
Publié par :
Published by :
Publicación de la :

Faculté des sciences de l’administration
Université Laval
Québec (Québec) Canada G1K 7P4
Tél. Ph. Tel. : (418) 656-3644
Fax : (418) 656-7047

Édition électronique :
Electronic publishing :
Edición electrónica :

Aline Guimont
Vice-décanat - Recherche et partenariats
Faculté des sciences de l’administration

Disponible sur Internet :
Available on Internet
Disponible por Internet :

http ://www.fsa.ulaval.ca/rd
rd@fsa.ulaval.ca

DOCUMENT DE TRAVAIL 2003-022

PERTURBATION HEURISTICS FOR CAPACITATED AND
UNCAPACITATED TRAVELING PURCHASER PROBLEMS

Fayez F. Boctor
Gilbert Laporte
Jacques Renaud

Version originale :
Original manuscript :
Version original :

ISBN – 2-89524-172-4

Série électronique mise à jour :
On-line publication updated :
Seria electrónica, puesta al dia

05-2003

Perturbation Heuristics for Capacitated and Uncapacitated

Traveling Purchaser Problems
Fayez F. Boctor1,2
Gilbert Laporte3,4
Jacques Renaud1,2

Abstract

This article deals with two versions of the traveling purchaser problem. In the uncapacitated

version, the number of units of a given product available at any market where it is sold is either

larger than or equal to the demand. In the capacitated version, the availability may be smaller than

the demand. This study extends some known heuristics and presents some new ones capable of

solving either version of the problem. The new heuristics are compared to each other and to some

previous heuristics. Computational results confirm the quality of the proposed heuristics.

Key words : Routing, traveling purchaser problem, perturbation heuristics

Résumé

Cet article traite de deux versions du problème de l’acheteur itinérant. Dans la version sans

limite de capacité, le nombre d’unités d’un produit à un marché ce produit est vendu est plus grand

ou égal à la demande. Dans la version avec capacité, le nombre d’unités d’un produit à un marché

peut être inférieur à sa demande. Cet article adapte quelques heuristiques connues afin qu’elles

puissent traiter les deux versions du problème. Nous présentons également de nouvelles

heuristiques de perturbation capables de résoudre les deux versions du problème. Des tests

comparatifs montrent que es heuristiques proposées produisent d’excellents résultats.

Mots clefs : Problèmes de tournées, problème de l’acheteur itinérant, heuristiques de perturbation

1 Faculté des sciences de l’administration, Université Laval, Québec, Canada, G1K 7P4
2 Centre de recherche sur les technologies de l’organisation réseau, Université Laval, Québec, Canada, G1K 7P4
3 Chaire de recherche du Canada en Distributique, École des Hautes Études Commerciales, 3000 chemin de la

Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7

4 Centre de recherche sur les transports, Université de Montréal, C.P. 6128, succursale “Centre-ville”, Montréal,
Canada, H3C 3J7

 1

1- INTRODUCTION

An interesting generalization of the well-known Traveling Salesman Problem (TSP) is

the Traveling Purchaser Problem (TPP) first introduced by Ramesh (1981). The undirected

version of this problem can be stated as follows. Consider a domicile denoted by 0, a set of

markets denoted by M={1, 2, …, m}, a travel cost cij on each edge (i, j) linking two markets,

and a set K={1, 2, …, n} of products. Denote by Mk the set of markets selling product k and

by pki the price of product k at market i. In what follows, cij must be interpreted as cji

whenever i>j. The TPP is to construct a tour through a subset of the m markets and the

domicile and to purchase each of the n products at one of these markets so as to minimize the

sum of the travel and purchase costs. Under Ramesh’s definition, it is implicitly assumed that

if a product is available at a given market, its quantity is sufficient to satisfy the demand. This

version of the problem will be called the Uncapacitated Traveling Purchaser Problem

(UTPP). Recently, Laporte, Riera-Ledesma and Salazar-González (2000) have solved a

generalization of the UTPP where the demand for product k is dk, and the availability qki of

product k at market i may be less than dk. This version will be called the Capacitated

Traveling Purchaser Problem (CTPP). It is convenient to define the UTPP as a special case of

the CTPP where dk=1 for all k and qki=0 or 1 for all k and i. In both versions, the traveling

purchaser may visit any market as many times as necessary, but since we assume that travel

costs satisfy the triangle inequality, there always exists an optimal solution in which each

market is visited at most once. Some authors, e.g., Laporte et al. (2000), have considered a

version of the TPP in which the triangle inequality is not assumed, but still impose a

maximum of one visit at each market.

The most common TPP applications occur in vehicle routing and warehousing (Singh

and Van Oudheusden, 1997). An interesting application in the field of production scheduling

is also described by Buzacott and Dutta (1971). Here, a multi-purpose machine can assume

several configurations i and each task k ∈ K must be performed using a configuration in a set

Mk. Travel costs cij correspond to changeover costs between jobs.

The TPP is NP-hard since it reduces to the TSP if each product is available only at one

market and each market sells only one product. The TPP also reduces to the Uncapacitated

Facility Location Problem (UFLP) if cij is equal to the average opening cost of locations i and

 2

j, and pki is the cost of serving customer k from facility i. The UTPP can also be transformed

into a Generalized Traveling Salesman Problem (GTSP). In this problem customers are

partitioned into clusters and a minimum cost tour visiting at least one customer per cluster

must be determined (see, e.g., Renaud and Boctor 1998). If travel costs satisfy the triangle

inequality, it is not optimal to visit more than one customer in a given cluster. To transform a

UTPP into a GTSP, each market is replicated into as many counters as the number of different

products it offers, and each counter sells only one product. The GTSP is obtained by defining

a cluster as the set of all counters selling the same product. Half the price of each product is

then added to the cost of the edges incidents to the counter. Again, if the triangle inequality

holds, it is never optimal to purchase a given product at more than one market (this does not

hold for the CTPP). Unfortunately, this transformation does not yield any computational

advantage for the solution of the UTPP.

The TPP has received the attention of several researchers, most of whom have

proposed heuristics for its solution (Golden, Levy and Dahl, 1981; Ong, 1982; Pearn and

Chien, 1998; Voβ, 1996; Laporte et al., 2000). To our knowledge the only available exact

algorithms are the lexicographic algorithm of Ramesh (1981), the branch-and-bound

algorithm of Singh and Van Oudheusden (1997), and the branch-and-cut algorithm of Laporte

et al. (2000). Our purpose is to develop new and more powerful heuristics for the TPP. In a

series of tests, we show that they outperform all previously published heuristics. By

comparing our results to the exact solution values obtained on the same instances by Laporte

et al. (2000), we are also able to prove that our heuristics consistently yield near-optimal

solutions.

The remainder of this article is organized as follows. We provide in Section 2 a review

of all known algorithms for the TPP. A new implementation of one of these methods is

described in Section 3. The new heuristics are described in Section 4 followed by

computational results in Section 5 and by conclusions in Section 6.

2- LITERATURE REVIEW

One of the earliest algorithms for the UTPP is the lexicographic implicit enumeration

method developed by Ramesh (1981). While this algorithm is exact in principle, it only works

on very small instances. A heuristic can be derived from it by truncating the search at the first

 3

feasible solution. Pearn and Chien (1998) have tested this heuristic, called the Lexicographic

Search Heuristic (LSH) as well as two improved versions that they called Next-Block Search

Heuristic (NB-SH) and Next-Neighbor Search Heuristic (NN-SH).

Golden, Levy and Dahl (1981) have proposed the following Generalized Savings

Heuristic (GSH) for the UTPP. It starts with an initial tour containing the domicile and the

market selling the largest number of products at their lowest available price. Ties are broken

by selecting the market with the smallest sum of product prices. At each iteration, the

unvisited market producing the largest cost saving is inserted in the current tour. The heuristic

stops when no more savings can be achieved. Pearn and Chien (1998) have suggested two

improved versions of this heuristic. The first one, called the Parameter-Selection

Generalized-Savings Heuristic (PS-GSH), uses a weighted saving function where a term

reflecting the purchase saving at a given market is multiplied by a weight θ and added to the

travel cost saving. The PS-GSH repeatedly solves the instance with seven different values of

θ. The second version, called the Tie-Selection Generalized-Savings Heuristic (TS-GSH), is

similar to the original heuristic, but the tie-breaking rule selects the market closest to the

domicile instead of the market offering the smallest sum of product prices.

The following Tour Reduction Heuristic (TRH) was suggested by Ong (1982) for the

UTPP. It starts with an initial tour containing a subset of markets offering the n products and

iteratively drops the market yielding the largest cost reduction until no further improvement

can be obtained. Ong also suggested using a good TSP algorithm to resequence the markets in

the intermediate tours. Obviously, the performance of the TRH heavily depends on the initial

subset of markets, on the number of times the TSP heuristic is applied, and on the

performance of the TSP heuristic. Pearn and Chien (1998) suggested initially selecting the set

C of markets selling at least one product at its lowest price. They also tested two variants of

the TRH. In the first one, called Adjusted-Cheapest Tour-Reduction Heuristic (AC-TRH) the

initial set of markets contains, in addition to C, all markets for which the price of one or more

products augmented by their travel cost to the domicile is minimal. In the second variant,

called Nearest-Cheapest Tour-Reduction Heuristic (NC-TRH) the initial set includes, in

addition to C, the closest q markets to the domicile. They solved the TPP with five different

values of q.

 4

Another heuristic proposed by Pearn and Chien (1998) is called the Commodity

Adding Heuristic (CAH). This heuristic implicitly assumes that all products are available at

all markets. The procedure considers the first product from a list and constructs a least cost

solution for this product. At each following iteration, it inserts the next product in the solution

in a least cost manner. In some cases, the best market for this product may already be in the

solution; in other cases, it has to be inserted. The authors also propose improving the solution

by means of the Basart and Huguet (1989) TSP heuristic, or by market drop or market

interchange operations.

More recently, Laporte et al. (2000) have developed a Market Adding Heuristic

(MAH) applicable to both the UTPP and the CTPP. It gradually extends a cycle by inserting

at each step a new market selling a product whose demand is not yet fully satisfied. More

specifically, the procedure determines in which market each such product is available at the

lowest price and it first inserts in the tour the market corresponding to the highest price. The

insertion of this market in the current tour is made accordingly to a least insertion cost rule.

Once a feasible cycle has been obtained, it is post-optimized by iteratively acting on the set of

markets in the solution, the assignment of products to markets, and the routing cost over the

visited markets.

Finally, post-optimization procedures based on simulated annealing and on tabu

search were proposed by Voβ (1996). Simulated annealing seems to work best for the CTPP,

while tabu search is recommended for the UTPP.

In addition to the lexicographic method of Ramesh (1981), two exact approaches are

available. Singh and Van Oudheusden (1997) have developed a branch-and-bound algorithm

for the UTPP capable of solving instances of up to 25 markets and 100 products. More

recently, Laporte et al. (2000) have proposed a branch-and-cut algorithm for both the UTPP

and the CTPP. At the root of the search tree, the choice of variables included in the first linear

program (LP) is guided by the MAH solution. This LP is solved and valid inequalities are

introduced according to the usual branch-and-cut rules. The final LP solution obtained at the

root of the search tree is then used as a basis for an LP Based Market Adding Heuristic

(LPMAH). This consists of applying the MAH starting with edges whose associated variables

have the largest values. This branch-and-cut algorithm was successfully applied to instances

involving up to 200 markets and 200 products.

 5

3- NEW COMMODITY ADDING IMPLEMENTATIONS

The Commodity Adding Heuristic (CAH) described by Pearn and Chien (1998) applies

only to the UTPP and some of its components are not fully explicited in the original

description. Since this appears to be one of the best heuristics for the UTPP, we have

produced our own implementation and tested a number of variants. Our version of the CAH

applies to both the CTPP and the UTPP. We consider a CTPP implementation which can also

be used for the UTPP by appropriately defining the input data. The algorithm contains a

construction phase followed by an improvement phase.

Construction phase

Step 1 (Initialization). Randomly generate a list of all products. Relabel the products

according to their order in the list. Set h:=1.

Step 2 (First units of product 1). Determine the market i* for which the unit purchase cost of

product 1 is minimized:

 ./2{minarg: 110
*

1

}+=
∈

pqci iii
Mi

 (1)

Purchase all available units of each product at market i* without exceeding their

unfulfilled demand. The initial partial tour is given by T:={0,i*,0} .

Step 3 (Remaining units of product 1). Let hM be the set of unvisited markets where product

h is available and identify the market i* yielding:

 ,),(),({(minarg:
1

* }+=
∈

TiPTiRi
Mi

 (2)

where R(i,T) is the minimum insertion travel cost of market i in tour T, and P(i,T) is

the minimum total purchase cost of products to be purchased at T∪ {i} . Insert i* in T so

as to minimize the insertion cost. Let z* be the cost of the current partial solution. If all

the required units of product 1 are purchased, go to Step 4; otherwise repeat Step 3.

Step 4 (Termination test). If product h has not been fully purchased or if some units of product

h can be purchased at a lower cost in a market belonging to M\T, go to Step 5.

Otherwise set h:=h+1. If h>n, go to the improvement phase; otherwise repeat Step 4.

Step 5 (Purchasing more units of h or buying h at a lower price). Identify the market i*

yielding:

 .),(),({minarg:* }+=
∈

TiPTiRi
hMi

 (3)

 6

If product h is not yet fully purchased, or if it is fully purchased and

R(i*,T)+P(i*,T)<z*, then insert i* in T to minimize the insertion cost, update z* and go

to Step 4.

Improvement phase

Repeat Steps 6 to 9 until no further improvement can be obtained.

Step 6 (Market drop). Consider in turn each visited market and remove it if this yields a total

cost reduction.

Step 7 (Market add). Consider in turn each unvisited market. Insert it in the current tour T so

as to minimize the added travel cost. Reallocate all products to visited markets to

minimize the purchase cost. Drop from the solution all markets where no purchase is

made. Retain the resulting tour if it yields a total cost reduction.

Step 8 (Market exchange). Perform the following operations until no further improvement can

be obtained. Drop a market from the tour and add to the resulting tour an unvisited one

as in Step 7. If the resulting tour is feasible and less costly, implement the exchange

move.

Step 9 (TSP heuristic). Attempt to shorten the current tour by means of a TSP heuristic. In our

implementation we use the I3 heuristic of Renaud, Boctor and Laporte (1996).

The procedures contained in the improvement phase have also been used by other authors

(e.g., Ong 1982; Voβ, 1996). This heuristic works equally well for the UTPP and CTPP. In

the UTPP implementation Step 3 is never entered and Step 5 is executed exactly once. Two

versions have been tested. In the first version, called CAH1, the construction phase is used to

generate ten solutions and the improvement phase is only applied to the best one. In the

second version, called CAH2, both the construction and improvement phases are applied

starting from each of ten different orderings of the products in Step 1, and the best of all

available solutions is retained.

4- PERTURBATION HEURISTICS
We have developed three Perturbation Heuristics (PH) for the TPP. These are post-

optimization schemes in which an improvement procedure is applied to a perturbed solution,

as it is commonly done in genetic search (Dowsland, 1996), for example. The interest of

working with a perturbed solution is to help the search process escape from a local minimum.

 7

For a recent article on perturbation heuristics, see Renaud, Boctor and Laporte (2000). Two of

the PH we have developed apply to the UTPP and will be called UPH1 and UPH2. The third

one is applied to the CTPP and is called CPH.

The three PH combine in different ways seven basic procedures: 1) Market drop; 2)

Market add; 3) Market exchange; 4) TSP heuristic; 5) Cheapest insertion; 6) Double market

drop; 7) Double market exchange. The first four procedures correspond to Steps 6, 7, 8 and 9

of Section 3, respectively. We now describe the remaining three basic procedures followed by

UPH1, UPH2 and CPH.

Cheapest insertion

The Cheapest Insertion Heuristic (CIH) applied to the UTPP and to the CTPP. It is

applied ten times with different values of a parameter α∈ (0,2) controlling the relative weight

of travel cost and purchase cost.

Step 1 (Initial selection of markets). Determine an initial set of markets M0 to be included in a

starting tour. In the CTPP this set is defined as

M0 := {0}∪
{ } 








<∈∈ ∑
∈ iMj

kkj
k

dqKkMi
\

such that exists there: .

In other words, M0 includes all markets that must necessarily belong to any feasible

solution. If M0 ={0} then M0 is identified as for the UTPP. In the UTPP,

M0:={0, i*, j*}, where i*, j* are two markets yielding

{ },),()2()(00,
jiPcccMin ijjiMji

αα −+++
∈

where P(i,j) is the most economical purchase price of all available products at markets

i and j without exceeding their demand.

Step 2 (Initial tour). Determine an ordered set T corresponding to a tour on M0 by means of

the TSP heuristic. If the solution is feasible, set δ:=1; otherwise set δ:=0.

Step 3 (Market selection). Determine a market l* to be considered for inclusion in the tour,

yielding

{ } ,),()2()(
\

* TlScccMins ijljilTT, i,jMl
αα −+−+=

∈∈

where S(l,T) is the purchase saving achieved if market l is included in the solution, all

products are optimally purchased at the available markets, and at least one product is

purchased at l. This saving is unrestricted in sign since adding market l to the solution

may mean that additional products can now be purchased.

 8

Step 4 (Insertion test). If δ=0, insert l* in T to minimize the insertion cost; if the solution

becomes feasible, set δ:=1; go to Step 3. If δ=1 and s*<0, insert l* in T to minimize the

insertion cost and go to Step 3. If δ=1 and s*≥0, go to Step 5.

Step 5 (Improvement). Attempt to improve the current solution (if it differs from a previously

solution) by applying Market drop, Market add and TSP heuristic.

Step 6 (Combination). If the current solution T differs from the best known solution T*,

attempt to create a better solution T by combining T and T*. More specifically, all

markets present in T* but not in T are gradually inserted in the tour T using a cheapest

insertion criterion. Step 5 is then applied to T .

In this procedure, the role of α is to properly adjust the relative weight put on routing

costs and on purchase cost. We have indeed observed that one of these costs often

predominates in a given instance, but this is not known in advance. By using ten different

values of α (0.4, 0.5, …, 1.3), one is almost certain to arrive at the right ponderation. Another

observation relates to the potential selection of market l in Step 3. It is often the case that a

market l yielding s* is in fact useless since no purchases are ever made at that market and its

presence in the solution only increases the travel cost. This is why such markets are only

considered if they are used to purchase at least one product.

Double market drop

Consider each pair of visited markets and remove the pair that yields the largest cost

reduction. Repeat until no more cost reduction can be achieved.

Double market exchange

This procedure is similar to Market exchange except that two consecutive markets are

dropped from the tour and one market is added.

Perturbation heuristics UPH1, UPH2 and CPH

We first describe UPH1 and we then indicate how this procedure is modified to yield

UPH2 and CPH.

Step 1 (Initial tour). Construct an initial solution by applying Cheapest insertion, Market drop,

Market exchange, Market Add and TSP heuristic.

 9

Apply Step 2 and 3 until no improvements are obtained for β successive iterations.

Step 2 (Construction of a perturbed solution). Eliminate between µ1 and µ2 markets from the

solution without exceeding γ% of all markets in the current solution. Gradually

reinsert a randomly selected unvisited market in the solution using a cheapest insertion

criterion, until feasibility is reached.

Step 3 (Improvement). Attempt to improve the current solution by applying Market drop,

Market exchange, Market add, TSP heuristic, Double market exchange, and Double

market drop.

Step 4 (Intensification). Successively apply Market add, Market exchange, Market drop and

TSP heuristic to the best known solution until no further improvement is obtained.

Then apply Double market exchange and Double market drop to the best known

solution.

In our implementation we use β=15 for UPH1 and UPH2, and β=10 for CPH. We also

use µ1=5, µ2=10 and γ=75.

Procedure UPH2 is similar except that Step 6 of the Cheapest insertion procedure is

applied after Step 3 and also repeated β times. Procedure CPH is also similar to UPH1 except

that Double market exchange and Double market drop are not applied in Step 3. Applying

these procedures would have been too time consuming.

5- COMPUTATIONAL RESULTS
The procedures just described were coded in Borland Delphi 3.0 and run on a PC

Celeron 500 Mhz under Windows 95 with a maximum running time of 3600 seconds for any

given instance. These were tested on both the uncapacitated and the capacitated symmetric

Euclidean instances used by Laporte et al. (2000). These are available on the

http://webpages.ull.es/users/jjsalaza web site. Instances were defined by first generating

integer coordinate vertices in the [0, 1000] × [0, 1000] square according to a uniform

distribution and defining routing costs by Euclidean distances. Each product k was associated

with kM randomly selected markets, where kM was randomly generated in [1, m]. Product

prices are generated in [1, 500] according to a discrete uniform distribution. These instances

range from m=50 to 350 markets and from n=50 to 200 products in the uncapacitated case.

Five instances were generated for each combination of m and n. However, the optimal

 10

solution is known for only 80 of these instances out of 140; in the remaining 60 cases, the best

known solution value is used in all comparisons. Accordingly, we have divided these 140

instances in two groups: Uncapacitated (optimal) and Uncapacitated (best). Similarly,

capacitated instances range from m=50 to 350 markets and from n=50 to 200 products, with

seven values of a parameter λ controlling the demand on a product k. In these instances, qki is

randomly generated in [1,15] and ∑
∈∈

−+=
k

k Mi
kikiMik qqd)1(Max: λλ where λ=0.1, 0.5, 0.7, 0.8,

0.9, 0.95 and 0.99. Again five instances were generated for each combination of m, n and λ

yielding 980 instances, 439 of which having a known optimal solution. Again these instances

are divided between Capacitated (optimal) and Capacitated (best).

Average computational results are presented in Tables 1 to 8. The column headings

are as follow:

: number of instances over which the average is computed;

LPMAH : the LP based MAH implemented by Laporte et al. (2000) (computation

times for this heuristic only were obtained on a Pentium 500 Mhz computer

running Linux with a C++ code);

MAH : our implementation of the Laporte et al. (2000) Market Adding Heuristic;

CAH1 : our first implementation of the Commodity Adding Heuristic;

CAH2 : our second implementation of the Commodity Adding Heuristic;

UPH1 : our first Uncapacitated Perturbation Heuristic;

UPH2 : our second Uncapacitated Perturbation Heuristic;

CPH : our Capacitated Perturbation Heuristic;

% : percentage deviation of the heuristic solution value over the optimal value (Tables

1, 3, 5, and 7); percentage deviation of the heuristic solution value over the best

known solution value (Tables 2, 4, 6 and 8); the best known solution was

produced by one of the heuristics used in the comparison and sometimes in a

preliminary version developed during the development phase;

Seconds : computation time in seconds.

Computational results presented in Tables 1 and 2 indicate that both UPH1 and UPH2

produce solution values within 0.75% of the optimum for m≤200 and typically close to 1% of

 11

the best known solution value for 250≤m≤350, which is a clear indication of the quality of

these algorithms. The proposed heuristics also produce smaller optimality gaps than any other

heuristic used in the comparison. When comparisons are made on instances for which an

optimal solution is known, the gaps tend to increase with the number of markets but are not

clearly related to the number of products. For a given number of markets, computation times

increase steadily with the number of products; for a given number of products, they increase

steadily with the number of markets. On the whole, the running times of UPH1 and UPH2 are

similar for m≤200, but UPH1 tends to be faster for 250≤m≤350. Both these heuristics are also

faster than LPMAH and CAH2. On these instances the MAH behaves rather poorly. When

compared with computation times needed to reach an optimal solution (Laporte et al., 2000),

our computation times are not only much smaller, but also more stable since they do not grow

quickly with problem size.

Table 1. Average computational results, uncapacitated (optimal) instances
LPMAH MAH CAH1 CAH2 UPH1 UPH2 Heuristic

% Seconds % Seconds % Seconds % Seconds % Seconds % Seconds

m=50 20 1.57 22 11.08 1 1.20 1 0.58 6 0.25 4 0.33 5
m=100 20 2.43 260 10.47 11 2.50 5 0.52 61 0.31 20 0.30 23
m=150 20 7.07 1482 24.14 69 3.35 15 0.52 181 0.82 77 0.60 81
m=200 18 9.61 3225 24.63 139 2.30 34 0.91 446 0.57 106 0.66 109
m=250 11 10.20 5254 29.67 231 3.25 28 1.29 575 0.47 126 0.61 123
n=50 25 3.84 918 21.46 49 0.85 6 0.44 92 0.33 8 0.34 7
n=100 22 5.74 2008 19.19 66 1.91 15 0.60 176 0.58 29 0.44 34
n=150 22 6.09 1925 19.93 99 3.26 18 0.88 314 0.39 79 0.66 73
n=200 20 7.52 2081 14.32 90 4.17 22 0.98 312 0.68 138 0.53 148
Average 5.69 1698 18.91 75 2.45 14 0.71 217 0.48 60 0.48 62

Table 2. Average computational results, uncapacitated (best) instances
LPMAH MAH CAH1 CAH2 UPH1 UPH2 Heuristic

% Seconds % Seconds % Seconds % Seconds % Seconds % Seconds

m=200 2 n/a n/a 6.81 280 3.84 73 1.44 690 1.44 183 1.38 176
m=250 9 n/a n/a 27.99 513 3.44 62 0.68 989 1.69 302 1.74 366
m=300 20 n/a n/a 31.62 672 3.04 81 0.76 1222 0.62 363 0.52 374
m=350 20 n/a n/a 40.85 899 1.86 107 1.82 1459 1.09 428 0.93 464
n=50 10 n/a n/a 29.78 390 1.51 32 1.34 461 1.37 32 1.37 34
n=100 13 n/a n/a 34.01 674 2.02 49 1.00 767 0.39 92 0.22 126
n=150 13 n/a n/a 32.02 818 3.67 108 0.34 1721 0.98 295 0.32 326
n=200 15 n/a n/a 37.23 885 3.17 141 2.00 1798 1.39 904 1.77 947
Average n/a n/a 33.62 717 2.68 88 1.19 1253 1.03 371 0.93 401

 12

We present in Tables 3 and 4 decomposed computational results for the same

instances. The Construction phase corresponds to Step 1 of the perturbation heuristics while

the Perturbation phase refers to Steps 4 to 6. These tables show that the Perturbation phase is

critical in reducing solution costs but consumes most of the computing time.

Table 3. Average decomposed computational results,
uncapacitated (optimal) instances

Heuristic Construction UPH1 UPH2
phase Perturbation

phase
Perturbation

phase

% Seconds % Seconds % Seconds

m=50 20 5.61 0 0.25 4 0.33 5
m=100 20 4.35 2 0.31 20 0.30 23
m=150 20 6.13 4 0.82 77 0.60 81
m=200 18 7.06 7 0.57 106 0.66 109
m=250 11 8.66 8 0.47 126 0.61 123
n=50 25 3.76 1 0.33 8 0.34 7
n=100 22 7.78 3 0.58 29 0.44 34
n=150 22 6.34 5 0.39 79 0.66 73
n=200 20 6.98 7 0.68 138 0.53 148
Average 6.12 4 0.48 60 0.48 62

Table 4. Average decomposed computational results,
uncapacitated (best) instances

Heuristic Construction UPH1 UPH2
phase Perturbation

phase
Perturbation

phase

% Seconds % Seconds % Seconds

m=200 2 4.44 10 1.44 183 1.38 176
m=250 9 7.86 16 1.69 302 1.74 366
m=300 20 9.35 16 0.62 363 0.52 374
m=350 20 11.16 22 1.09 428 0.93 464
n=50 10 12.45 4 1.37 32 1.37 34
n=100 13 9.58 10 0.39 92 0.22 126
n=150 13 9.34 22 0.98 295 0.32 326
n=200 15 7.96 30 1.39 904 1.77 947
Average 9.60 18 1.03 371 0.93 401

In the case of the CTPP, results presented in Tables 5 and 6 show that CPH yields

average results within 2% of the optimum when m≤200. The global average on the 439

instances with a known optimal solution is equal to 0.94%. With the exception of LPMAH

which performs very well on capacitated instances, these gaps are almost always smaller than

those produced with the other heuristics. Computation times are comparable to those of

 13

LPMAH, larger than those of MAH and CAH1, and smaller than those of CAH2. On the

more difficult instances for which the optimum is not known, the gap with respect with the

best known solution is typically less than 1%. The size of the gap seems to be related to the

value of λ, the average gap being 0.02% for λ=0.1 and 2.86% for λ=0.99.

Table 5. Average computational results, capacitated (optimal) instances
LPMAH MAH CAH1 CAH2 CPH Heuristic

% Seconds % Seconds % Seconds % Seconds % Seconds

m=50 140 0.38 7 3.26 1 1.23 1 0.48 4 0.44 3
m=100 135 0.69 58 6.16 2 2.04 12 1.15 30 0.96 34
m=150 119 0.60 173 7.73 8 2.54 46 1.82 135 1.39 128
m=200 45 0.50 248 5.64 14 4.40 56 2.64 518 1.28 221
n=50 131 0.69 132 7.94 4 3.25 10 1.83 137 1.14 55
n=100 116 0.57 61 5.90 4 1.91 24 1.22 118 0.94 75
n=150 94 0.44 86 3.99 4 1.49 24 0.81 58 0.78 63
n=200 98 0.43 82 3.67 5 1.65 36 1.02 71 0.84 86
λ=0.1 70 0.01 18 0.16 1 0.16 30 0.09 58 0.14 22
λ=0.5 68 0.01 19 0.48 2 0.47 37 0.28 139 0.43 55
λ=0.7 64 0.07 25 1.31 3 1.44 27 0.74 128 0.77 63
λ=0.8 69 0.32 44 2.48 7 2.82 29 1.65 204 0.96 138
λ=0.9 64 1.28 99 6.43 11 4.96 20 3.70 107 1.96 145
λ=0.95 42 2.09 86 13.99 3 3.52 4 1.83 19 1.29 28
λ=0.99 62 0.69 377 18.76 2 2.48 2 0.90 9 1.29 16
Average 0.55 92 5.61 4 2.16 23 1.27 100 0.94 69

Table 6. Average computational results, capacitated (best) instances

LPMAH MAH CAH1 CAH2 CPH Heuristic
% Seconds % Seconds % Seconds % Seconds % Seconds

m=100 5 n/a n/a 8.80 4 5.10 8 2.54 40 2.11 45
m=150 21 n/a n/a 12.05 18 5.39 24 4.46 117 3.07 193
m=200 95 n/a n/a 6.49 29 2.56 128 1.50 481 1.24 405
m=250 140 n/a n/a 7.40 51 2.30 201 1.24 1360 0.63 732
m=300 140 n/a n/a 7.62 100 2.32 353 1.24 2258 0.62 1125
m=350 140 n/a n/a 7.07 172 2.22 608 2.25 2892 0.75 1515
n=50 114 n/a n/a 10.47 55 2.87 133 1.85 1953 0.96 616
n=100 129 n/a n/a 7.76 76 2.72 249 2.24 1967 0.89 947
n=150 151 n/a n/a 6.48 93 2.59 357 1.40 1666 0.78 972
n=200 147 n/a n/a 5.67 124 1.83 505 1.36 1577 0.88 1195
λ=0.1 70 n/a n/a 0.03 8 0.02 380 0.01 758 0.02 364
λ=0.5 72 n/a n/a 0.07 24 0.06 522 0.03 2176 0.06 457
λ=0.7 76 n/a n/a 0.23 46 0.31 449 1.28 2872 0.10 672
λ=0.8 71 n/a n/a 0.94 84 1.36 426 0.77 3221 0.18 1222
λ=0.9 76 n/a n/a 4.23 239 5.02 392 3.64 2455 0.50 2183
λ=0.95 98 n/a n/a 10.07 157 5.21 156 3.49 1096 1.88 1338
λ=0.99 78 n/a n/a 33.41 39 4.11 23 1.76 114 2.86 277
Average n/a n/a 7.40 89 2.47 324 1.68 1774 0.87 952

 14

Again we present in Tables 7 and 8 decomposed results for the capacitated instances.

The conclusions are identical to those reached in the uncapacitated case.

6- CONCLUSIONS
We have developed, implemented and tested several heuristics for two versions of the

Traveling Purchaser Problem, a hard combinatorial optimization problem arising in

production and transportation planning. Our three perturbation heuristics tend to produce

better quality solution than alternative heuristics. One exception arises in the CTPP where

CPH is surpassed by LPMAH, a constraint generation LP based heuristic requiring a heavier

programming machinery. On the whole, our implementation of the Commodity Adding

Heuristic does not perform as well as the perturbation heuristics. It seems that the main

difficulty in the TPP is to determine which markets enter the solution and this can only be

achieved by applying in succession several post-optimization procedures as we have done in

UPH1, UPH2 and CPH, even if this translates into increased computation times. In other

words, simple heuristic rules do not seem to be the answer for the TPP and one should expect

larger computational times than for classical routing problems as the TSP.

Table 7. Average decomposed computational results,

capacitated (optimal) instances

Heuristic Construction CPH
phase Perturbation

phase

% Seconds % Seconds

m=50 140 1.12 1 0.44 3
m=100 135 2.72 8 0.96 34
m=150 119 2.40 30 1.39 128
m=200 45 2.50 41 1.28 221
n=50 131 2.25 9 1.14 55
n=100 116 2.26 19 0.94 75
n=150 94 1.86 15 0.78 63
n=200 98 1.94 18 0.84 86
λ=0.1 70 0.15 8 0.14 22
λ=0.5 68 0.49 9 0.43 55
λ=0.7 64 0.87 15 0.77 63
λ=0.8 69 1.37 36 0.96 138
λ=0.9 64 3.91 23 1.96 145
λ=0.95 42 3.37 5 1.29 28
λ=0.99 62 5.44 3 1.29 16
Average 2.10 15 0.94 69

 15

Table 8. Average decomposed computational results,

capacitated (best) instances
Heuristic Construction CPH

phase Perturbation
phase

% Seconds % Seconds

m=100 5 4.66 10 2.11 45
m=150 21 5.88 28 3.07 193
m=200 95 2.68 85 1.24 405
m=250 140 2.32 148 0.63 732
m=300 140 2.12 261 0.62 1125
m=350 140 2.31 423 0.75 1515
n=50 114 2.57 113 0.96 616
n=100 129 2.68 208 0.89 947
n=150 151 2.26 268 0.78 972
n=200 147 2.48 307 0.88 1195
λ=0.1 70 0.03 97 0.02 364
λ=0.5 72 0.07 91 0.06 457
λ=0.7 76 0.13 223 0.10 672
λ=0.8 71 0.31 465 0.18 1222
λ=0.9 76 2.14 469 0.50 2183
λ=0.95 98 5.10 228 1.88 1338
λ=0.99 78 8.26 51 2.86 277
Average 2.49 232 0.87 952

Acknowledgements

This research work was partially supported by grants OPG0036509, OPG0039682 and

OPG0172633 from the Canadian National Science and Engineering Research Council. This

support is gratefully acknowledged. The authors also thank Juan-José Salazar González who

provided several test problems and solutions. Thanks are also due to the referees for their

valuables comments.

REFERENCES

Basart, J. M. and L. Huguet (1989). An approximate algorithm for the TSP, Information

Processing Letters, 31, 77-81.

Buzacott, J. A. and S. K. Dutta (1971). Sequencing many jobs on a multipurpose facility,

Naval Research Logistics Quarterly, 18, 75-82.

 16

Dowsland K. (1996). Genetic algorithms – a tool for OR?, Journal of the Operational

Research Society, 47, 550-561.

Golden, B. L., L. Levy and R. Dahl (1981). Two generalizations of the traveling salesman

problem, Omega, 9, 439-445.

Laporte, G., J. Riera-Ledesma and J.-J. Salazar-González (2000). A branch-and-cut algorithm

for the undirected traveling purchaser problem, unpublished paper.

Ong, H. L. (1982) Approximate algorithms for the travelling purchaser problem. Operations

Research Letters, 1, 201-205.

Pearn, W. L. and R. C. Chien (1998). Improved solutions for the traveling purchaser problem,

Computers & Operations Research, 25, 879-885.

Ramesh, T. (1981). Traveling purchaser problem, Opsearch, 18, 78-91.

Renaud J. and F. F. Boctor (1998). An efficient composite heuristic for the symmetric

generalized traveling salesman problem, European Journal of Operational Research, 108,

571-584.

Renaud J., F. F. Boctor and G. Laporte (1996). A fast composite heuristic for the symmetric

traveling salesman problem, INFORMS Journal on Computing, 8, 134-143.

Renaud J., F. F. Boctor and G. Laporte (2000). Perturbation heuristics for the pickup and

delivery traveling salesman problem. Computers & Operations Research, forthcoming.

Singh, K. N., and D. L. Van Oudheusden (1997). A branch and bound algorithm for the

traveling purchaser problem, European Journal of Operational Research, 97, 571-579.

Voβ, S. (1996). Dynamic tabu search strategies for the traveling purchaser problem, Annals of

Operations Research, 63, 253-275.

