been received on a given day, we assume that list 

P  is used to assign the most important customers to their primary depot ( )l p  and to transfer the 

remaining orders to an alternative depot \{ ( )}pl L l p′∈  or to an external supply source (identi-

fied using index 0l = ). We assume that the reassignment policy used is based on a proximity 

rule (default policy), or on explicit or implicit instructions provided by the design decisions. 

More specifically, we assume that the default reassignment policy is to supply ship-to-point p 

orders not shipped by ( )l p  from the nearest depot in \ { ( )}pL l p , that is to set 
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( )
( ){ }\

arg min
p

l pl L l p
l p m ′′∈
′ = , where 

lp
m  is the distance in miles between depot l  and ship-to point 

p . If depot ( )'l p  cannot ship the order, the company asks the external supply source
1
 ( 0l = ) to 

make a direct shipment to ship-to-point p. On day τ, the ship-to-points supplied from the external 

depot are thus ( ) ( ) ( )0 l L l
P P Pτ τ τω ω ω∈= ∪\ . 

Once reassignments have been made, the set ( )lPτ ω  and the loads ( ) ( ) ,p ld p Pτ τω ω∈ , to 

deliver on day τ  are known for each depot {0}l L∈ ∪ . Then, the company can plan its transpor-

tation for the next day, and requests the trucks required for each depot from its carriers. These 

shipping decisions are made by the SN depots in two steps. First, for loads that are larger than a 

truckload, a decision is made to ship as much as possible in FTL. We assume that a single type 

of vehicle is available to make full truckload shipments to point p. Let, 

( )FTL

p
y τ ω :  The number of truckloads shipped to point p on day τ  

F
b :  The capacity of vehicles used for FTL shipments 

lp
w :  The cost of a FTL shipment to point p from depot l 

To determine the FTL shipments to make to point ( )l
p Pτ ω∈ ,

 
problem (1) below is solved by 

inspection. Then the residual loads to be inserted in the STL, MTL or LTL shipments are given 

by (2). 

( ) ( )( )
0 1

arg maxFTL F F

p p
y=

y b y b y dτ τω ω= ≤
, ,...

 

 
(1)

  

 

( ) ( ) ( )F FTL

p p p
d d b yτ τ τω ω ω= −  (2) 

Next, the best delivery routes must be constructed. Let, 

k
P :  Ordered set of ship-to-points in route k

 
( )lK τ ω : Set of non-dominated feasible STL, MTL or LTL routes (i.e. such that ( )k lP Pτ ω⊂  

and ( )
kp P p kd bτ ω∈ ≤Σ , ( )lk K τ ω∈ , where kb  is the capacity of route k vehicles) 

from depot l, on day τ , under scenario ω  

k
w : Transportation cost of route ( )lk K τ ω∈  

kpδ : Binary coefficient taking the value 1 if ship-to-point p is covered by route k, and 0 

otherwise 

k
y :     Binary decision variable equal to 1 if route k is used for the depot, day and scenario 

considered, and 0 otherwise 

For scenario ω , the best routes are obtained at depot l on day τ  by solving the following 

transportation sub-problem:  

                                                           
1
  This external recourse is specified to ensure that all orders can be shipped on a given day, but it is required very 

rarely. When the need occurs, one could always reassign outstanding orders to the second nearest depot. Model-

ing this explicitly would complicate things significantly, however, and it would not remove the need to include 

an external recourse. For this reason, we assume here that a single backup depot is available. 
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( )
( )

min
l

u

l k k

k K

C w y
τ

τ
ω

ω
∈

= ∑
y

 

subject to 

(3) 

 

( )

1
l

kp k

k K

y
τ ω

δ
∈

=∑  ( )l
p Pτ ω∈  (4) 

{ }0 1
k

y ∈ ,     ( )l
k K τ ω∈    (5) 

where ( )u

l
C τ ω  is the cost of the optimal shipments made by depot l  on day τ  under scenario ω . 

In this paper, a heuristic proposed by Klibi et al. (2010), based on perturbed Clarke and Wright 

savings and 2-opt improvements, is used to solve this problem. In practice, the solution approach 

implemented by the company should however be used. The cost of the transportation solution 

thus obtained is denoted by ( )u

l
C τ ωˆ . 

The shipments made on a daily basis generate sales revenues, and additional costs are in-

curred for recourse actions. Let, 

l
v :

 
Unit cost of products shipped from depot l  (taking into account the product produc-

tion/procurement costs, inbound shipment costs, warehousing costs and inventory 

holding costs under normal operations) 

p
u :  Unit price of products sold to ship-to-point p 

( )l
Oτ ω :  Recourse capacity (ex: overtime) needed at depot l on day τ  

( ( ) ( )
( )l

l pp P lO d a
τ

τ τω
ω ω

∈
= −∑  if ( )l Lτ ω∈  and 0 otherwise) 

O

l
c :  Additional unit cost incurred when recourse capacity is needed to ship products 

from depot l , with the consequence that the unit cost of the products shipped be-

comes O O

l l l
v v c= +  

e
v : Unit cost of products supplied from the external emergency source using STL, 

MTL or LTL shipments 
h

v : Unit cost of products supplied from the external source using FTL shipments 

Since the emergency supply source would be used only in extreme cases, the costs e
v and h

v  

are assumed to be the same for all ship-to-points. These costs are external recourse penalties with 

values higher than product values and prices, i.e. such that 
O h e

l l
v v v v< < <  for all l  and 

h e

p
u v v< <

 
for all p. From this, unit external supply loss can be defined as: e e

p p
c v u= −  and 

h h

p p
c v u= − , for all p. Under scenario ω , for day τ , the net revenues ( )ˆ

l
R τ ω  generated by depot 

l L∈  and the network loss for external recourses ( )0
C τ ωˆ  can be calculated as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )
( )l

O FTL u

l p l p l l lp p l

p P

R u v d c O w y C

τ

τ τ τ τ τ

ω

ω ω ω ω ω
∈

 = − − − − ∑ ˆˆ (6) 

( ) ( ) ( )( )
( )0

0

e h F FTL

p p p p

p P

C c d c b y

τ

τ τ τ
ω

ω ω ω
∈

= +∑ˆ (7) 
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The UserResponse procedure described above is summarized in Figure 7, and it can be 

used to calculate the net revenues ( )u
R ωxˆ ,  generated over the planning horizon for a given SN 

design x , under a scenarios ω . The next section proposes a design approach for the LTP under 

uncertainty based on the risk modeling, scenario generation and response procedures presented 

previously.
 
 

UserResponse ˆ( ,( ( ), ), ( ), ( ), ( ( ), ( ), ), ( , ))
u

l p p P T RL Pτ τω ω ω ω τ ω′ ∈ ∈x a d xP ;  

For all Tτ ∈ , do:  

    Set ( )lPτ ω = ∅ , {0}l L∈ ∪ ; ( ) ( )1
l l l

a aτ ω ζ= + , ( )l L Lτ ω∈ ∩  

    Assign orders to depots 

      For all ( )p Pτ ω∈  in order of the priority in P , do 

      If ( ) ( ) ( )pl p
a d ττ

ω ω≥  then  

         Set ( ) ( ) ( ) ( ) { }l p l p
P P p

τ τ
ω ω= ∪  and ( ) ( ) ( ) ( ) ( )pl p l p

a a d ττ τ
ω ω ω= −   

      Else If ( ) ( ) ( )pl p
a d ττ

ω ω′ ≥  then  

      Set ( ) ( ) ( ) ( ) { }l p l p
P P p

τ τ
ω ω′ ′= ∪  and ( ) ( ) ( ) ( ) ( )pl p l p

a a d ττ τ
ω ω ω′ ′= −   

      Else: { }0 0
( ) ( )P P pτ τω ω= ∪  

      End do 

    Compute depot revenues and network loss 

       For all l L∈ , do   

       Solve the transportation problem (3)-(5) with Klibi et al. heuristic (2010)  

       Compute depot l net revenues ( )ˆ
l

R τ ω  with (6) 

       End do, 

Compute the network loss for external recourses ( )0
C τ ωˆ  with (7) 

End do 

Compute the SN net revenues ( ) ( ) ( )( )0

u

ll L
T

R R Cτ τ
τ

ω ω ω
∈

∈

= −∑ ∑x ˆˆ ˆ,  

Figure 7- Response Procedure for Design x  under Scenario ω  

3. Scenario-Based SN Design Approach 

The LTP under uncertainty is a hierarchical decision problem due to the temporal hierarchy 

between the location decisions and the transportation decisions. At design time depot location 

and mission decisions x  must be made. However, these strategic decisions impose resource con-

straints on the network user’s transportation decisions and they may restrict recourse actions in 

response to customer demands and network disruptions. On day τ, for scenario ω , based on the 

response policy of the company, depot l users make shipping decisions, denoted by 

( ) ( )kl l
y k Kτ τω ω∈, , to fulfil the orders received from ship-to-points. These decisions must be 

anticipated at design time since it is through them that net sales revenues are generated. In addi-
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tion, operations can be perturbed by demand and/or depots disruptions. The recourse actions then 

employed to provide efficient service must also be anticipated to design a resilient network struc-

ture. This can be done by formulating the SN design problem as a two stage stochastic program 

with recourse. When based on exact anticipations, these SN design models are extremely com-

plex and their solvability is an issue. To produce good designs, adequate precision-solvability 

trade-offs must thus be made. To this end, in what follows, we examine two approximate antici-

pations of operational responses involving scenario and period sampling, and transportation deci-

sions aggregation. 

Risk-Neutral Design Model 

The strategic decisions to make involve the selection of a subset of depots L L⊂*  to operate 

during the planning horizon T , and the assignment of ship-to-points  
l l

P P l L⊂ ∈* *,  to these 

depots, to maximize total expected profits. An important aspect of the problem is that the mis-

sion of the selected depots, defined by their customer sets,  
l

P l L∈* *,  must remain the same for 

each day Tτ ∈  of the planning horizon. To anticipate operational revenues and expenditures, 

transportation sub-problem (3)-(5) as well as the revenues and loss functions (6) and (7) must be 

incorporated in the design model. Let, 

l
x : Binary variable equal to 1 if depot l is opened, and 0 otherwise 

lpx :            Binary variable equal to 1 if ship-to point p is assigned to depot l, and 0 otherwise 

( )lp
e τ ω :   Binary variable equal to 1 under scenario ω  if the ship-to point p order for day τ  is 

shipped from the emergency source instead of its primary depot l , and 0 otherwise 

( )lp
h τ ω :  Integer variable giving the number of FTL shipments made to ship-to point p from 

the emergency source, instead of depot l, for day τ  under scenario ω  

l
A : Fixed operating cost incurred when depot l L∈  is used 

Also, the additional unit costs incurred when products are shipped from the emergency supply 

source instead of from supply depot l are denoted by e e

l l
c v v= −  for STL, MTL or LTL ship-

ments and by h h

l l
c v v= −  for FTL shipments.  

For a risk-neutral decision-maker, a SN design maximizing expected net revenues is ob-

tained by solving the following two-stage stochastic program with recourse: 

( )
,

max ( ) ,
S

S S du

l l

S L H l L

R R A x
ω

π π ω ω
= ∈∈Ω

= −∑ ∑ ∑
x

x  

subject to 

 
 

(8) 

1
p

lp
l L

x
∈

=∑  p P∈  (9) 

lp lx x≤  l L∈ , 
l

p P∈   (10) 
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{ }0 1l lpx x ∈, ,  l L∈ , 
l

p P∈   (11) 

Based on (3)-(6), the optimal value ( )x,du
R ω  of the second stage program for design x  and 

scenario ω  is given by: 

( ) ( ) ( ) ( ) ( )( )
( )

( )
l

du FTL du

p l p lp lp p lp lp

T l L p P P

R u v d x w y x h C
τ

τ τ τ τ
τ ω

ω ω ω ω ω
∈ ∈ ∈ ∩

 
   = − − − −   

  
∑ ∑ ∑x x, ,

 

 

(12) 

with, for a given day Tτ ∈ , 

( ) ( ) ( ) ( ) ( ) ( )
( )( )

, min
l l

du O e h F

k kl l l l p lp l lp

l L k K p P P

C w y c O c d e c b h
τ τ

τ τ τ τ τ τ
ω ω

ω ω ω ω ω ω
∈ ∈ ∈ ∩

 
 = + + +  

  
∑ ∑ ∑x  

subject to 

 

(13) 

 

( )
( ) ( )

l

kp kl lp lp

k K

y e x
τ

τ τ
ω

δ ω ω
∈

+ =∑  l L∈ , ( ) lp P Pτ ω∈ ∩  (14) 

( ) ( )FTL

lp p lp
h y xτ τω ω≤  l L∈ , ( ) lp P Pτ ω∈ ∩

 
(15) 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

([ ] )
l l l

l

F FTL

kp p kl p lp

k K p P P p P P

F

l l lp

p P P

d y b y x

a O b h

τ τ τ

τ

τ τ τ
ω ω ω

τ τ τ
ω

δ ω ω ω

ω ω ω

∈ ∈ ∩ ∈ ∩

∈ ∩

+

≤ + +

∑ ∑ ∑

∑  
l L∈  (16) 

( ) ( ) ( ) ( )0 ,  ;       0,  
d

l l l lO a l O lL Lτ τ τ τω ζ ω ω ω≤ ≤ ∈ = ∈
  (17) 

( ) ( ) { } ( ), 0,1 ,    kl lp lpy e h integerτ τ τω ω ω∈  ( )l
k K τ ω∈ , l L∈ , ( ) lp P Pτ ω∈ ∩    (18) 

In the first term of objective function (8) the expected net revenues are calculated and in the 

second term the depot fixed costs are subtracted to get expected profits. Constraints (9) in the 

first stage program enforce single depot assignments for ship-to-points and constraints (10) limit 

ship-to-point assignments to opened depots. For design x, under scenario ω , expression (12) es-

timates the anticipated net revenues based on allocation decisions, depots FTL shipment costs 

and other transportation and recourse costs obtained by solving the second stage program (13)-

(18). The objective function (13) computes STL, MTL or LTL shipment costs, depot overcapaci-

ty costs and emergency supply costs. Constraints (14) are route coverage and also coupling rela-

tions ensuring that daily routes selection respects depots mission decisions for the second stage. 

Constraints (15) insure that FTL recourses are employed for day τ  only if ship-to-point p is as-

signed to depot l. Constraints (16) ensure that each depot l capacity is respected given the de-

mand on day τ  for the assigned ship-to-points. Constraints (17) limit local recourse proportion-

ally to the depot capacity. 

Design Models Based on Approximate Anticipations  

The stochastic program (8)-(18) is intractable due to the infinite number of plausible future 

scenarios and the extremely large number of possible transportation routes. Thus, approximate 
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anticipations must be used to obtain solvable SN design models. Two approximate anticipations 

providing good quality-solvability trade-offs are considered in this paper. The first one is ob-

tained through scenario and period sampling, and the second one through transportation decision 

aggregations transforming the stochastic LTP into a stochastic location-allocation problem.  

The stochastic complexity of the problem can be reduced by solving program (8)-(18) for a 

random sample of scenarios generated with the MonteCarlo procedure presented in Figure 4. 

This Sample Average Approximation (SAA) method (Shapiro, 2003) has been successfully ap-

plied to solve several SN design problems (Santoso et al., 2005; Vila et al., 2007; Schutz et al., 

2009; Klibi et al., 2010). Given our partition of the plausible future scenarios in two subsets LΩ  

and HΩ , the idea in our context is first to generate a large independent sample of M 

equiprobable scenarios MΩ ⊂ Ω  using procedure MonteCarlo, and then to partition it into a 

subset LMΩ
 
of LM  low-risk scenarios and a subset  HMΩ

 
of HM  high-risk scenarios. An esti-

mate of the probabilities Lπ  and Hπ  is then given by 
L L

M Mπ =  and 1
H L

π π= − . Second, a 

small sample LmΩ
 
of 

L
m  scenarios is randomly selected in LMΩ  and a small sample HmΩ  of 

H
m  

scenarios is randomly selected in HMΩ
 
to get L Hm m mΩ = Ω ∪ Ω . These sets of equiprobable sce-

narios can then be used to formulate a SAA model. Unfortunately, the multi-period SAA model 

obtained is still extremely difficult to solve with current solvers. Since the ship-to-point demand 

processes are stationary, the problem can be further simplified through period sampling, i.e. by 

considering only a subset T T⊂ˆ  of daily periods (for example, one randomly selected day per 

week) with associated ship-to-point demands ( ) ( ) ˆ, , , m

pt td p P t Tω ω ω∈ ∈Ω ∈ , and depot ca-

pacities ( ) ˆ,  , , m

lta l L t Tω ω∈ ∈Ω ∈ . The net revenues must then be multiplied by the period 

shrinking factor T T| |/| |ˆ  to obtain an adequate approximation of the total expected profits
2
. Also, 

since generating all possible routes yield extremely large models, the approximation proposed is 

based on adequately generated subsets of routes ( ) ( )ˆ ˆ, ,  , m

lt ltK K l L t Tω ω ω⊂ ∈ ∈Ω ∈ . Klibi et 

al. (2010b) showed that this period and route sampling approach gives very good results for the 

unbounded capacity LTP without disruptions.  

Objective function (8), based on the probabilities Lπ  and Hπ , provide the total expected 

profit, which is an adequate performance measure for a risk-neutral decision-maker. However, if 

the decision-maker is risk-averse, these probabilities need to be replaced by weights H

H
π π>ˆ  

and 1
L H

π π= −ˆ ˆ  to give more importance to high-risk scenarios. The value of these weights are 

based on the estimated probability 
H

π . Given these elements, program (8)-(18) is transformed 

into the following approximate Location-Transportation model (LT): 

                                                           
2
  Note that reducing the problem size by aggregating periods, instead of sampling periods, does not provide a good 

approximation because the capacity available at the end of a week, for example, can then be used to fulfill orders 

received at the beginning of the week, which clearly overestimates the capacity available. 
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( ) ( ) ( ) ( )( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

LT
ˆ,

ˆ

| |ˆ max
ˆ| |

ˆ

ms
t l

t llt

FTLS
p l pt lp lp pt lp lpt

S L H l L p P Pt TS

O e h F

k klt l lt l pt lpt l lpt l l

p P P l Lk K

T
R u v d x w y x h

mT

w y c O c d e c b h A x

ωω

ωω

ω ω ω

ω ω ω ω ω

π

= ∈ ∈ ∩∈∈Ω

∈ ∩ ∈∈

     = − − −    


 − − − + − 



∑ ∑ ∑∑ ∑

∑ ∑ ∑

 

subject to 

(19) 

( )

( ) ( )
lt

kp klt lpt lp

k K

y e x
ω

δ ω ω
∈

+ =∑̂  
   l L∈ , ( )t lp P Pω∈ ∩ ,

mω ∈Ω , ˆt T∈  (20) 

( ) ( )FTL

lpt pt lp
h y xω ω≤     l L∈ , ( )t lp P Pω∈ ∩ ,

mω ∈Ω , ˆt T∈  (21) 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

ˆ

([ ] )
t l t llt

t l

F FTL

kp pt klt pt lp

p P P p P Pk K

F

lt lt lpt

p P P

d y b y x

a O b h

ω ωω

ω

δ ω ω ω

ω ω ω

∈ ∩ ∈ ∩∈

∈ ∩

+

≤ + +

∑ ∑ ∑

∑
 

 

l L∈ ,
mω ∈Ω , ˆt T∈  

 

(22) 

( ) ( ) ( ) ( )0 ,  ;     0,  d

lt l l t lt tO a l O lL Lω ζ ω ω ω≤ ≤ ∈ = ∈
 

mω ∈Ω , ˆt T∈
 

(23) 

( ) ( ) { } ( ), 0,1 ;  klt lpt lpty e h integerω ω ω∈  l L∈ , ( )t lp P Pω∈ ∩ , ( )ˆ
lt

k K ω∈ ,
mω ∈Ω , ˆt T∈  (24) 

and to the location-allocation constraints (9)-(11). 

Model LT is much simpler than the original model but it is still difficult to solve when the 

set of plausible future scenarios mΩ  is large. Additional simplifications are possible when the 

transportation sub-problems are replaced by flow variables between depots and ship-to-points. 

When this is done, routing costs are replaced by unit flow costs 
lp

ŵ  between depots l L∈  and 

ship-to-points 
l

p P∈ . These costs are estimated by regression using daily historical data (Klibi et 

al., 2010b). This introduces second-stage binary variable ( )lpt
x ω  which takes value 1 if ship-to-

point p is served by depot l in period t  under scenario ω , and 0 otherwise. Also, under scenario 

ω , the model needs a binary recourse variable ( )pt
e ω

 
to specify if products are supplied to ship-

to-point p  by the emergency source in period t . An average unit net revenue ( )e

p
u v− , with 

( ) 2e e hv v v= + , is associated to these flows. The SAA formulation of the stochastic Location-

Allocation model thus obtained has the following form (LA):   

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

LA
ˆ,

| |ˆ ˆmax
ˆ| |

ˆ

ms
t l

t

OS
p l lp pt lpt l lt

S L H l L p P Pt TS

e

p pt pt l l

p P l L

T
R u v w d x c O

mT

u v d e A x

ωω

ω

ω ω ω

ω ω

π

= ∈ ∈ ∩∈∈Ω

∈ ∈

     = − − −     
  


+ − −



∑ ∑ ∑ ∑ ∑

∑ ∑
 

subject to 

 

 

(25) 

( ) ( ) 1
p

lpt pt

l L

x eω ω
∈

+ =∑
 

( )t
p P ω∈ ,

mω ∈Ω , ˆt T∈  (26) 

 ( )lpt lp
x xω ≤  l L∈ , ( )t lp P Pω∈ ∩ ,

mω ∈Ω , ˆt T∈  (27) 

( ) ( )
( )

( ) ( )
t l

pt lpt lt lt

p P P

d x a O
ω

ω ω ω ω
∈ ∩

≤ +∑  
l L∈ ,

mω ∈Ω , ˆt T∈  (28) 
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( ) ( ) ( ) ( )0 ,  ;     0,  d

lt l l t lt tO a l O lL Lω ζ ω ω ω≤ ≤ ∈ = ∈
 

mω ∈Ω , ˆt T∈  (29) 

( ) ( ) { }0 1
lpt pt

x eω ω ∈, ,
 

l L∈ , ( )t lp P Pω∈ ∩ ,
mω ∈Ω , ˆt T∈

 
(30) 

and to the location-allocation constraints (9)-(11). 

Since LA is solved relatively easily, larger scenario samples can be used. Note that a gross 

anticipation could also be obtained by neglecting uncertainty, and by using the familiar determi-

nistic capacitated location-allocation model found in the literature. This requires the calculation 

of annual average demands 
p

D̂  from the demand process parameters, and the estimation of aver-

age unit transportation costs 
lp

ŵ  by regression. The depots capacity can be set to 
l

T a l L∈ , , 

which is clearly an overestimation. The following formulation results (DLA): 

( ){ }DLA
ˆ ˆˆmax

l

p l lp p lp l l

l L p P l L

R u v w D x A x
∈ ∈ ∈

= − − −∑∑ ∑
x

 (31) 

subject to 

l

p lp l

p P

D x T a
∈

≤∑ ˆ
 

 

l L∈  

 

(32) 

and to location-allocation constraints (9)-(11). 

4. Resilience Strategy Formulations 

As mentioned, due to demand randomness and disruptions, SN operations can be perturbed 

and response actions must be tailored to occurring events to maintain business continuity. How-

ever, response policies are rarely anticipated in SN design models. The stochastic programming 

models proposed in the previous section anticipate response policies through the use of the sec-

ond stage variables ( ) ( ) ( ) ( ),  ,   and klt lt lpt lpty O e hω ω ω ω . Due to the costs associated to these 

variables, the models position the depots and specify their mission to avoid risks as much as pos-

sible. Moreover, by considering the risk attitude of the decision-maker, they can be more or less 

drastic in their effort to avoid disruptions. For these reasons, models LT and LA are appropriate 

mainly when pursuing a risk avoidance (ra) strategy. A discussion of risk avoidance in supply 

chain management is found in Manuj and Mentzer (2008).  

Despite efforts to avoid risks as much as possible, it is clear that the SN designed will be hit 

by occasional disruptions. Given this, the question then becomes: what kind of risk mitigation 

constructs could be incorporated in the design models to obtain more robust SN designs? In other 

words, how can we design the network to make sure that it will bounce back quickly when hit? 

This can be done by investing in flexible and/or redundant network structures (Sheffi, 2005), and 

by elaborating better resilience policies. This is the domain of resilience strategies. An additional 

concern is to design robust SN not only to hedge against major disruptions but also to improve 

business-as-usual operations. Despite the growing number of papers on the need to design resil-

ient networks, little has been done to incorporate this concept in SN design models. However, 
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several formulations proposed in the literature to model coverage (Church and Revelle, 1974), 

vector assignment (Weaver and Church, 1985) and reliability (Snyder et al., 2006; Tomlin, 2006; 

Murray and Grubesic, 2007) can help to foster resilience. 

Our aim in this section is to propose three LTP network design models to improve resilience 

under the response policy described earlier. These models distinguish themselves from LT and 

LA by the fact that they strive to provide either explicit or implicit instructions on the back-up 

depot ( )'l p  to use when the response procedure in Figure 7 is applied. The first model finds the 

optimal primary and back-up depots to use for each ship-to-point. The second model allows mul-

tiple sourcing for each ship-to-point in order to reduce the risk of disruption when the primary 

depot is hit. The idea behind the third model is to offer a better network coverage by ensuring 

that at least two depots are geographically located within desired distances of each ship-to-point. 

The next subsections extent model LT for each of these approaches. Analogous extensions for 

model LA are provided in Appendix A. 

Optimal Back-up Formulation (bu) 

The aim of this formulation is to specify the backup depot to use when the primary depot as-

signed to a ship-to-point cannot supply its orders. It is inspired by the work of Weaver and 

Church (1985) and Snyder et al. (2006) on the vector assignment problem and on the reliable 

fixed charge location problem, respectively. Binary variables are defined to specify primary allo-

cation decisions 1
lp

x  and backup allocation decisions 2
lp

x . The variables 1 2
r
lp

rx = , , , take the 

value 1 if ship-to-point p is allocated to depot l as level r (primary or back-up) supply facility, 

and 0 otherwise. In the model, these mission specification variables are first stage variables and 

thus they remain the same for all the periods of the planning horizon. However, for each period t  

of scenario mω ∈Ω , a second stage binary variable ( )lpt
s ω

 
needs to be introduced: it takes the 

value 1 if ship-to-point p is supplied by depot l in period t  under scenario ω , and 0 otherwise. 

As before, an external emergency source takes over when both the primary and backup depots 

are unable to supply a given ship-to-point. This leads to the transformation of model LT into the 

following SAA model (LTbu):
 
 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

ˆ,

ˆ

| |ˆ max
ˆ| |

ˆ

ms
t l

t llt

FTLS

LTbu p l pt lpt lp pt lpt lpt

S L H l L p P Pt TS

O e h F

k klt l lt l pt lpt l lpt l l

p P P l Lk K

T
R u v d s w y s h

mT

w y c O c d e c b h A x

ωω

ωω

ω ω ω ω ω

ω ω ω ω ω

π

= ∈ ∈ ∩∈∈Ω

∈ ∩ ∈∈

     = − − −   
 


 − − − − − 



∑ ∑ ∑∑ ∑

∑ ∑ ∑
 

subject to   

(33) 

1
p

r
lp

l L

x
∈

=∑  p P∈ , 1 2,r =  (34) 

1 2

r

lp l

r

x x
=

≤∑
,

 l
p P∈ , l L∈  (35) 
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( )
1 2

r

lpt lp
r

s xω
=

≤ ∑
,   

l L∈ , ( )t lp P Pω∈ ∩ , 
mω ∈Ω , 

ˆt T∈
 

(36) 

( ) ( ) ( )FTL

lpt pt lpt
h y sω ω ω≤  l L∈ , ( )t lp P Pω∈ ∩ ,

mω ∈Ω , ˆt T∈  (37) 

( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

ˆ

([ ] )
t l t llt

t l

F FTL

kp pt klt pt lpt

p P P p P Pk K

F

lt lt lpt

p P P

d y b y s

a O b h

ω ωω

ω

δ ω ω ω ω

ω ω ω

∈ ∩ ∈ ∩∈

∈ ∩

+

≤ + +

∑ ∑ ∑

∑  
l L∈ ,

mω ∈Ω , ˆt T∈  (38) 

( )

( ) ( ) ( )
lt

kp klt lpt lpt

k K

y e s
ω

δ ω ω ω
∈

+ =∑̂  l L∈ , ( )t lp P Pω∈ ∩ ,
mω ∈Ω , ˆt T∈  (39) 

( ) 1
p

lpt

l L

s ω
∈

=∑  ( )t
p P ω∈ , 

mω ∈Ω , 
ˆt T∈  (40) 

( ) { }, , 0,1r
l lp lptx x s ω ∈

 
l L∈ , ( )t lp P Pω∈ ∩ ,

mω ∈Ω , ˆt T∈  1 2,r =  (41) 

and to constraints (23)-(24). 

Constraints (34) and (35) ensure that each ship-to point has distinct primary and backup de-

pots. Constraints (36) guarantee that shipments are made only from primary or backup depots. 

Constraints (40) guarantee that the single sourcing rule is respected for every period. Note that 

this model includes a large number of binary variables, which complicates its resolution. The in-

struction provided by the model to the response procedure is the following: 

 ( ) 1
1

lp
l p l x= =  and ( ) 2

1
lp

l p l x′ = = , p P∈  

Multiple Sourcing Formulation (ms) 

The idea behind this formulation is to allow multiple sourcing for each ship-to-point to iden-

tify natural supply depots backups, as opposed to forced backups as in the previous section. For 

formulation LT, this is done essentially by removing constraints (9) from the first-stage program, 

and by introducing second-stage assignment variables ( )lpt
s ω  with value 1 when depot l supplies 

ship-to-point p in period t  under scenario ω . The following model results (LTms): 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

LTms
ˆ,

ˆ

| |ˆ max
ˆ| |

ˆ
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p l pt lpt lp pt lpt lpt
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O e h F
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p P P l Lk K
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w y c O c d e c b h A x

ωω

ωω

ω ω ω ω ω

ω ω ω ω ω
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= ∈ ∈ ∩∈∈Ω

∈ ∩ ∈∈

     = − − −    


 − − − + − 



∑ ∑ ∑∑ ∑

∑ ∑ ∑
 

subject to 

(42) 

( )lpt lp
s xω ≤

 

l L∈ , ( )t lp P Pω∈ ∩ ,
mω ∈Ω , ˆt T∈ (43) 

( ) { }0,1lpts ω ∈  l L∈ , ( )t lp P Pω∈ ∩ ,
mω ∈Ω , ˆt T∈ (44) 

and to constraints (10)-(11), (23)-(24) and (37)-(40). 

When this model is solved, several depots may be used to serve a given ship-to-point during 

the planning horizon. The primary depot for a ship-to-point is then defined as the one shipping 
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the largest quantity of products to this point during the planning horizon. The depot with the 

second largest shipment quantity is specified as the backup depot. More specifically, we define:   

( ) ( ) ( )
1

arg max
p

pt lpt
l L

t

l p d s
m ω

ω ω
∈

= ∑∑  and  ( )
( ){ }

( ) ( )
\

1
' arg max

p

pt lpt
l L l p

t

l p d s
m ω

ω ω
∈

= ∑∑  

Note that the backup depot is specified only for ship-to-points supplied by more than one depot 

during the planning horizon.  

Coverage Formulation (co) 

As in classical covering problems (Church and Revelle, 1974), the idea behind the third 

formulation is to offer better network coverage by using proximity criteria specifying maximum 

primary/backup depot to ship-to-point distances. Let 
2

p pL L⊆  be the set of depots located within 

the backup distance specified for ship-to-point p, and 
1 2

p pL L⊂  be the set of depots located within 

the primary distance specified. This formulation imposes that for each ship-to-point p P∈ , at 

least one depot is in 
1

pL  and at least 2 depots are in 
2

pL . This tends to increase the number of 

opened depots and to spread them more evenly on the territory. This leads to the transformation 

of model LT into the following SAA model (LTco): 

( ) ( ) ( ) ( )( )
( )

( )
( )

( ) ( ) ( ) ( )
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∈ ∩ ∈∈

     = − − −   
 


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∑ ∑ ∑∑ ∑
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 (45) 

subject to  

1

1
p

l

l L

x
∈

≥∑  

 

p P∈  
 

(46) 

2

2
p

l

l L

x
∈

≥∑  p P∈
 

(47) 

and to constraints (9)-(11) and (20)-(24). 

This model is easier to solve than the previous ones. The instruction it provides to the 

response procedure is ( ) 1
lp

l p l x= = . ( )l p′  is not specified and the default backup policy is 

used.  

5. SN Design Models Solution and Evaluation Approach  

The approach used to solve the SAA models formulated previously, and to evaluate their 

performance in terms of value creation and robustness was introduced in Figure 1. It involves 

three phases: scenarios generation, design generation and design evaluation. It can be seen as an 

adaptation of the SAA method used to solve stochastic programs (Shapiro, 2003). The scenario 

generation is done using procedure MonteCarlo presented in Figure 4 and it provides scenarios 
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to the design generation and evaluation phases. A large sample of scenarios MΩ  is generated and 

partitioned into low-risk scenarios LMΩ  and high-risk scenarios HMΩ , based on the hazard toler-

ance level κ. From these samples, two subsets of scenarios are randomly selected to perform the 

designs evaluation: a subset 
e
L LM MΩ ⊂ Ω  of 

e

L
M  low-risk scenarios, and a subset 

e
H HM MΩ ⊂ Ω  of  

e

H
M  high-risk scenarios. A subset 

e
W HM MΩ ⊂ Ω  of  

e

W
M  worst-case scenarios is also selected in 

the tail of the distribution of the number of hits (Figure 5). 

The design generation phase involves the solution of the SAA models. As normally done 

with the SAA method, each model is used to generate several designs using N replications of 

small scenario samples. To do this, another large sample of scenarios MΩ '  is independently gen-

erated and partitioned into low and high risk subsets LMΩ '
 and HMΩ '

. From these samples, the 

probabilities 
L

π  and 
H

π  are estimated, and I replications of small scenario samples , L Hm m

i i
Ω Ω , 

1 ,i I= , ..., are randomly selected to construct the SAA models. Based on 
L

π  and 
H

π  the risk 

aversion weights 
L

π̂  and 
H

π̂  are also specified. The MIPs obtained are then solved for each 

sample replication, using a commercial solver such as CPLEX-11 or a specialized solution algo-

rithm. Given the different models proposed and the I replications made, the design generation 

phase produces a set of alternative SN designs 1, , ...,j
j J=x . Each SN design obtained specifies 

the set of depots L  to open and their primary mission ( ) ,l p p P∈ . For some models, an instruc-

tion ( )l p p P∈' , , on the backup depot to use is also provided. When no backup depot is speci-

fied, the default reassignment policy applies. 

In the evaluation phase, the alternative designs 1, , ...,j
j J=x  are compared using the plausi-

ble future scenario sample 
ee e e
WL H MM M MΩ = Ω ∪ Ω ∪ Ω . Since the models proposed incorporate 

approximate anticipations of operational responses, it is not adequate to use their objective func-

tion to determine the best design. Moreover, these objective functions do not cover all the value 

creation and robustness dimensions that decision-makers may want to explore. For these reasons, 

the evaluation of the SN designs is based on a set of measures related to the net revenues 

( ) , , 1 ,
eu j M

R j Jω ω ∈Ω =xˆ , , ...,  provided by the UserResponse procedure. More specifically, 

for a given design j
x , these performance measures are based on the value added during the 

planning horizon under the scenarios considered, that is: 

( )( ) ( ), 
eMj u j j

l l

l L

R R A xω ω ω
∈

= − ∈Ω∑x xˆ ˆ, ,  
(48) 

An adequate SN design evaluation must be based on expected value and robustness meas-

ures, and it must take the decision-makers risk attitude into account. The expected return ( )jR x  

of a design jx  is provided by: 

( ) ( )
j j

S SS L H
R Rπ

=
=∑x x

,
;        

1
( ) ( )eM

S

j j

S e

S

R R
M ω

ω
∈Ω

= ∑x xˆ , , ,S L H=             (49) 
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where ( )j

L
R x  and ( )j

H
R x  are conditional expected returns for low and high risk scenarios, re-

spectively. Robustness is related to the variability of the returns obtained under different scenar-

ios. Since downside deviations from mean returns are undesirable, an adequate variability meas-

ure to assess a design jx  is the mean-semideviation ( )jMSD x  given by: 

( ) ( )j j

S SS L H
MSD MSDπ

=
=∑x x

,
        

( )1
( ) max ( ) ( ) ;0e

M
S

j j j

S Se

S

ˆMSD R R ,
M ω

ω
∈Ω

 = − ∑x x x , ,S L H=  
(50) 

where ( )j

L
MSD x  and ( )j

H
MSD x  are conditional mean-semideviations for low and high risk 

scenarios, respectively. The mean-semideviation is a coherent risk measure (Shapiro, 2007).  

Decision-makers are also interested by the behaviour of the designs under extreme condi-

tions. Using worst-case scenarios, this is often evaluated with the absolute robustness criteria 

proposed by Kouvelis and Yu (1997). For design jx  this measures the minimum return ( )j

W
R x  

under all worst case scenarios, calculated as follows: 

{ }( ) min ( )
e

M
W

j j

W
R R

ω

ω
∈Ω

=x xˆ ,
 

(51) 

Measures (49)-(51) provide the basis for a multi-criteria evaluation of the designs considered. 

Note that these measures can be used to compare the designs provided by the I replications of a 

given SAA model, as well as the best designs obtained from the different SAA models.  

The previous performance measures can also be used to construct a compound return meas-

ure reflecting the decision-makers aversion to variability and to extreme events. Such a measure 

is provided by the following expression: 

( ) ( )1 ( ) ( ) ( )j j j

S S S S W

S L H

R MSD Rψ π ϕ ψ
=

= − + +∑ x x x
,

ˆR  (52) 

where [0,1], ,
S

S L Hϕ ∈ = ,  are variability aversion weights for low and high risk scenarios, and 

where [0,1]ψ ∈  is an extreme event aversion weight. Note that if we set 0
L H

ϕ ϕ ψ= = = , the 

return function obtained corresponds to the objective function of the SAA models used in the 

design generation phase. 

6. Computational Results 

This section presents the experiments made to compare the models proposed in the previous 

sections and it analyses the results obtained. In addition to the eight SAA formulations elabo-

rated (LT, LTbu, LTms, LTco, LA, LAbu, LAms, LAco), two models where included to pro-

vide conventional SN design approaches benchmarks. One of them is a deterministic location-

allocation model (DLA) which completely neglects uncertainty. The second one is a variant of 
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LT neglecting hazards: it’s a SAA model considering only the randomness in demand and de-

noted by LTD. Also, for the eight SAA formulations considering hazards, two types of decision-

makers (DM) are considered: a risk neural DM and a risk averse DM. Consequently, in what fol-

lows, 18 distinct SN design models are compared. 

Plan of experiments 

In order to test the SN design models proposed, several problem instances were generated 

based on the following four dimensions: the SN breadth, the cost structure, the demand charac-

teristics and the depots size. First, two problem instances are considered with different number of 

potential depots and ship-to points, scattered over different geographical areas, as specified in 

Table 1. The distances between the network nodes are based on existing road networks and they 

are calculated with PC*MILER (www.alk.com). A one year planning horizon including T =240 

working days is used. The next day delivery requirement is implemented through a 400 miles 

limit on the distance between depots and ship-to points. Exceptionally, when the number of inci-

dent lanes of a ship-to-point is less than three, depots with distances larger than 400 miles are 

also considered.  

Problem 

instance 
Geographical Area 

Potential 

depots 

Number of 

ship-to-points 

P1 North-Eastern US States 7 206 

P2 North-Eastern & Midwest US States 15 706 

Table 1- Test Problem Instances 

Based on the cost structure of a real case, instances with high level fixed costs (hfc) and low 

level fixed costs (lfc) were defined. The fixed cost for each depot 
l

A  is randomly generated in 

[180 , 200 ]K K
 
for hfc

 
and in [60 ,80 ]K K for lfc. Also, the unit product values, 

l
v , are selected 

randomly in [19,21]  and the product prices, p
u , are fixed to 23 for all ship-to-points. The values 

h
v  and 

e
v  of the products coming from the external supplier are fixed to 25 and 24, respectively, 

and the local capacity unit recourse cost z

l
c  is fixed to 1 for all the depots. 

We assumed that the distribution (.)q

pF  of order inter-arrival times is exponential with an 

expected time between orders 
p

η . Also a log-normal distribution with mean 
p

µ  and standard 

deviation pσ  was used for the order quantity distribution (.)pF
ο . Three ship-to-points size 

(Large, Medium and Small) were defined to generate two types of network: larger ship-to-points 

networks (LN) dominated by large and medium size customers and smaller ship-to-points net-

works (SN) dominated by small customers. The proportion of ship-to-points of different size in 

each network type is given in Table 2. The table also provides the probability distribution pa-

rameters used to generate orders for each ship-to-point size. For model DLA the annual average 

demand of ship-to-points is given by 
p p p

D T µ η=ˆ .   



Modeling Approaches for the Design of Resilient Supply Networks under Disruptions 

CIRRELT-2009-27 24 

Ship-to-point size: Large Medium Small 

Larger ship-to-points Network (LN) 15% 65% 20% 

Smaller ship-to-points Network (SN) 10% 30% 60% 

µ (cwt) [480,580] [300,400] [120,220] 

σ (% µ ) 7% 10% 16% 

η (days) [2.5,4.5] [5.5,15.5] [20.5,35.5] 

Table 2- Ship-to-Point Demand Structure  

Finally, problems with large capacity depots (LD) and tight capacity depots (TD) were 

tested. Each depot l  has a capacity level given by 
l p P p p

a υ µ η∈= Σ / , where υ  is a factor ran-

domly generated in the intervals given in Table 3. The additional capacity, available for local 

recourse, is fixed to 25 % of the regular capacity level. Note also that all the vehicles capacity 

( F
b  and ,

k
b k K∈ ) are fixed to 400 cwt. The combination of these four dimensions yields 16 

problem instances. Each instance is denoted by the quadruplet 

( ) { } { }1 2
, , , ;  , ,  , ,i j k l i P P j hfc lfc∈ ∈

 
{ } { }, ,  ,k LN SN l TD LD∈ ∈ . 

Capacity factor υ  range LN SN 

Tight depots structure (TD) [ ]0 75 1. ;  [ ]1 1 25; .  

Large depots structure (LD) [ ]1 25 1 5. ; .  

Table 3- Test Problems Depots Capacity Structure  

The procedures required to support the research methodology described in Figure 1, were 

programmed in VB.Net 2005, and the experiments reported in this section were performed on a 

64 bits server with a 2.5 GHz Intel XEON processor and 16 GB of RAM. All the models were 

generated with OPL Studio 6.1 and solved with CPLEX-11. The design models were solved to 

optimality with the following CPLEX parameters: MIP Emphasis = Optimality, Aggressive Cuts, 

MIP Relative Tolerance = 0.005 and Time Limit = 10 hours. The calibration and estimation of 

the various sampling, aggregation and risk modeling parameters required to generate the models 

solved are discussed in Appendix B. 

Numerical Results 

Given the 16 problem instances specified previously, this section discusses the solvability of 

the SN design models proposed, and it studies the quality of the design they provide using per-

formance measures (49)-(52). Table 4 provides the design model characteristics for problem in-

stances ( )hfc LN TD-, , , , the mean solution time (MST in seconds) and the solution time standard 

deviation (STSD in seconds) for P1 and P2. Models based on LT have a very tight LP relaxation 

which helps reduce solution times significantly even with the large number of binary variables (> 

1 000 000) involved. The solution times are smaller for P2 than P1 for LTbu and LTms because 

a smaller number of scenarios and routes are used. Even if the models based on LA include a 
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mix of binary and continuous variables, their solution times are sometimes longer than for the 

corresponding LT-model because the scenarios sample used is five times larger. The determinis-

tic model DLA is trivial to solve. Note that there is a lot of variability in solution times from one 

instance to another. This is explained partly by the fact that CPLEX-11 incorporates a number of 

heuristics to reduce solution times, and that these heuristics do not work as well on all problem 

structures and instances. 

LT LTbu LTms LTco LA LAbu LAms LAco LTD DLA

Variables 1060375 1429062 1269822 1304038 416031 397725 393549 416031 1325259 1453

Constraints 128811 207914 199431 128006 433030 413690 459742 433442 125708 1658

MST (s) 786 4696 4448 241 5093 1852 5620 6288 437 < 1

STSD (s) 1224 8870 4722 127 8259 2099 3201 8057 631 0

Variables 1801570 1952566 1947790 1801570 883766 888542 883766 883766 1796446 10609

Constraints 276312 444865 443453 277724 906057 906763 905351 907469 271238 11314

MST (s) 2108 2509 3102 612 1297 939 5200 343 1463 < 1

STSD (s) 3943 2366 3357 643 1108 1075 3561 209 1283 0

P 1

P 2

 

Table 4- Model Characteristics and Average Solution Times for P1 and P2  

An important issue examined in this paper is the impact of the precision of the operational 

response anticipation incorporated in the design model on the quality of the designs obtained. 

The location-transportation formulations (LT-models) proposed include a relatively accurate an-

ticipation, but the location-allocation formulations (LA-models) are less precise. Our results 

show that the two formulations never produce the same design, although in most cases, the loca-

tion decisions are similar. The difference comes mainly from the assignment of ship-to-points to 

depots. LT-models provide different designs for each scenario sample replications which is to be 

expected because the sample size is relatively small. LA-models often produce at least two simi-

lar designs among the four replications solved which, again, is normal since larger scenario sam-

ples are used. For the smaller problem P1, LA performs extremely well since it gives the best 

design half of the time. This is explained by the fact that we were able to use large samples of 

scenarios in this case (50 scenarios, comparatively to 10 for LT-models). However, for P2, the 

scenario sample size had to be reduced and LT-models almost always perform better than LA-

models. For some instances, the difference in expected design value reaches 7%. This shows that 

significant gains may be made by using more precise anticipations and larger scenario samples. 

We stressed earlier that our models avoid risky depot locations as much as possible. Let 

( )jγ ωx ,  be the total number of hits on depots under scenario ω  when design 
jx  is imple-

mented. For a given problem instance, the average number of hits on design 
jx  for the scenarios 

evaluated is given by ( ) ( ) | |
e

e
M

Mj j

ω
γ γ ω

∈Ω
= Ω∑x x , . Table 5 reports the mean of these values 

by problem type (
1
( )x

P
γ  and 

2
( )x

P
γ ) for the optimal design provided by each model. The lowest 

average number of hits is obtained with LT, which is congruent with the fact that LT is a risk 

avoidance model. The classical deterministic and stochastic models DLA and LTD also perform 

very well from this point of view. This indicates that for the regions of the USA covered by P1 
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and P2, the optimal solutions of DLA and LTD provide a natural cover against disruptions. This 

would certainly not be the case in general. Note that the designs provided by the resilience-

seeking models are hit more often. This is happening, because there is a demand surge for some 

ship-to-points when they are hit. Resilient networks can then make additional profits by provid-

ing a good support to the victims of extreme events. Finally, it can be seen that LA-based models 

yield a higher average number of hits than LT-based models. 

LT LTbu LTms LTco LA LAbu LAms LAco LTD DLA 

1
( )x

P
γ  0.89 1.19 0.90 1.33 1.12 1.31 1.24 1.35 0.90 0.94 

2
( )x

P
γ  1.62 2.19 1.72 2.14 2.18 2.44 2.41 2.44 1.65 1.80 

Table 5- Average Number of Depot Hits by Scenario  

 The behaviour of the designs when hit can be analysed further by examining the average 

value of a design (calculated from ( ), 
e

Mj
R ω ω ∈Ωxˆ , ) for scenarios including 0 1 2γ = , , , ...  hits. 

Figure 8 presents a value-hit graph of non-dominated risk-mitigation formulations (ms and co) 

for ( )hfc LN TD-, , , problem instances. In terms of value creation under a given number of hits, 

ra, bu, DLA and LTD models are dominated either by ms or co formulations. For low-risk sce-

narios, ms-models tend to give better designs than co-models. However, for high-risk scenarios, 

co-models create more value. A similar behaviour is observed for other problem instances. Note 

however that ra-models are often almost as good as ms-models. 
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Figure 8- Design Value Behavior by Hit Level for Non-Dominated Models 

Robust SN designs should also exhibit low value mean-semideviations (MSD). Figure 9 

provides value-MSD tradeoffs graphs for P1 and P2. The points shown on the graphs for a given 

risk mitigation formulation are average values over all the models solved. The graphs show that 

from a value variability point-of-view, bu-models are very conservative: they provide lower 

value but with lower variability. At the other extreme, ra, ms, DLA and LTD models are more 

aggressive: they provide more value but with more variability. co-models provide a compromise 
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between these two extremes. Note however that the MSD is relatively low, in comparison with 

expected values, for all models. In other words, for the cases considered, variability does not 

stand out as a strong discriminating factor. 
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Figure 9- Expected Value – Mean-Semideviation Tradeoffs for P1 and P2  

All our models were solved with risk-neutral and risk-averse DM weights (see Table 8 in 

Appendix B). Table 6 presents the percentage of identical design decisions obtained with each 

risk attitude weights. The table shows that sensitivity to risk attitude depends very much on the 

model. bu-models are much more sensitive to risk attitude than the other models. In general, 

however, it is clear that the weights selected have an impact on the SN design obtained.  

 

LT LTbu LTms LTco LA LAbu LAms LAco 

P1 69% 0% 56% 44% 63% 0% 41% 59% 

P2 19% 0% 19% 22% 88% 3% 47% 81% 

Table 6- Percentage of Identical Designs for Risk-Neutral and Risk-Averse DM  

Table 7 provides more detailed results on the performance of the models for the sixteen 

problem instances generated. The results are expressed in terms of %-deviation from the return 

of the best design obtained. When the models are solved with risk-neutral DM weights, the re-

turn is evaluated with performance measure (49). When the models are solved with risk-averse 

DM weights, the results are compared using compound return measure (52), with the weights in 

Table 8. Note that evaluations using higher weights were also made, but it did not have a signifi-

cant impact on the models ranking. For the SAA models, the table provides the %-deviation of 

the best design obtained with the 4 scenario sample replications generated. The best design value 

for each problem instance is highlighted.  
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P 1 hfc,LN,TD hfc,LN,LD lfc,LN,TD lfc,LN,LD hfc,SN,TD hfc,SN,LD lfc,SN,TD lfc,SN,LD All

LT -2,25% -0,94% -1,06% -1,87% -0,30% -0,68% -1,10% -0,17% -0,38%

LTbu -12,66% -21,74% -8,14% -8,30% -20,16% -24,84% -11,31% -12,04% -12,86%

LTms 0,00% -0,94% -1,42% -1,90% -0,14% -0,72% 0,00% 0,00% 0,00%

LTco -4,51% -4,47% -3,21% -0,56% -8,72% -9,35% -4,73% -2,74% -3,25%

LA -2,69% 0,00% -3,05% -1,86% -2,07% 0,00% -4,39% -3,88% -1,43%

LAbu -15,61% -14,29% -8,68% -8,67% -19,95% -30,23% -19,48% -19,57% -14,27%

LAms -1,39% -1,07% 0,00% 0,00% 0,00% -0,48% -2,29% -2,89% -0,05%

LAco -4,43% -3,26% -2,92% -1,86% -8,57% -8,37% -4,63% -3,88% -3,27%

LTD -4,25% -1,05% -0,92% -1,89% -2,44% -0,82% -0,96% -0,53% -0,85%

DLA -4,31% -1,91% -0,96% -1,87% -2,74% -0,73% -0,30% -0,47% -0,93%

LT -2,18% -4,25% -0,18% -5,47% -3,08% -4,86% -1,31% -0,23% -2,04%

LTbu -11,69% -24,77% -8,41% -7,71% -15,65% -24,39% -11,33% -14,23% -13,02%

LTms 0,00% -4,25% 0,00% -5,51% -0,13% -4,89% 0,00% 0,00% -1,33%

LTco -6,17% -6,26% -4,24% -3,52% -11,10% -12,54% -4,97% -3,47% -5,14%

LA -3,62% -3,05% -2,07% -2,42% -3,12% -1,83% -4,41% -4,93% -2,36%

LAbu -11,24% -11,20% -8,30% -9,67% -21,01% -30,96% -15,85% -15,10% -12,80%

LAms -1,26% 0,00% -0,17% 0,00% 0,00% 0,00% -2,09% -3,12% 0,00%

LAco -6,04% -3,26% -2,15% -3,57% -10,73% -9,25% -6,23% -4,93% -4,29%

LTD -10,85% -4,36% -0,19% -5,50% -9,35% -5,04% -0,97% -0,85% -3,82%

DLA -10,96% -4,26% -0,24% -5,47% -9,79% -4,92% -0,33% -0,76% -3,78%

P 2 hfc,LN,TD hfc,LN,LD lfc,LN,TD lfc,LN,LD hfc,SN,TD hfc,SN,LD lfc,SN,TD lfc,SN,LD All

LT -0,12% -0,09% -0,28% 0,00% -0,70% -0,11% -0,36% -0,04% -0,10%

LTbu -19,35% -21,40% -14,55% -14,91% -25,78% -23,14% -19,12% -17,44% -18,73%

LTms 0,00% 0,00% -0,37% -0,14% 0,00% 0,00% 0,00% 0,00% 0,00%

LTco -2,22% -2,03% 0,00% -0,60% -6,33% -4,76% -1,76% -0,70% -1,85%

LA -2,39% -1,90% -0,70% -1,20% -2,05% -0,14% -1,74% -0,51% -1,27%

LAbu -25,19% -25,58% -19,92% -18,31% -28,56% -25,52% -26,97% -23,22% -23,44%

LAms -1,93% -1,83% -0,70% -1,19% -7,09% -4,27% -1,65% -1,11% -2,05%

LAco -3,61% -3,04% -0,67% -1,19% -7,69% -4,73% -2,01% -0,94% -2,58%

LTD -0,20% -0,08% -0,23% -0,03% -0,68% -0,07% -0,87% -0,03% -0,15%

DLA -0,82% -0,08% -0,27% -0,62% -1,95% -0,08% -1,41% -0,33% -0,54%

LT -0,16% -0,43% -0,69% -0,15% 0,00% -0,18% -0,47% -0,18% -0,18%

LTbu -17,42% -20,76% -14,74% -13,13% -25,70% -26,00% -16,79% -18,47% -18,18%

LTms 0,00% 0,00% -0,41% 0,00% -0,68% 0,00% 0,00% 0,00% 0,00%

LTco -1,87% -2,20% 0,00% -0,74% -5,23% -4,71% -1,50% -0,84% -1,69%

LA -1,48% -2,10% -0,85% -1,21% -0,87% -0,09% -2,18% -0,62% -1,10%

LAbu -25,03% -25,70% -19,37% -17,89% -26,59% -24,09% -24,05% -22,86% -22,62%

LAms -0,63% -2,00% -0,90% -1,21% -6,12% -3,55% -2,06% -0,62% -1,73%

LAco -2,29% -3,34% -0,64% -1,21% -6,56% -4,52% -2,31% -1,06% -2,31%

LTD -0,31% -0,40% -0,60% -0,19% -0,69% -0,12% -1,72% -0,17% -0,36%

DLA -0,72% -0,38% -0,60% -1,01% -2,57% -0,10% -2,24% -0,54% -0,80%

Expected Return            for Risk Neutral Models

Compound Return Measure          for Risk Averse Models

Expected Return            for Risk Neutral Models

Compound Return Measure          for Risk Averse Models

( )R

( )R

( )R

( )R

 

Table 7- Models Performance in Terms of Deviation from the Best Design 

Several observations can be drawn from this table. Note first that the different models never 

give the same SN design. Model LTms performs extremely well for larger problems (P2): it usu-

ally provides the best design and, when it does not, it is very close to the best. For smaller prob-
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lems (P1), when it is not the best, it is usually outranked by LAms. This confirms that risk-

mitigation formulation ms outperforms other formulations. Our results also show clearly that bu-

models do not perform very well. Although this risk-mitigation approach is conceptually appeal-

ing (Snyder et al., 2006), it is too conservative and it provides poor returns. Since co-models tend 

to open more depots, they do not provide the best expected returns but, as shown in Figure 8, 

they may be attractive to decision-makers wishing to obtain reasonable returns under high dis-

ruptions, mainly when depots fixed costs are low. 

For P2, the risk-avoidance model LT gives the best result for two problem instances, and it 

is generally not too far from the best model. Models LTD and DLA are dominated, but they also 

provide surprisingly good results for models not considering disruptions explicitly. This can be 

explained as follows. First, in our evaluation process, we use a default depot reassignment policy 

based on a proximity rule. It turns out that this response policy is excellent and that it copes well 

with disruptions even for designs not optimized for resilience. Second, our results show that the 

designs obtained are very sensitive to the problem size and topology (P1 vs P2). For some prob-

lem topology, the designs provided by models not seeking resilience explicitly (LT, LA, LTD 

and DLA) are naturally resilient. Note finally that, except for co-formulations which are sensi-

tive to cost structures, the other models are relatively insensitive to cost variations, customer size 

and depot size. 

7. Conclusions 

This paper studies a SN design approach under uncertainty. In the context of the multi-

period location-transportation problem, it proposes design models incorporating resilience-

seeking formulations. A generic solution approach is also proposed to produce effective and re-

silient SN designs. The models formulated are based on approximate anticipations of the opera-

tional response procedure implemented by the SN users. Our results show that the quality of the 

user response anticipation incorporated in a design model is a critical issue: significant gains can 

be made by using more precise representations of delivery decisions (routes vs flows) and larger 

scenario samples. Given the computational power currently available, trade-offs are however 

necessary. The best approach seems to be to seek an adequate equilibrium between all the di-

mensions involved (ex: route set cardinality vs scenario sample size) instead of neglecting some 

dimensions (ex: using a deterministic model to be able to incorporate more routes).  

Our results also show that more robust designs are obtained by modeling disruptions explic-

itly. This is particularly important when additional revenues can be generated by providing the 

demand surge goods required by customers under extreme events. The models proposed to cope 

with disruptions try to avoid risk and to provide resilient network structures. However, the incor-

poration of resilience-seeking constructs in the design models may induces biases that are not 
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necessarily congruent with decision-makers objectives, mainly when the user response proce-

dures are only roughly anticipated. The bu-models proposed to select backup depots are good 

examples of this phenomenon. This also stresses the importance of evaluating potential SN de-

signs with response procedures that are as close as possible to those used by the company con-

sidered. By doing this, we found that a good approach to design effective and robust SN is given 

by ms-models which assume that customers can be served from multiple depots. These models 

provide resilient networks, even when the user operates under a single-sourcing policy. For deci-

sion-makers averse to disruptions, the co-models provide an interesting alternative, particularly 

when the depots fixed costs are low. In some context, models seeking simply to avoid risks (LT 

and LA) are also a good alternative. 

This paper sheds some light on some important SN design issues, but it also raises several 

questions to address in future research. Our analysis was based on a single product two-echelon 

location-transportation problem centered on location decisions at the design level and transporta-

tion decisions at the user level. More complex multi-product multi-echelon problems incorporat-

ing sourcing, capacity and market selection decisions at the design level, as well as inventory and 

production decisions at the user level, should be studied. Also, our experiments were based on 

two realistic SN with similar topologies in the north-east of the USA. Experiments should be 

made with more varied network topologies and disruption processes in different parts of the 

world. Also, other modeling approaches to get resilient networks can certainly be investigated. 

Finally, as the design problems considered become more complex, the models formulated be-

come more difficult to solve. This raises the need for the elaboration of heuristic methods to 

solve the problems, and the issue of the trade-offs between the model precision and solvability.  
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APPENDIX A 

This Appendix provides the resilience seeking models derived from the location-allocation 

formulation (LA) for the three modeling approaches proposed: 

1) Backup Optimization Model (LAbu) 

The following model is obtained for this case: 
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( )
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and to constraints (34)-(36) and (41). 

2) Multiple Sourcing Formulation (LAms) 

For this case, the second-stage program is defined in terms of continuous flow variables in-

stead of binary assignment variables, namely: ( )lpt
X ω  the quantity of product supplied by depot 

l to ship-to point p in period t  under scenario ω , and ( )ptE ω  the quantity supplied to p by the 

emergency supply source. This leads to the following model: 

( ) ( )
( )

( ) ( )
( )

LAms
ˆ,

| |ˆ ˆmax
ˆ| |

                                  

ˆ

ms
t l

t

OS

p l lp lpt l lt

S L H l L p P Pt TS

e

p pt l l

p P l L

T
R u v w X c O

mT

u v E A x

ωω

ω

ω ω

ω

π

= ∈ ∈ ∩∈∈Ω

∈ ∈

   
 = − − −     

  


+ − −



∑ ∑ ∑ ∑ ∑

∑ ∑

subject to 

 
 

(58) 

( ) ( ) ( )lpt pt pt

l L

X E dω ω ω
∈

+ =∑  ( )t
p P ω∈ , ˆt T∈ ,

mω ∈Ω  (59) 

( ) ( )lpt pt lp
X d xω ω≤

 

l L∈ , ( )t lp P Pω∈ ∩ , ˆt T∈ ,
mω ∈Ω  (60) 

( )
( )

( ) ( )
lt

lpt lt lt

p P

X a O
ω

ω ω ω
∈

≤ +∑  
l L∈ , ˆt T∈ ,

mω ∈Ω  

 

(61) 

( ) ( )0, 0
lpt ptX Eω ω≥ ≥   l L∈ , ( )t lp P Pω∈ ∩ , ˆt T∈ ,

mω ∈Ω   (62) 



Modeling Approaches for the Design of Resilient Supply Networks under Disruptions 

CIRRELT-2009-27 33

and to constraints (10)-(11) and (29).  

The instruction provided by the model is:
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3) Coverage Formulation (LAco) 

This approach leads to the transformation of model LA into the following model: 
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(63) 

subject to constraints (9)-(11), (54)-(57), (44) and (46)-(47). 

APPENDIX B 

This Appendix discusses the calibration and estimation of SN design model’s parameters, 

taking into account the solvability of the resulting MIPs. Recall that the SAA models are formu-

lated using a subset of 
L H

m m m= +  scenarios, a subset of planning periods T̂ , as well as route 

subsets ( )ˆ ˆ, ,  , m

ltK l L t Tω ω∈ ∈Ω ∈ , for the location-transportation models. The size of these 

subsets is therefore an important issue and, clearly, the models become much more difficult to 

solve as the size increases. Solvability is consequently a major concern, and the subsets were se-

lected as large as possible to remain solvable with CPLEX-11. For all the instances solved, one 

day per week was sampled in the planning horizon yielding | | 48T̂ = . For the models based on 

LT, using the set of all routes and a sample of 10 scenarios (with 5L Hm m= = ) produced SAA 

design models that could be solved to optimality for P1. For P2, the largest SAA models we were 

able to solve to optimality were obtained with 6 scenarios samples (with 3L Hm m= = ) using a 

reduced subset of non-dominated routes. Based on preliminary results, the total number of routes 

was limited to 1 500 000, including all routes with at most one drop and a subset of interesting 

routes with at least two drops. Note that since the demand and hazard processes are stationary, 

and since the planning horizon includes 48 days, for each scenario the operational response sub-

model is replicated 48 times for demands and disruptions generated from the same processes. For 

this reason, what appears here to be a very small number of scenarios gives reasonable results. 

Also, for each SAA model, I = 4 replications were solved with different scenario samples. These 

subsets size and replication parameters were used for models LT, LTbu, LTms, LTco and LTD. 

The absence of binary route selection variables in the location-allocation models based on LA 

makes them more tractable, and the number of scenarios can be significantly increased to im-
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prove the statistical optimality gap. After several preliminary tests on various sample size, m was 

fixed to 50 for P1 and to 30 for P2 (with 2L Hm m m /= = ). This sample size was applied to mod-

els LA, LAbu, LAms and LAco, with | | 48T̂ =  and I = 4. For the evaluation phase, the scenarios 

sample is larger to provide a precise evaluation of the SN designs performance, and | |
e

MΩ  was 

fixed to 103, including 100 Monte-Carlo scenarios and the 3 worst case scenarios with the larger 

number of hits. 

Samples of M = 1000 scenarios were generated for each problem instance to obtain the 

smaller design generation and evaluation scenario samples required, and to estimate the probabil-

ity 
L

π  and 
H

π  of low and high risk scenarios. Histograms for one of these samples are presented 

in Figure 5. These samples and probabilities were used to calibrate the hazard tolerance level κ  

and the weight of high-risk scenarios ˆ
H

π
 
for risk averse decision-makers. The values retained 

for P1 and P2 are given in Table 8. The table also provides the weights applied to evaluate the 

designs with (52), for risk-neutral and risk-averse decision-makers.  

 
Risk Neutral DM Risk Averse DM 

κ  H
π  

L
ϕ  and 

H
ϕ  ψ  κ  ˆ

H
π  

L
ϕ  and 

H
ϕ  ψ  

P1 2 0.28 
0 0 

2 0.35 
0.2 0.2 

P2 3 0.38 3 0.45 

Table 8- Decision-Makers Risk Attitude Parameters  

The models based on LA and DLA require transportation cost approximation functions es-

timated by regression. Using a representative sample of daily routes generated with procedure 

UserResponse, a linear regression function 
0 1lp lp

w mς ς= +ˆ ˆˆ  was estimated for each model type. 

The regression parameter values obtained for P1 and P2 are provided in Table 9. In addition, for 

models LTco and LAco, the cover-radius to use to define the sets 1

pL  and 2

pL  need to fixed a pri-

ori. Several values were tested and the inner and outer radiuses retained for P1 were 200 and 400 

miles respectively. For P2, the values used were 300 and 400 miles.  

 
P1 P2 

LA DLA LA DLA 

0
ς̂  0,1091 0,1009 0,2714 0,1009 

1
ς̂  0,0057 0,0044 0,0058 0.005 

Table 9- Regression Parameters by Problem Instance for LA-models and DLA 

The disruption model parameters also needed to be estimated. The US states in the regions 

covered by problems P1 and P2 were used as hazard zones. The exposure levels and the multi-

hazard arrival process for each zone (state) was estimated from historical data on major disasters 

provided by FEMA (www.fema.gov). We assumed that the inter-arrival time distribution z (.)F
λ  
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is exponential, and the mean inter-arrival times 
z

λ  estimated from the FEMA data for each zone 

z Z∈ , are provided in Table 10. The table also gives the state exposure level ( )g z  estimated on 

a scale from 1 to 4. We assumed that the impact intensity distribution ( ) (.)g z sF
β  is Uniform for all 

z and s. For depots it is expressed in terms of capacity loss with lower and upper bounds [0,0.25), 

[0.25,0.5), [0.5,0.75), [0.75,1] for exposure levels g =1,2,3,4, respectively. For ship-to-points it is 

expressed in terms of demand surge/reduction with amplitude parameters [0,0.1), [0.1,0.2), 

[0.2,0.3), [0.3,0.4] for exposure levels g =1,2,3,4, respectively. The sign of the amplitude was 

randomly selected to get a 0.5 surge proportion. For all nodes, the attenuation probability 
n

α  is 

randomly generated in an interval [0.1,0.2), [0.2,0.3), [0.3,0.4) or [0.4,0.5]  depending on the 

relative area of state z(n). The impact duration functions (Figure 2) used were 
20 007 0 4709

l l l L
θ β β ε= + +.  .  for depots (

L
s ) and 0 8419

p p P
θ β ε= +.   for ship-to points (

P
s ). The 

recovery functions used are similar to the ones illustrated in Figure 3, with a stagnation phase of 

0 25
l

θ  .  periods for depots, and instantaneous deployment and recovery phases and a sustain-

ment phase of 
p

θ  periods for ship-to-points. 

State (z) VT DE DC MA NY NJ WV KY OH IN 

z
λ  (in days) 537 430 567 578 293 609 391 358 344 466 

( )g z  4 4 4 4 4 4 4 4 4 3 

State (z) ME NH RI CT PA VA IL MD WI MI 

z
λ  (in days) 405 577 757 703 355 340 371 607 412 611 

( )g z  3 3 3 3 3 3 3 2 2 1 

Table 10- Multihazard Exposure Levels and Mean Inter-Arrival Times 


