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Abstract 

This article deals with two versions of the traveling purchaser problem. In the uncapacitated 

version, the number of units of a given product available at any market where it is sold is either 

larger than or equal to the demand. In the capacitated version, the availability may be smaller than 

the demand. This study extends some known heuristics and presents some new ones capable of 

solving either version of the problem. The new heuristics are compared to each other and to some 

previous heuristics. Computational results confirm the quality of the proposed heuristics. 
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Résumé 

Cet article traite de deux versions du problème de l’acheteur itinérant. Dans la version sans 

limite de capacité, le nombre d’unités d’un produit à un marché ce produit est vendu est plus grand 

ou égal à la demande. Dans la version avec capacité, le nombre d’unités d’un produit à un marché 

peut être inférieur à sa demande. Cet article adapte quelques heuristiques connues afin qu’elles 

puissent traiter les deux versions du problème. Nous présentons également de nouvelles 

heuristiques de perturbation capables de résoudre les deux versions du problème. Des tests 

comparatifs montrent que es heuristiques proposées produisent d’excellents résultats. 

Mots clefs : Problèmes de tournées, problème de l’acheteur itinérant, heuristiques de perturbation
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1- INTRODUCTION 

An interesting generalization of the well-known Traveling Salesman Problem (TSP) is 

the Traveling Purchaser Problem (TPP) first introduced by Ramesh (1981). The undirected 

version of this problem can be stated as follows. Consider a domicile denoted by 0, a set of 

markets denoted by M={1, 2, …, m}, a travel cost cij on each edge (i, j) linking two markets, 

and a set K={1, 2, …, n} of products. Denote by Mk the set of markets selling product k and 

by pki the price of product k at market i. In what follows, cij must be interpreted as cji 

whenever i>j. The TPP is to construct a tour through a subset of the m markets and the 

domicile and to purchase each of the n products at one of these markets so as to minimize the 

sum of the travel and purchase costs. Under Ramesh’s definition, it is implicitly assumed that 

if a product is available at a given market, its quantity is sufficient to satisfy the demand. This 

version of the problem will be called the Uncapacitated Traveling Purchaser Problem 

(UTPP). Recently, Laporte, Riera-Ledesma and Salazar-González (2000) have solved a 

generalization of the UTPP where the demand for product k is dk, and the availability qki of 

product k at market i may be less than dk. This version will be called the Capacitated 

Traveling Purchaser Problem (CTPP). It is convenient to define the UTPP as a special case of 

the CTPP where dk=1 for all k and qki=0 or 1 for all k and i. In both versions, the traveling 

purchaser may visit any market as many times as necessary, but since we assume that travel 

costs satisfy the triangle inequality, there always exists an optimal solution in which each 

market is visited at most once. Some authors, e.g., Laporte et al. (2000), have considered a 

version of the TPP in which the triangle inequality is not assumed, but still impose a 

maximum of one visit at each market. 

The most common TPP applications occur in vehicle routing and warehousing (Singh 

and Van Oudheusden, 1997). An interesting application in the field of production scheduling 

is also described by Buzacott and Dutta (1971). Here, a multi-purpose machine can assume 

several configurations i and each task k ∈  K must be performed using a configuration in a set 

Mk. Travel costs cij correspond to changeover costs between jobs. 

The TPP is NP-hard since it reduces to the TSP if each product is available only at one 

market and each market sells only one product. The TPP also reduces to the Uncapacitated 

Facility Location Problem (UFLP) if cij is equal to the average opening cost of locations i and 
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j, and pki is the cost of serving customer k from facility i. The UTPP can also be transformed 

into a Generalized Traveling Salesman Problem (GTSP). In this problem customers are 

partitioned into clusters and a minimum cost tour visiting at least one customer per cluster 

must be determined (see, e.g., Renaud and Boctor 1998). If travel costs satisfy the triangle 

inequality, it is not optimal to visit more than one customer in a given cluster. To transform a 

UTPP into a GTSP, each market is replicated into as many counters as the number of different 

products it offers, and each counter sells only one product. The GTSP is obtained by defining 

a cluster as the set of all counters selling the same product. Half the price of each product is 

then added to the cost of the edges incidents to the counter. Again, if the triangle inequality 

holds, it is never optimal to purchase a given product at more than one market (this does not 

hold for the CTPP). Unfortunately, this transformation does not yield any computational 

advantage for the solution of the UTPP. 

The TPP has received the attention of several researchers, most of whom have 

proposed heuristics for its solution (Golden, Levy and Dahl, 1981; Ong, 1982; Pearn and 

Chien, 1998; Voβ, 1996; Laporte et al., 2000). To our knowledge the only available exact 

algorithms are the lexicographic algorithm of Ramesh (1981), the branch-and-bound 

algorithm of Singh and Van Oudheusden (1997), and the branch-and-cut algorithm of Laporte 

et al. (2000). Our purpose is to develop new and more powerful heuristics for the TPP. In a 

series of tests, we show that they outperform all previously published heuristics. By 

comparing our results to the exact solution values obtained on the same instances by Laporte 

et al. (2000), we are also able to prove that our heuristics consistently yield near-optimal 

solutions. 

The remainder of this article is organized as follows. We provide in Section 2 a review 

of all known algorithms for the TPP. A new implementation of one of these methods is 

described in Section 3. The new heuristics are described in Section 4 followed by 

computational results in Section 5 and by conclusions in Section 6. 

2- LITERATURE REVIEW 

One of the earliest algorithms for the UTPP is the lexicographic implicit enumeration 

method developed by Ramesh (1981). While this algorithm is exact in principle, it only works 

on very small instances. A heuristic can be derived from it by truncating the search at the first 
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feasible solution. Pearn and Chien (1998) have tested this heuristic, called the Lexicographic 

Search Heuristic (LSH) as well as two improved versions that they called Next-Block Search 

Heuristic (NB-SH) and Next-Neighbor Search Heuristic (NN-SH). 

Golden, Levy and Dahl (1981) have proposed the following Generalized Savings 

Heuristic (GSH) for the UTPP. It starts with an initial tour containing the domicile and the 

market selling the largest number of products at their lowest available price. Ties are broken 

by selecting the market with the smallest sum of product prices. At each iteration, the 

unvisited market producing the largest cost saving is inserted in the current tour. The heuristic 

stops when no more savings can be achieved. Pearn and Chien (1998) have suggested two 

improved versions of this heuristic. The first one, called the Parameter-Selection 

Generalized-Savings Heuristic (PS-GSH), uses a weighted saving function where a term 

reflecting the purchase saving at a given market is multiplied by a weight θ and added to the 

travel cost saving. The PS-GSH repeatedly solves the instance with seven different values of 

θ. The second version, called the Tie-Selection Generalized-Savings Heuristic (TS-GSH), is 

similar to the original heuristic, but the tie-breaking rule selects the market closest to the 

domicile instead of the market offering the smallest sum of product prices. 

The following Tour Reduction Heuristic (TRH) was suggested by Ong (1982) for the 

UTPP. It starts with an initial tour containing a subset of markets offering the n products and 

iteratively drops the market yielding the largest cost reduction until no further improvement 

can be obtained. Ong also suggested using a good TSP algorithm to resequence the markets in 

the intermediate tours. Obviously, the performance of the TRH heavily depends on the initial 

subset of markets, on the number of times the TSP heuristic is applied, and on the 

performance of the TSP heuristic. Pearn and Chien (1998) suggested initially selecting the set 

C of markets selling at least one product at its lowest price. They also tested two variants of 

the TRH. In the first one, called Adjusted-Cheapest Tour-Reduction Heuristic (AC-TRH) the 

initial set of markets contains, in addition to C, all markets for which the price of one or more 

products augmented by their travel cost to the domicile is minimal. In the second variant, 

called Nearest-Cheapest Tour-Reduction Heuristic (NC-TRH) the initial set includes, in 

addition to C, the closest q markets to the domicile. They solved the TPP with five different 

values of q. 
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Another heuristic proposed by Pearn and Chien (1998) is called the Commodity 

Adding Heuristic (CAH). This heuristic implicitly assumes that all products are available at 

all markets. The procedure considers the first product from a list and constructs a least cost 

solution for this product. At each following iteration, it inserts the next product in the solution 

in a least cost manner. In some cases, the best market for this product may already be in the 

solution; in other cases, it has to be inserted. The authors also propose improving the solution 

by means of the Basart and Huguet (1989) TSP heuristic, or by market drop or market 

interchange operations. 

More recently, Laporte et al. (2000) have developed a Market Adding Heuristic 

(MAH) applicable to both the UTPP and the CTPP. It gradually extends a cycle by inserting 

at each step a new market selling a product whose demand is not yet fully satisfied. More 

specifically, the procedure determines in which market each such product is available at the 

lowest price and it first inserts in the tour the market corresponding to the highest price. The 

insertion of this market in the current tour is made accordingly to a least insertion cost rule. 

Once a feasible cycle has been obtained, it is post-optimized by iteratively acting on the set of 

markets in the solution, the assignment of products to markets, and the routing cost over the 

visited markets. 

Finally, post-optimization procedures based on simulated annealing and on tabu 

search were proposed by Voβ (1996). Simulated annealing seems to work best for the CTPP, 

while tabu search is recommended for the UTPP. 

In addition to the lexicographic method of Ramesh (1981), two exact approaches are 

available. Singh and Van Oudheusden (1997) have developed a branch-and-bound algorithm 

for the UTPP capable of solving instances of up to 25 markets and 100 products. More 

recently, Laporte et al. (2000) have proposed a branch-and-cut algorithm for both the UTPP 

and the CTPP. At the root of the search tree, the choice of variables included in the first linear 

program (LP) is guided by the MAH solution. This LP is solved and valid inequalities are 

introduced according to the usual branch-and-cut rules. The final LP solution obtained at the 

root of the search tree is then used as a basis for an LP Based Market Adding Heuristic 

(LPMAH). This consists of applying the MAH starting with edges whose associated variables 

have the largest values. This branch-and-cut algorithm was successfully applied to instances 

involving up to 200 markets and 200 products. 
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3- NEW COMMODITY ADDING IMPLEMENTATIONS 

The Commodity Adding Heuristic (CAH) described by Pearn and Chien (1998) applies 

only to the UTPP and some of its components are not fully explicited in the original 

description. Since this appears to be one of the best heuristics for the UTPP, we have 

produced our own implementation and tested a number of variants. Our version of the CAH 

applies to both the CTPP and the UTPP. We consider a CTPP implementation which can also 

be used for the UTPP by appropriately defining the input data. The algorithm contains a 

construction phase followed by an improvement phase. 

Construction phase 

Step 1 (Initialization). Randomly generate a list of all products. Relabel the products 

according to their order in the list. Set h:=1. 

Step 2 (First units of product 1). Determine the market i* for which the unit purchase cost of 

product 1 is minimized:  

 ./2{minarg: 110
*

1

}+=
∈

pqci iii
Mi

 (1) 

Purchase all available units of each product at market i* without exceeding their 

unfulfilled demand. The initial partial tour is given by T:={0,i*,0} . 

Step 3 (Remaining units of product 1). Let hM  be the set of unvisited markets where product 

h is available and identify the market i* yielding: 

 ,),(),({(minarg:
1

* }+=
∈

TiPTiRi
Mi

 (2) 

where R(i,T) is the minimum insertion travel cost of market i in tour T, and P(i,T) is 

the minimum total purchase cost of products to be purchased at T∪ {i} . Insert i* in T so 

as to minimize the insertion cost. Let z* be the cost of the current partial solution. If all 

the required units of product 1 are purchased, go to Step 4; otherwise repeat Step 3. 

Step 4 (Termination test). If product h has not been fully purchased or if some units of product 

h can be purchased at a lower cost in a market belonging to M\T, go to Step 5. 

Otherwise set h:=h+1. If h>n, go to the improvement phase; otherwise repeat Step 4. 

Step 5 (Purchasing more units of h or buying h at a lower price). Identify the market i* 

yielding: 

 .),(),({minarg:* }+=
∈

TiPTiRi
hMi

 (3) 
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If product h is not yet fully purchased, or if it is fully purchased and 

R(i*,T)+P(i*,T)<z*, then insert i* in T to minimize the insertion cost, update z* and go 

to Step 4. 

Improvement phase 

Repeat Steps 6 to 9 until no further improvement can be obtained. 

Step 6 (Market drop). Consider in turn each visited market and remove it if this yields a total 

cost reduction. 

Step 7 (Market add). Consider in turn each unvisited market. Insert it in the current tour T so 

as to minimize the added travel cost. Reallocate all products to visited markets to 

minimize the purchase cost. Drop from the solution all markets where no purchase is 

made. Retain the resulting tour if it yields a total cost reduction. 

Step 8 (Market exchange). Perform the following operations until no further improvement can 

be obtained. Drop a market from the tour and add to the resulting tour an unvisited one 

as in Step 7. If the resulting tour is feasible and less costly, implement the exchange 

move. 

Step 9 (TSP heuristic). Attempt to shorten the current tour by means of a TSP heuristic. In our 

implementation we use the I3 heuristic of Renaud, Boctor and Laporte (1996). 

The procedures contained in the improvement phase have also been used by other authors 

(e.g., Ong 1982; Voβ, 1996). This heuristic works equally well for the UTPP and CTPP. In 

the UTPP implementation Step 3 is never entered and Step 5 is executed exactly once. Two 

versions have been tested. In the first version, called CAH1, the construction phase is used to 

generate ten solutions and the improvement phase is only applied to the best one. In the 

second version, called CAH2, both the construction and improvement phases are applied 

starting from each of ten different orderings of the products in Step 1, and the best of all 

available solutions is retained. 

4- PERTURBATION HEURISTICS 
We have developed three Perturbation Heuristics (PH) for the TPP. These are post-

optimization schemes in which an improvement procedure is applied to a perturbed solution, 

as it is commonly done in genetic search (Dowsland, 1996), for example. The interest of 

working with a perturbed solution is to help the search process escape from a local minimum. 
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For a recent article on perturbation heuristics, see Renaud, Boctor and Laporte (2000). Two of 

the PH we have developed apply to the UTPP and will be called UPH1 and UPH2. The third 

one is applied to the CTPP and is called CPH. 

The three PH combine in different ways seven basic procedures: 1) Market drop; 2) 

Market add; 3) Market exchange; 4) TSP heuristic; 5) Cheapest insertion; 6) Double market 

drop; 7) Double market exchange. The first four procedures correspond to Steps 6, 7, 8 and 9 

of Section 3, respectively. We now describe the remaining three basic procedures followed by 

UPH1, UPH2 and CPH. 

Cheapest insertion 

The Cheapest Insertion Heuristic (CIH) applied to the UTPP and to the CTPP. It is 

applied ten times with different values of a parameter α∈ (0,2) controlling the relative weight 

of travel cost and purchase cost. 

Step 1 (Initial selection of markets). Determine an initial set of markets M0 to be included in a 

starting tour. In the CTPP this set is defined as 

M0 := {0}∪
{ } 








<∈∈ ∑
∈ iMj

kkj
k

dqKkMi
\

such that   exists  there: . 

In other words, M0 includes all markets that must necessarily belong to any feasible 

solution. If M0 ={0} then M0 is identified as for the UTPP. In the UTPP, 

M0:={0, i*, j*}, where i*, j* are two markets yielding  

{ },),()2()( 00,
jiPcccMin ijjiMji

αα −+++
∈

 

where P(i,j) is the most economical purchase price of all available products at markets 

i and j without exceeding their demand. 

Step 2 (Initial tour). Determine an ordered set T corresponding to a tour on M0 by means of 

the TSP heuristic. If the solution is feasible, set δ:=1; otherwise set δ:=0. 

Step 3 (Market selection). Determine a market l* to be considered for inclusion in the tour, 

yielding 

{ } ,),()2()(
\

* TlScccMins ijljilTT, i,jMl
αα −+−+=

∈∈
 

where S(l,T) is the purchase saving achieved if market l is included in the solution, all 

products are optimally purchased at the available markets, and at least one product is 

purchased at l. This saving is unrestricted in sign since adding market l to the solution 

may mean that additional products can now be purchased. 
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Step 4 (Insertion test). If δ=0, insert l* in T to minimize the insertion cost; if the solution 

becomes feasible, set δ:=1; go to Step 3. If δ=1 and s*<0, insert l* in T to minimize the 

insertion cost and go to Step 3. If δ=1 and s*≥0, go to Step 5. 

Step 5 (Improvement). Attempt to improve the current solution (if it differs from a previously 

solution) by applying Market drop, Market add and TSP heuristic. 

Step 6 (Combination). If the current solution T differs from the best known solution T*, 

attempt to create a better solution T  by combining T and T*. More specifically, all 

markets present in T* but not in T are gradually inserted in the tour T using a cheapest 

insertion criterion. Step 5 is then applied to T . 

In this procedure, the role of α is to properly adjust the relative weight put on routing 

costs and on purchase cost. We have indeed observed that one of these costs often 

predominates in a given instance, but this is not known in advance. By using ten different 

values of α (0.4, 0.5, …, 1.3), one is almost certain to arrive at the right ponderation. Another 

observation relates to the potential selection of market l in Step 3. It is often the case that a 

market l yielding s* is in fact useless since no purchases are ever made at that market and its 

presence in the solution only increases the travel cost. This is why such markets are only 

considered if they are used to purchase at least one product. 

Double market drop 

Consider each pair of visited markets and remove the pair that yields the largest cost 

reduction. Repeat until no more cost reduction can be achieved. 

Double market exchange 

This procedure is similar to Market exchange except that two consecutive markets are 

dropped from the tour and one market is added.  

Perturbation heuristics UPH1, UPH2 and CPH 

We first describe UPH1 and we then indicate how this procedure is modified to yield 

UPH2 and CPH. 

Step 1 (Initial tour). Construct an initial solution by applying Cheapest insertion, Market drop, 

Market exchange, Market Add and TSP heuristic. 
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Apply Step 2 and 3 until no improvements are obtained for β successive iterations. 

Step 2 (Construction of a perturbed solution). Eliminate between µ1 and µ2 markets from the 

solution without exceeding γ% of all markets in the current solution. Gradually 

reinsert a randomly selected unvisited market in the solution using a cheapest insertion 

criterion, until feasibility is reached. 

Step 3 (Improvement). Attempt to improve the current solution by applying Market drop, 

Market exchange, Market add, TSP heuristic, Double market exchange, and Double 

market drop. 

Step 4 (Intensification). Successively apply Market add, Market exchange, Market drop and 

TSP heuristic to the best known solution until no further improvement is obtained. 

Then apply Double market exchange and Double market drop to the best known 

solution. 

In our implementation we use β=15 for UPH1 and UPH2, and β=10 for CPH. We also 

use µ1=5, µ2=10 and γ=75. 

Procedure UPH2 is similar except that Step 6 of the Cheapest insertion procedure is 

applied after Step 3 and also repeated β times. Procedure CPH is also similar to UPH1 except 

that Double market exchange and Double market drop are not applied in Step 3. Applying 

these procedures would have been too time consuming. 

5- COMPUTATIONAL RESULTS 
The procedures just described were coded in Borland Delphi 3.0 and run on a PC 

Celeron 500 Mhz under Windows 95 with a maximum running time of 3600 seconds for any 

given instance. These were tested on both the uncapacitated and the capacitated symmetric 

Euclidean instances used by Laporte et al. (2000). These are available on the 

http://webpages.ull.es/users/jjsalaza web site. Instances were defined by first generating 

integer coordinate vertices in the [0, 1000] × [0, 1000] square according to a uniform 

distribution and defining routing costs by Euclidean distances. Each product k was associated 

with kM  randomly selected markets, where kM  was randomly generated in [1, m]. Product 

prices are generated in [1, 500] according to a discrete uniform distribution. These instances 

range from m=50 to 350 markets and from n=50 to 200 products in the uncapacitated case. 

Five instances were generated for each combination of m and n. However, the optimal 
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solution is known for only 80 of these instances out of 140; in the remaining 60 cases, the best 

known solution value is used in all comparisons. Accordingly, we have divided these 140 

instances in two groups: Uncapacitated (optimal) and Uncapacitated (best). Similarly, 

capacitated instances range from m=50 to 350 markets and from n=50 to 200 products, with 

seven values of a parameter λ controlling the demand on a product k. In these instances, qki is 

randomly generated in [1,15] and ∑
∈∈

−+=
k

k Mi
kikiMik qqd )1(Max: λλ where λ=0.1, 0.5, 0.7, 0.8, 

0.9, 0.95 and 0.99. Again five instances were generated for each combination of m, n and λ 

yielding 980 instances, 439 of which having a known optimal solution. Again these instances 

are divided between Capacitated (optimal) and Capacitated (best). 

Average computational results are presented in Tables 1 to 8. The column headings 

are as follow: 

#  : number of instances over which the average is computed; 

LPMAH : the LP based MAH implemented by Laporte et al. (2000) (computation 

times for this heuristic only were obtained on a Pentium 500 Mhz computer 

running Linux with a C++ code); 

MAH : our implementation of the Laporte et al. (2000) Market Adding Heuristic; 

CAH1 : our first implementation of the Commodity Adding Heuristic; 

CAH2 : our second implementation of the Commodity Adding Heuristic; 

UPH1 : our first Uncapacitated Perturbation Heuristic; 

UPH2 : our second Uncapacitated Perturbation Heuristic; 

CPH : our Capacitated Perturbation Heuristic; 

% : percentage deviation of the heuristic solution value over the optimal value (Tables 

1, 3, 5, and 7); percentage deviation of the heuristic solution value over the best 

known solution value (Tables 2, 4, 6 and 8); the best known solution was 

produced by one of the heuristics used in the comparison and sometimes in a 

preliminary version developed during the development phase; 

Seconds : computation time in seconds. 

Computational results presented in Tables 1 and 2 indicate that both UPH1 and UPH2 

produce solution values within 0.75% of the optimum for m≤200 and typically close to 1% of 
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the best known solution value for 250≤m≤350, which is a clear indication of the quality of 

these algorithms. The proposed heuristics also produce smaller optimality gaps than any other 

heuristic used in the comparison. When comparisons are made on instances for which an 

optimal solution is known, the gaps tend to increase with the number of markets but are not 

clearly related to the number of products. For a given number of markets, computation times 

increase steadily with the number of products; for a given number of products, they increase 

steadily with the number of markets. On the whole, the running times of UPH1 and UPH2 are 

similar for m≤200, but UPH1 tends to be faster for 250≤m≤350. Both these heuristics are also 

faster than LPMAH and CAH2. On these instances the MAH behaves rather poorly. When 

compared with computation times needed to reach an optimal solution (Laporte et al., 2000), 

our computation times are not only much smaller, but also more stable since they do not grow 

quickly with problem size. 

Table 1. Average computational results, uncapacitated (optimal) instances 
LPMAH MAH CAH1 CAH2 UPH1 UPH2 Heuristic  

# % Seconds % Seconds % Seconds % Seconds % Seconds % Seconds

m=50  20 1.57 22 11.08 1 1.20 1 0.58 6 0.25 4 0.33 5 
m=100  20 2.43 260 10.47 11 2.50 5 0.52 61 0.31 20 0.30 23 
m=150  20 7.07 1482 24.14 69 3.35 15 0.52 181 0.82 77 0.60 81 
m=200  18 9.61 3225 24.63 139 2.30 34 0.91 446 0.57 106 0.66 109 
m=250 11 10.20 5254 29.67 231 3.25 28 1.29 575 0.47 126 0.61 123 
n=50  25 3.84 918 21.46 49 0.85 6 0.44 92 0.33 8 0.34 7 
n=100  22 5.74 2008 19.19 66 1.91 15 0.60 176 0.58 29 0.44 34 
n=150  22 6.09 1925 19.93 99 3.26 18 0.88 314 0.39 79 0.66 73 
n=200  20 7.52 2081 14.32 90 4.17 22 0.98 312 0.68 138 0.53 148 
Average 5.69 1698 18.91 75 2.45 14 0.71 217 0.48 60 0.48 62 

 

Table 2. Average computational results, uncapacitated (best) instances 
LPMAH MAH CAH1 CAH2 UPH1 UPH2 Heuristic  

# % Seconds % Seconds % Seconds % Seconds % Seconds % Seconds

m=200 2 n/a n/a 6.81 280 3.84 73 1.44 690 1.44 183 1.38 176 
m=250  9 n/a n/a 27.99 513 3.44 62 0.68 989 1.69 302 1.74 366 
m=300 20 n/a n/a 31.62 672 3.04 81 0.76 1222 0.62 363 0.52 374 
m=350  20 n/a n/a 40.85 899 1.86 107 1.82 1459 1.09 428 0.93 464 
n=50  10 n/a n/a 29.78 390 1.51 32 1.34 461 1.37 32 1.37 34 
n=100  13 n/a n/a 34.01 674 2.02 49 1.00 767 0.39 92 0.22 126 
n=150  13 n/a n/a 32.02 818 3.67 108 0.34 1721 0.98 295 0.32 326 
n=200  15 n/a n/a 37.23 885 3.17 141 2.00 1798 1.39 904 1.77 947 
Average n/a n/a 33.62 717 2.68 88 1.19 1253 1.03 371 0.93 401 
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We present in Tables 3 and 4 decomposed computational results for the same 

instances. The Construction phase corresponds to Step 1 of the perturbation heuristics while 

the Perturbation phase refers to Steps 4 to 6. These tables show that the Perturbation phase is 

critical in reducing solution costs but consumes most of the computing time.  

Table 3. Average decomposed computational results,  
uncapacitated (optimal) instances 

Heuristic  Construction UPH1 UPH2 
phase Perturbation 

phase 
Perturbation 

phase 
  

# 
% Seconds % Seconds % Seconds 

m=50  20 5.61 0 0.25 4 0.33 5 
m=100  20 4.35 2 0.31 20 0.30 23 
m=150  20 6.13 4 0.82 77 0.60 81 
m=200  18 7.06 7 0.57 106 0.66 109 
m=250 11 8.66 8 0.47 126 0.61 123 
n=50  25 3.76 1 0.33 8 0.34 7 
n=100  22 7.78 3 0.58 29 0.44 34 
n=150  22 6.34 5 0.39 79 0.66 73 
n=200  20 6.98 7 0.68 138 0.53 148 
Average 6.12 4 0.48 60 0.48 62 

 

Table 4. Average decomposed computational results,  
uncapacitated (best) instances 

Heuristic  Construction UPH1 UPH2 
phase Perturbation 

phase 
Perturbation 

phase 
  

# 
% Seconds % Seconds % Seconds 

m=200 2 4.44 10 1.44 183 1.38 176 
m=250  9 7.86 16 1.69 302 1.74 366 
m=300 20 9.35 16 0.62 363 0.52 374 
m=350  20 11.16 22 1.09 428 0.93 464 
n=50  10 12.45 4 1.37 32 1.37 34 
n=100  13 9.58 10 0.39 92 0.22 126 
n=150  13 9.34 22 0.98 295 0.32 326 
n=200  15 7.96 30 1.39 904 1.77 947 
Average 9.60 18 1.03 371 0.93 401 

 

In the case of the CTPP, results presented in Tables 5 and 6 show that CPH yields 

average results within 2% of the optimum when m≤200. The global average on the 439 

instances with a known optimal solution is equal to 0.94%. With the exception of LPMAH 

which performs very well on capacitated instances, these gaps are almost always smaller than 

those produced with the other heuristics. Computation times are comparable to those of 
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LPMAH, larger than those of MAH and CAH1, and smaller than those of CAH2. On the 

more difficult instances for which the optimum is not known, the gap with respect with the 

best known solution is typically less than 1%. The size of the gap seems to be related to the 

value of λ, the average gap being 0.02% for λ=0.1 and 2.86% for λ=0.99.  

Table 5. Average computational results, capacitated (optimal) instances 
LPMAH MAH CAH1 CAH2 CPH Heuristic  

# % Seconds % Seconds % Seconds % Seconds % Seconds

m=50  140 0.38 7 3.26 1 1.23 1 0.48 4 0.44 3 
m=100  135 0.69 58 6.16 2 2.04 12 1.15 30 0.96 34 
m=150  119 0.60 173 7.73 8 2.54 46 1.82 135 1.39 128 
m=200  45 0.50 248 5.64 14 4.40 56 2.64 518 1.28 221 
n=50  131 0.69 132 7.94 4 3.25 10 1.83 137 1.14 55 
n=100  116 0.57 61 5.90 4 1.91 24 1.22 118 0.94 75 
n=150  94 0.44 86 3.99 4 1.49 24 0.81 58 0.78 63 
n=200 98 0.43 82 3.67 5 1.65 36 1.02 71 0.84 86 
λ=0.1 70 0.01 18 0.16 1 0.16 30 0.09 58 0.14 22 
λ=0.5 68 0.01 19 0.48 2 0.47 37 0.28 139 0.43 55 
λ=0.7 64 0.07 25 1.31 3 1.44 27 0.74 128 0.77 63 
λ=0.8 69 0.32 44 2.48 7 2.82 29 1.65 204 0.96 138 
λ=0.9 64 1.28 99 6.43 11 4.96 20 3.70 107 1.96 145 
λ=0.95 42 2.09 86 13.99 3 3.52 4 1.83 19 1.29 28 
λ=0.99 62 0.69 377 18.76 2 2.48 2 0.90 9 1.29 16 
Average 0.55 92 5.61 4 2.16 23 1.27 100 0.94 69 

 
Table 6. Average computational results, capacitated (best) instances 

LPMAH MAH CAH1 CAH2 CPH Heuristic  
# % Seconds % Seconds % Seconds % Seconds % Seconds

m=100  5 n/a n/a 8.80 4 5.10 8 2.54 40 2.11 45 
m=150 21 n/a n/a 12.05 18 5.39 24 4.46 117 3.07 193 
m=200 95 n/a n/a 6.49 29 2.56 128 1.50 481 1.24 405 
m=250  140 n/a n/a 7.40 51 2.30 201 1.24 1360 0.63 732 
m=300  140 n/a n/a 7.62 100 2.32 353 1.24 2258 0.62 1125
m=350  140 n/a n/a 7.07 172 2.22 608 2.25 2892 0.75 1515
n=50  114 n/a n/a 10.47 55 2.87 133 1.85 1953 0.96 616 
n=100  129 n/a n/a 7.76 76 2.72 249 2.24 1967 0.89 947 
n=150  151 n/a n/a 6.48 93 2.59 357 1.40 1666 0.78 972 
n=200 147 n/a n/a 5.67 124 1.83 505 1.36 1577 0.88 1195
λ=0.1 70 n/a n/a 0.03 8 0.02 380 0.01 758 0.02 364 
λ=0.5 72 n/a n/a 0.07 24 0.06 522 0.03 2176 0.06 457 
λ=0.7 76 n/a n/a 0.23 46 0.31 449 1.28 2872 0.10 672 
λ=0.8 71 n/a n/a 0.94 84 1.36 426 0.77 3221 0.18 1222
λ=0.9 76 n/a n/a 4.23 239 5.02 392 3.64 2455 0.50 2183
λ=0.95 98 n/a n/a 10.07 157 5.21 156 3.49 1096 1.88 1338
λ=0.99 78 n/a n/a 33.41 39 4.11 23 1.76 114 2.86 277 
Average n/a n/a 7.40 89 2.47 324 1.68 1774 0.87 952 
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Again we present in Tables 7 and 8 decomposed results for the capacitated instances. 

The conclusions are identical to those reached in the uncapacitated case. 

6- CONCLUSIONS 
We have developed, implemented and tested several heuristics for two versions of the 

Traveling Purchaser Problem, a hard combinatorial optimization problem arising in 

production and transportation planning. Our three perturbation heuristics tend to produce 

better quality solution than alternative heuristics. One exception arises in the CTPP where 

CPH is surpassed by LPMAH, a constraint generation LP based heuristic requiring a heavier 

programming machinery. On the whole, our implementation of the Commodity Adding 

Heuristic does not perform as well as the perturbation heuristics. It seems that the main 

difficulty in the TPP is to determine which markets enter the solution and this can only be 

achieved by applying in succession several post-optimization procedures as we have done in 

UPH1, UPH2 and CPH, even if this translates into increased computation times. In other 

words, simple heuristic rules do not seem to be the answer for the TPP and one should expect 

larger computational times than for classical routing problems as the TSP. 

Table 7. Average decomposed computational results,  

capacitated (optimal) instances 

Heuristic Construction CPH 
phase Perturbation 

phase 
 

# 
% Seconds % Seconds 

m=50  140 1.12 1 0.44 3 
m=100  135 2.72 8 0.96 34 
m=150  119 2.40 30 1.39 128 
m=200 45 2.50 41 1.28 221 
n=50  131 2.25 9 1.14 55 
n=100  116 2.26 19 0.94 75 
n=150  94 1.86 15 0.78 63 
n=200 98 1.94 18 0.84 86 
λ=0.1 70 0.15 8 0.14 22 
λ=0.5 68 0.49 9 0.43 55 
λ=0.7 64 0.87 15 0.77 63 
λ=0.8 69 1.37 36 0.96 138 
λ=0.9 64 3.91 23 1.96 145 
λ=0.95 42 3.37 5 1.29 28 
λ=0.99 62 5.44 3 1.29 16 
Average 2.10 15 0.94 69 
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Table 8. Average decomposed computational results,  

capacitated (best) instances 
Heuristic Construction CPH 

phase Perturbation 
phase 

 
# 

% Seconds % Seconds 

m=100  5 4.66 10 2.11 45 
m=150  21 5.88 28 3.07 193 
m=200 95 2.68 85 1.24 405 
m=250 140 2.32 148 0.63 732 
m=300  140 2.12 261 0.62 1125 
m=350 140 2.31 423 0.75 1515 
n=50  114 2.57 113 0.96 616 
n=100  129 2.68 208 0.89 947 
n=150  151 2.26 268 0.78 972 
n=200 147 2.48 307 0.88 1195 
λ=0.1 70 0.03 97 0.02 364 
λ=0.5 72 0.07 91 0.06 457 
λ=0.7 76 0.13 223 0.10 672 
λ=0.8 71 0.31 465 0.18 1222 
λ=0.9 76 2.14 469 0.50 2183 
λ=0.95 98 5.10 228 1.88 1338 
λ=0.99 78 8.26 51 2.86 277 
Average 2.49 232 0.87 952 
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