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Abstract. This paper examines the Vehicle Routing Problem with Stochastic Demands (VRPSD),
in which the actual demand of customers can only be realized upon arriving at the customer
location. Under demand uncertainty, a planned route may fail at a specific customer when the
observed demand exceeds the residual capacity. There are two ways to face such failure events,
a vehicle can either execute a return trip to the depot at the failure location and refill the capacity
and complete the split service, or in anticipation of potential failures perform a preventive return to
the depot whenever the residual capacity falls below a threshold; overall, these return trips are
called recourse actions. In the context of VRPSD, a recourse policy which schedules various
recourse actions based on the visits planned beforehand on the route must be designed. An optimal
recourse policy prescribes the cost-effective returns based on a set of optimal customer-specific
thresholds. We propose an exact solution method to solve the multi-VRPSD under an optimal
restocking policy. The Integer L-shaped algorithm is adapted to solve the VRPSD in a branch-and-
cut framework. To enhance the efficiency of the presented algorithm, several lower bounding

schemes are developed to approximate the expected recourse cost.
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1 Introduction

Following the seminal paper of Dantzig and Ramser (1959), the Vehicle Routing Problem
(VRP) has been the subject of considerable research efforts over the last decades, see La-
porte (2009). The aim in VRP is to find a set of routes serving all customers in a govern
set at a minimal cost (the least travel cost, minimum number of vehicles, etc.). The routes
should start and end at the depot, and are designed to be performed by a fleet of vehicles
with homogeneous capacity. In the deterministic version of VRP in which all problem
parameters are known precisely, each customer is only visited once by one vehicle.

In real-life problems, however, various parameters of the VRP can be uncertain. Un-
certainty is more likely to appear in demands, travel and service times, and customer
presence. It is usually dealt with by using probability distributions to describe the un-
certain parameters, which are then stochastic. The VRPs in which some parameters are
stochastic are called Stochastic VRPs (SVRPs). Although SVRPs have received much less
attention in comparison to the deterministic VRP, several efforts have been devoted to
investigate various versions of the SVRP; for a thorough exposition of the SVRP context,
we refer the reader to Gendreau et al. (2014). One way to deal with stochastic parame-
ters in stochastic routing models is to use their deterministic approximated counterparts,
in which the stochastic parameters are roughly replaced by their forecasted equivalents.
Such models can sometimes lead to arbitrarily bad quality solutions at execution time
when stochasticity reveals itself, see Louveaux (1998). Thus, there is a need to model
SVRPs using specialized optimization frameworks in which stochastic parameters are ex-
plicitly modeled through random variables.

In this paper, we are mainly interested in the Vehicle Routing Problem with Stochastic
Demands (VRPSD), where customer demands are only known through probability distri-
butions. In this context, it is common to assume that the actual demand of each customer
can only be observed upon arriving at its location. Because of that, a planned route may
fail at a customer when the demand exceeds the residual capacity on the vehicle. This
occurrence is called a route failure. To prevent failures and complete the service after a
route failure has occurred, extra decisions, called recourse actions, must be taken and asso-
ciated travel costs, called recourse costs, need to be incurred. The objective in the VRPSD
is to minimize the total driven distance, which consists of routing (i.e., preliminary plans)
costs and recourse costs.

It is important to note that the general context of the VRPSD can be tackled in vari-
ety of ways. One thus usually refers to modeling paradigms to formalize the problem and
the way in which it is solved. Dror et al. (1989) describe several of these paradigms for
the VRPSD. One of them is the so-called a priori optimization approach, which was exten-
sively discussed in Bertsimas et al. (1990); another is the reoptimization approach; further
details can be found in Gendreau et al. (2014). These modeling paradigms either separate
or unify the process of making routing and recourse decisions, where information, here,
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stochastic demands, are revealed at once or in a stepwise manner, respectively. In the a
priori optimization approach, one decomposes the overall decision making process into
two sets of mutually exclusive decisions as routing and recourse decisions, thus model-
ing the VRPSD as a two-stage stochastic integer program with recourse (see, Birge and
Louveaux (2006) for a comprehensive coverage of stochastic programming). In this ap-
proach, the first stage consists of finding a set of a priori routes while the demands are
not known yet with certainty. Once stochasticity reveals itself, the second stage consists of
planning/obtaining a set of recourse decisions in the execution of each a priori route. The
a priori optimization approach is a particularly suitable paradigm to model the VRPSD
when the aim is to execute a route repeatedly over a long horizon. In the reoptimiza-
tion approach, after the demand of each customer has been observed and served, the
remaining portion of the vehicle route is conceptually reoptimized-by choosing the first
customer to visit next and by deciding if a visit to the depot to replenish vehicle capacity
should be performed first; see Secomandi (2001) and Secomandi and Margot (2009) for
applications in which route reoptimization is allowed.

As mentioned before, under the a priori optimization approach for the VRPSD, a set
of planned routes is determined in the first stage based on probabilistic information. To
tackle the second-stage, a recourse policy must be designed. Such a policy corresponds to
a set of predetermined rules to derive recourse decisions based on the residual capacity
of the vehicle as well as the visits that are scheduled along the route. A recourse policy
then provides the driver with a full prescription to react to incoming situations. Several re-
course policies have been proposed. In the classical recourse policy, the driver follows the
planned route until the vehicle capacity is depleted. Whenever the demand of a specific
customer exceeds the residual capacity of the vehicle, the vehicle must execute a back-
forth (BF) trip to the depot to replenish the capacity in order to complete the service. If
the observed demand turns out to be equal to the residual capacity, the vehicle performs a
restocking trip to the depot and then continues to the next customer. This classical policy
was introduced by Dror and Trudeau (1986) and implemented by Gendreau et al. (1995),
Hjorring and Holt (1999), Laporte et al. (2002), Rei et al. (2010) and Jabali et al. (2014).
As an alternative, one could apply an optimal restocking policy in which, the driver also
prescribes preventive return (PR) trips to the depot in anticipation of potential failures
whenever the residual capacity falls below a threshold value. In the optimal restocking
policy, the vehicle prescribes PR trips in addition to BF trips such that the total expected
cost is minimized, thus obtaining optimal customer-specific thresholds. This policy was
introduced by Yee and Golden (1980) and implemented by Yang et al. (2000) and Bianchi
et al. (2004). One also can consider rule based policies introduced by Salavati-Khoshghalb
et al. (2017b), in which customer-specific thresholds are established in accordance with
various operational rules. Salavati-Khoshghalb et al. (2017a) proposed a hybrid recourse
policy, which combines two operational measures in order to prescribe PR trips.

To tackle the VRPSD modeled under the a priori paradigm, several exact, heuristic,
and metaheuristic algorithms have been proposed; see for more details Gendreau et al.
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(2014). Two exact solution techniques have been used in this context. The Integer L-
shaped algorithm and the column generation approach. The Integer L-shaped algorithm
was adapted for the VRPSD by Gendreau et al. (1995), Hjorring and Holt (1999), La-
porte et al. (2002), and Jabali et al. (2014). The column generation approach was applied
to the VRPSD by Christiansen and Lysgaard (2007), as well as by Gauvin et al. (2014).
All of these papers implemented the classical recourse policy. More recently, Salavati-
Khoshghalb et al. (2017b) and Salavati-Khoshghalb et al. (2017a) have extended the Inte-
ger L-shaped algorithm to consider PR trips for rule-based policies. However, there are
few research studies devoted to present and examine the optimal restocking policy. Yee
and Golden (1980) defined the optimal restocking recourse strategy, under which a set of
optimal threshold-based recourse decisions including BF and PR trips can be obtained for
given planned routes. Such an optimal restocking policy has been integrated in heuris-
tic and metaheuristic solution procedures to solve the VRPSD by Yang et al. (2000) and
Bianchi et al. (2004). Generally, these heuristic procedures result in overall sub-optimal
pair of routing and recourse decisions.

Recently, Louveaux and Salazar-Gonzalez (2017) have integrated the optimal restock-
ing policy in the a priori optimization solution approach to model the VRPSD. They pro-
pose an implementation of the L-shaped method to solve exactly the resulting problem.
It should be noted that, while this paper provides bounding procedures applicable to
instances in which customer demand distributions are not identical, much of the work
focuses on the case where all customers have identical demand distributions and all their
computational results cover only this case.

The purpose of this paper is to propose an exact algorithm to solve the VRPSD under
an optimal restocking recourse policy, thus yielding solutions that are optimal both with
respect to routing decisions and restocking ones. The proposed algorithm is an adapta-
tion of the L-shaped method that uses various bound improvement procedures to achieve
an effective performance. Furthermore, our approach allows for the consideration of dif-
ferent demand distributions for the customers in a computationally effective way, as long
as they are discrete and with finite support, as shown by the numerical results that we
report.

The remainder of this paper is organized as follows. Section §2 lays out the VRPSD
model under the a priori approach with an optimal restocking policy. We devote Section
§3 to propose an exact method, for solving the VRPSD under an optimal restocking pol-
icy, enhanced by various lower bounding schemes. Section §4 presents the results of a
computational study to examine the performance of the proposed exact method. Section
§5 proposes some conclusions and future research directions.

CIRRELT-2017-61 3
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2 Optimal Restocking Recourse Policy Under the A Priori
Approach

In Section §2.1, we first present the Vehicle Routing Problem with Stochastic Demands
(VRPSD) modeled under the a priori optimization approach. To model the recourse prob-
lem, we recall the optimal restocking policy resulting in a set of optimal recourse decisions
in §2.2.

2.1 VRPSD Formulation Under an A Priori Approach

This section revisits the VRPSD formulation presented by Gendreau et al. (1995) and La-
porte et al. (2002). Let G = (V, &) be a complete undirected graph, where V = {01, vy,
..., Un} is the set of vertices and & = {(v;,vj)|v;,v; € V,i < j} is the set of edges. Vertex
v is the depot, where a fleet of m vehicles each having capacity Q is initially located.
Each vertex v; (i = 2,...,n) represents a customer whose stochastic demand ¢; follows
a discrete probability distribution with a finite support, defined as the ordered set {¢},

1-2, .. .,Cll., .. .,(;‘fi}, where @‘fi < Q. We denote by pf, the probability of observing the Jth
demand level, i.e, P[¢; = ¢!] = pl. The traveling cost along an arc (v;,v;) € & is denoted
by c;;, where the cost matrix C = (c;;) is symmetric and satisfies the triangle inequality.

To formulate the VRPSD, we first recall the a priori optimization approach by Bertsi-
mas et al. (1990). As previously mentioned, the first stage consists of making classical
VRP routing decisions with probabilistic information about the stochastic demands. The
decision variable x;; (i < j) denotes the number of times edge (v;, v;) is traversed in the
first-stage.

Given the notation devised previously in Gendreau et al. (1995) and Laporte et al.
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(2002), the a priori model for the VRPSD is formulated as follows:

minimize Zcz’sz'j + Q(x) (1)
* i<j
n
subjectto ) xqj = 2m, (2)
j=2
ink—I—Zxkj:Z, k=2,...,n 3)
i<k k<j
Yoes E(Gi)
Y slsl- [ZE50] (sevifmbasisi<n-2) @
U,‘,U]'ES
ngi]-gl, 2§i<j<1’l (5)
0§x1j§2, j=2,...,n (6)
x = (xjj), integer (7)

In this formulation, constraints (2) ensure that exactly m vehicle routes that start and
end at the depot are established; constraints (3) ensure that each customer is connected
to two other vertices; constraints (4) stand simultaneously as subtour elimination con-
straints and capacity constraints, which remove both subtours, and infeasible routes with
an excessive expected demand. Then, the first-stage traveling costs are incurred in the
objective function (1) as } ;- j CijXij.

Let us now suppose that an a priori routing solution x in model (1)-(7) is given. In
the presence of demand stochasticity, however, an a priori route may fail at a specific
customer at which the observed demand exceeds the residual capacity of the vehicle.
Then, a recourse or corrective decision must be taken to either regain (i.e., in a reactive
fashion) or preserve (i.e., in a proactive fashion) routing feasibility. In the context of the
VRPSD, the recourse decisions are in the form of return trips to depot, but these trips
entail extra costs. Then, the expected cost of the recourse actions that are taken given the
routing solution x under a given policy is represented by Q(x) in the objective function

(1).

Dror and Trudeau (1986) have shown that, for route-based recourse policies, Q(x) can
be decomposed by route. They also showed that the expected cost of recourse actions
for a route depends on its orientation, i.e., in which direction it is executed. Thus, the
expected recourse cost for routing solution x can be computed as (19), where Q" denotes
the expected recourse cost of the 7! a priori route in the orientation § = 1,2.

m
Q(x) = Y min{Q", Q"?}. (8)

r=1

Computing Q™ for § = 1,2 under an optimal restocking policy, thus obtaining a set of
optimal recourse decisions for the " a priori route, is the subject of the next subsection.

CIRRELT-2017-61 5
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2.2 The Optimal Restocking Policy

In this section we recall the optimal restocking policy, devised by Yee and Golden (1980)
for the VRPSD. Let us first consider an a priori route expressed as vector 7 = (v; = v;,,
Vjys+ -+, Vi, 0y, = 01). An optimal restocking policy is a sequential decision rule that
determines whether the vehicle after serving a specific customer with an arbitrary resid-
ual capacity onboard proceeds according to the planned route or performs a PR trip first.
More precisely, let us assume that after serving the i ]th customer of the route, the resid-
ual capacity of the vehicle is equal to g units. If the vehicle proceeds to the following
customer (i.e,, ij1), then it must attempt to satisfy the stochastic demand ¢;,,,. When
q = Gi,,, service is completed with a nonnegative residual capacity of 4 — ¢;, ,, and one
must again decide whether the vehicle should proceed or replenish the vehicle capac-
ity first. If g < ¢j;,,, then a route failure occurs and the vehicle must perform a BF trip
(at the cost of 2C1,i]. .,) before completing the service of customer i;,1 with a residual ca-
pacity equal to Q + ¢ — Gj;, . It should be noted that we also consider a fixed cost b for
each route failure as Yang et al. (2000); this penalizes the disruption at a customer loca-
tion caused by the second vehicle visit. On the other hand, the vehicle can replenish its
capacity by performing a PR trip in order to avoid potential route failures, before start-
ing the service at the ij+1th customer. After replenishing the vehicle capacity at the cost
of C1i;  CLijyy = Ciyjiqs the vehicle can fulfill all demand observations of customer i;,1
since Q > @i]. v and then will decide whether to serve the following customer i]'+2 with a
residual capacity equal to Q — ;. ,, or perform a PR trip.

Let F, (q) be the optimal onward recourse cost-to-go after serving the i]-th, and remain-
ing with a residual capacity of 4. Then, the optimal expected recourse cost of the a priori
route ¥ can be expressed by using the following Bellman equation,

Hij,ij+1 (q) : ](Z F].H q é’rl]—«—l)pl]—H
é]Jrl
k
Fij(q) — min ékz [b+2C1 Aj+1 +F]+1(Q+q €]+1)]pi]‘+1' (9)

Li+1

/

Hij,ij+1 (q) : C]-/ij + Cl/ijJrl CZ]/Z]+1 + Z FZ]+1 Q 61]+1)p1]+1

\

where, Hj ;. ., () and HZ’ i ,,(q) express the total costs associated to the proceeding and

restocking decisions after serving the i ]-th customer, respectively. This computation differs
from the formula given by Yang et al. (2000), since it only considers the recourse cost and
not the total cost of the route. Using equation (9), we have F;,  (.) = 0 since after serving
the last customer the expected recourse cost is equal to zero. We note that F; (9) is an op-
timal policy only if F;; , (.), i, ,(.), - .., F;,(.) are already optimally given. Furthermore, let
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0% = (9:‘1 , 91-*2 e, 9;; e, 9;; ) be the optimal restocking policy threshold vector. Since Fi]. (9)

is monotonically non-increasing with respect to g, 6;; = min{q|Hy,i ., (q) < H . (q9)}

(for further details see, e.g., Yee and Golden (1980) and Yang et al. (2000)). Based on 9;’;

computed by the latter equation, the optimal decision at the i]'th customer is either re-
plenishing the vehicle capacity for g < 9;;, or proceeding to the next customer whenever

q > 9;; .
Given equation (9) and assuming that the r" vehicle performs the a priori route, its

expected recourse cost can then be computed for the first orientation (i.e., 6 = 1) as fol-
lows,

Q" =F, (Q). (10)

To compute the expected recourse cost of the route for the second orientation (i.e., 9"?),
we reapply function (10) to the reverse of the a priori route 7.

3 An Integer L-shaped Algorithm to Solve the VRPSD un-
der an Optimal Restocking Policy

In this section, we adapt the Integer L-shaped algorithm to exactly solve the VRPSD un-
der an optimal restocking recourse policy. The Integer L-shaped algorithm is proposed
by Laporte and Louveaux (1993) to tackle two-stage stochastic integer program with re-
course. It stands as a general branch-and-cut (B&C) procedure in which, feasibility cuts
and branching are employed to obtain integer first-stage solutions. A feasible integer so-
lution with an excessive expected recourse cost is removed by adding optimality cuts. The
optimality cuts which are originally developed by Laporte and Louveaux (1993), adjust a
lower bound for Q(x) at each feasible integer solution using its combinatorial structure
locally. However, the Integer L-shaped algorithm solely relying on optimality cuts may
turn to an implicit enumeration procedure of feasible integer solutions. Therefore, there
is a need to provide lower bounding procedures enhancing the B&C procedure.

Such lower bound improving procedures were first proposed by Hjorring and Holt
(1999) (for the VRPSD with classical recourse) via the concept of partial routes, which are
feasible fractional solutions with certain structures. These new valid inequalities called
lower bounding functional (LBF) cuts improve lower bounds for several integer feasible
solutions. However, some restrictive assumptions are made: 1) all customers demands
are discrete, independent and uniformly distributed and 2) a maximum of one failure can
occur within the fractional structure. The concept of partial routes was then developed by
Laporte et al. (2002) for multi-VRPSD, where customer demands follow continuous distri-
butions. Jabali et al. (2014) generalize the concept of partial routes proposed by Hjorring

CIRRELT-2017-61 7
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and Holt (1999) through defining various structures, thus improving global lower bound
for many fractional feasible solutions.

In this section we apply LBF cuts of Jabali et al. (2014) to the case of optimal restocking
policy when customers demand are defined through arbitrary discrete distributions. The
LBF cuts of Jabali et al. (2014) are only applied to the case where customer demands are
Normal distributions. To do so, we provide several approximation schemes to compute
valid lower bounds for the expected recourse cost of partial routes under an optimal re-
stocking policy. In subsection §3.1, we first revisit the Integer L-shaped algorithm. Then,
in subsection §3.2 we present a lower bounding scheme to approximate Q(x), where x
contains partial routes of Jabali et al. (2014). In subsection §3.3, we provide a general
lower bound L where L < Q(x) and x satisfies (2)-(7).

3.1 The Integer L-Shaped Algorithm

In this section we describe the Integer L-shaped employed to optimally solve the VRPSD
in a general B&C procedure. In this B&C procedure a master problem, called current
problem (CP) is established by relaxing capacity and subtour elimination constraints as
well as the integrality requirements. The expected recourse function Q(x) is replaced by
the continuous variable ® and is initially bounded from below by a general lower bound
L using (14). The first current problem CPY can be presented by (11), (2), (3),(5), (6), and
(14). At an arbitrary iteration v, CP" is shown in the following model,

CPY : min ZCZ']‘XZ']‘ + 0O (11)
x0 i<j

subjectto  (2), (3), (5), (6),

s E(&
Ly < 18] - [ B e st g cvy o2 < 1 <02, )
Z)i,U]‘ESk Q
L+ (@) - L)< y W[,’(x) — |PRY| + 1) <OVqePS" peciapB}, (13)
hePR1
L<® (14)
Yo < Y a1 vfeoc, (15)
1<i<j 1<i<j
xlj.;:l

where, constraints (12), (13), and (15) respectively are subtour elimination and capacity
constraints, LBF cuts, and optimality cuts. At each iteration v, an optimal solution (x”, ®")
is obtained by solving CP". Violated capacity and subtour elimination constraints (12) are
added to CPY until no more violated cuts are detected. We denote by {k’} the index set
associated to the subsets of vertices violating (12) at iteration v. We also denote by STV !

8 CIRRELT-2017-61
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the set of index sets of the vertices violating (12) in the first v — 1 iterations. Then, at
iteration v we set ST = ST'"1 U {k’}. The separation procedure is performed by the
CVRP package of Lysgaard et al. (2004). When no violated constraint (12) is detected, the
lower bounding cuts (13) are added to strength the overall bounding scheme. An exact
separation procedure developed by Jabali et al. (2014) detects partial solutions within x".
We denote by {4’} the index set associated to partial solutions identified in iteration v.
We also denote by PS"~! the set of index sets of the partial solutions detected to add
(13) in the first v — 1 iterations. Then, at iteration v we set PS” = PS'"' U {g'}. Each
partial solution contains a set of partial routes, here at iteration v denoted by &’ including
various structures «, B, and 7y proposed by Jabali et al. (2014). The expected recourse

cost associated to each structure p € {a, B, v} is computed as @Z/ using the procedure
presented in subsection §3.2. We also denote by PR"~! the set of partial routes detected in
the first v — 1 iterations. Then, at iteration v we set PR = PRY"! U {/’}. The branching
scheme obtains integrality requirements whenever needed. At integer feasible solutions,
Q(x") is computed to update the upper bound,. In the case of ®” < Q(x"), an optimality
cut (15) is added to CP". We denote by {f’} the index set of x when an optimality cut
is added. We also denote by OC"~! the set of index sets of vertices associated to the
optimality cuts detected in the first v — 1 iterations. Then, at iteration v we set OC" =
oc"tu{f}.

3.2 Approximating an Optimal Restocking Policy

Here, we present the bounding procedures to approximate the expected recourse cost of
partial solutions. At an arbitrary iteration v, we assume that partial solutions within x"
are detected, here denoted by g, using the exact procedure proposed by Jabali et al. (2014).
We note that @Z in (13) is set as the sum of the lower bounds of the various partial routes
(or routes) included in g and can be computed by @Z = ) @Zh. We then drop the index
hePR1T
g in @‘;,h and present it by @Z. In this section, we describe an approximation technique to
compute @Z in order to add LBF cuts (13). In (13), @’;, presents a valid lower bound for

the expected recourse cost of partial route 1 with an arbitrary structure p € {«,B,7}. In
what follows, we only derive ®}. The approximating technique can then be applied to

compute @’;5 and @g because § and 7y topologies can be viewed as successions of the «

topology.

Let h € PR" be a partial route with the a topology. Generally, a partial route consists of
an alternation of chains and unstructured components. The vertices of a chain are connected
in the support graph at iteration v (denoted by GV); x}’]- = 1 in GY then there is an edge
(vi,vj). The vertex set of a chain is called chain vertex set (CVS). The vertex set of each
unstructured components is called unstructured vertex set (UVS). Each UVS lies between

CIRRELT-2017-61 9
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two chains and connected to them at articulation vertices. Partial route h with a topology
consists of two chains S} = {v}l1 g 51 }and S} = {v; ,... } and one unstructured

1
U,vh,...,

|52
set Ul as h = (v = 0,111,. .. = v1), where U} = {0y, 0uy, ..., 04, };

1
v
1S3

\51 |’ B
and 0%1 are articulation vertices which connect chains S} and S to U}, respectively.

For the sake of simplicity, we redefine the partial route #, in similar terms as a route,
as follows

h= (v = Viys -+ Vij_y) {vul,vuz,...,z;ul},z)z~].+1,...,vit+1 =01),

where the articulation vertices v‘lsl|
h

define an artificial route /i associated to the partial route & as follows,

and v%l are denoted by Vi, and v;, ,, respectively. We

” % % %
h= (01 = Ojys-- "vijfl’“ijflﬂ’“ijfuz""’Uij’viﬂl""’vit-s-l = 01), (16)

where each ordermg of | unsequenced customers in Ul can be assigned to the positions

\\
LJl

ANIRTRE oL Jl In what follows, we refer to Jl as the 1] posmon in the artificial route /.

Then, we develop a bounding procedure for the artificial route /1.

Approximation:

To compute a valid lower bound for the expected recourse cost, we need to provide some
additional notations. Let s = (i,, q) denote the state of the system (i.e., the vehicle) after
servmg the 1ath customer of the a priori route 7 = (vl = Ui, , Viyy - - .,vijfl,. Vi Vigqre vy
Vi iyre v o1 Vi Uiy = v1) with g units of the residual capacity onboard, as in the Bellman
equation (9). When performing the a priori route @ (or more generally for two successive
customers in a chain), the system will make a transition from state s = (i,, g) to some state
s’ = (iz+1,49"). Furthermore, one can easily determine all possible values of 4’ and use
them to compute F; (7). When dealing with artificial route /1, things are not as easy, since
the customers between Vi, and vj;,, are not known exactly. In that portion of the artificial

route, we must associate pseudo states which are associated not with specific customers,

but rather to positions in the route. Thus, we lets = (., q) represent the state of the system
after serving the (still unknown) customer in the i,th position of the artificial route.

In the following, we present a successive approximation scheme that computes a valid
lower bound for the optimal cost-to-go value function for pseudo state s, denoted by
F,

7]

(s = (vi,,q)). Based on the Bellman'’s principle of optimality, we also suppose that
the optimal (or, a valid lower bound) cost- to-go value function F; (s’ = (L . 1-0')) has

been determined beforehand, for all s’ = (L ip.1,q ). Let us now define the auxiliary value
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E (s= (. i,,q),s = (vuy,q")), which corresponds to a conditional lower bound on the op-
timal cost-to-go value function, if we assume that customer v,, € U} occupies the i

position (i.e. := vy, in s’). We can then write

[
7=l

Fi(s= (4, q),8 = (vu,q)) =

/ ~

Z Fiu+1 (S/ = (vuu q/ =4 Cﬁl))pﬁl—i_
k:gk <q
. Z [b+2c1,u1 +Pia+1(sl = (vul’q/ = Q+q_§51))]p§1/ (17)
= min
k:d‘l1 >q
Suq _
Cl,ia —I_ Cl,M1 - Cik,ul —I_ kzl Fia+1 (S/ = (0”1/ q/ = Q - Cﬁl))pllfll

To compute £ (s = (v},,9),s' = (vu,,q")) in (17), the PR trip travel cost is replaced
by a lower bound minimum {ciy,, + ¢1,u; — Cupu, }- To determine an unconditional lower
Vup €U0y #0uy

bound on F, (s = (L};,q)), we simply take the minimum of the conditional lower bounds,
i.e., we set

A
~ A

E,(s= (i, q)) = min Fi(s= (., q),s = (0u,4))- (18)

vy, €U}

There are two boundary cases which differ from the situation presented above. The
first case arises when we start the approximation scheme, where s = (L li].,q) and s’ =
(vi]. 1+q"). In this case, we can compute directly the unconditional lower bound on the

optimal cost-to-go value function. The PR trip cost can be obtained by minim%m{cllue +
vy, €Uy

Clizyy — Cutesijiy }. The second case arises in the last step of overall scheme, where s = (Ui];zf
q) anq 15/ = (v :ij,,qu/)- In this case, the PR trip costs for each v, in Iﬁijfl(s = (vi,_,,q),

/

s = vu;,q')) can be computed as ¢4, + 1, — Ci;_,u,- The latter boundary

(- :ijfl+1 = ¢
case will result in an unconditional bound F;; | (s = (ij—1,9))-

It should be noted that the the optimal cost-to-go functions F;, , (L), F; () By
can be exactly computed by the Bellman equation (9). Then, the bounding procedure
described above provides an unconditional lower bound on F; (s = (ij_1,q)) Vq. Next,

the unconditional lower bound EH(S = (ij_1,q)) can be applied in (9) to successively
compute unconditional lower bounds E]._l_l (.),Ej_l_z(.), ..., F, (). We set F,(Q) as the
valid lower bound for the expected recourse cost of artificial route  in the first direction

CIRRELT-2017-61 11
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and denote it by 13111 (Q). By reversing /i and applying the bounding procedure we will
obtain a valid lower bound for the second direction, denoted by 1::121 (Q). We then set

@} = min{F! (Q), F}(Q)} (19)

where, @/ is a valid lower bound for the expected recourse cost of partial route /, detected
in the partial solutions g within optimal first-stage solution x" at iteration v. Moreover,
we note that partial routes with 8 and -y topologies consist of several partial routes with

« topology and we can apply the same procedure to compute @g and @ﬁ;. Finally, we set

@) = he%R”f @2 for p € {a, B, 7} to be used in LBF cuts (13).

3.3 General Lower Bound

In this subsection, we propose a procedure to obtain a general lower bound L to be used
in constraints (13) and (14). As defined by Laporte and Louveaux (1993), the expected
recourse cost associated to the feasible solution x* with minimum expected recourse cost
corresponds to a general lower bound. Laporte and Louveaux (1998) were the first au-
thors to present a general lower bound for the VRPSD under the classical recourse. The
quality of the general lower bound presented in Laporte and Louveaux (1998) is further
improved by Laporte et al. (2002). Suppose that 3!, 7, ..., 7" are the vehicle routes con-
tained in x”. Using the notation of Laporte and Louveaux (1993),

L= Q") < min{Q(x)[(2) - (6)} = }_min{Q" (), Q). ()
k=1

For computing L in (20), we assume that: the vehicle route denoted by 7'? is obtained by
concatenating 72 after 7'; vy and v 2 present the last customer in !, and the first customer

in 72, respectively; Ffll (Q) and ng (Q) are the expected recourse costs associated to 7! and

-2

U°, respectively; Fflllz() and Fflllz() are the expected recourse costs from the depot to v,

and expected cost-to-go from v;1 to the depot going through 7, respectively; and lel is
the probability of having g units of residual capacity after serving customer v;1.

The expected recourse cost of 7'2 in the first direction can be computed as follows,

E(Q) = AR (@) + B (0)}pl- (21)
q

12 CIRRELT-2017-61
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By definition, we have

(Y ELa-cn

ké‘f <
512 . k k
Fglllz(q) — min ¢ . kZ [b +2C1,vf2 + FUfZ(Q +4q gvfz)]pv (22)
-Cvf2>fl

f2
€1 ) +C1 g2 CU,1, 2 + Z F Q gv )
k=1

\

f2
=12
We also have Ffjl L(q) < o Lo = Copop + Z Q s 2) Wthh coupled with

(21) results in

Syz

ﬂlz =12
FZT)Jl ) S Z {Fzzj)ll ( + Cl 'Ull + Cl 'Z)f2 Cvll’ f2 + Z Q CU pvfz }pvll (23)
q k=1

Assuming that 72 is equivalent to the concatenation of 7' and @2, the relation (23) can
further yield

=12 =1 72
Fgl (Q) S Cl/vll + Cl,vfz - Cvll + Fgl (Q) + Fgl (Q)/

where, the first term in (23) is equivalent to Ffjll (Q) in the backward fashion and the last
term in (23) is equivalent to Fgf (Q) in the forward fashion.

We perform the same procedure to concatenate the remaining routes @°,..., " to 7'2
and conclude that:
— m
—’1 m k =k
2 bR+ ) Fo (Q) (24)
where 71+ is obtained by the successive concatenation of all routes and c]f)R denotes the

k' least PR trip cost.

The desired L can be obtained by bounding ) ;" , Fflk (Q). However, the vehicle routes

71, 72, ..., 9", as well as 7™ are not known, but we can use the fact that the route
7™ in the left-hand-side of (24) consists of all customers. To calculate a general lower

bound L* < L, we can approximate the left-hand-side of (24) by constructing a large
unstructured set U, = V \ {v1}. Then, one can reduce the problem of finding a valid
lower bound for U to computing the minimum expected recourse cost El,zl (Q) of artificial

routes [, for z = 2,...,n, which are obtained by only fixing the last customer before
returning to the depot v, i.e.,

R o
lz = (01 = Uiprtiigrttigsr - .,w,Jit_l,UZ,UitH = Ul). (25)

CIRRELT-2017-61 13
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This is done exactly as in §3.2. Finally, a general lower bound L* can be computed as

~ m—1
L* = min FZ(Q)— Y chg. (26)
z:2,...1 =1

4 Numerical Results

In this section, we evaluate the quality of the proposed Integer L-shaped algorithm by
conducting computational experiments of instances. Overall, we present the numerical
result for three sets of instances.

Symmetric Instances: In the first set of instances (which is made up of the instances
of Salavati-Khoshghalb et al. (2017b)), customer locations and demands are randomly
generated. We generated instances consisting of a set of n vertices as {vy,...,v,}, in
which v represents the depot and n — 1 customers and all vertices are randomly scattered
in [0,100]? according to a continuous uniform distribution. In the first set, each customer
is randomly (i.e., with equal probability) assigned to one of the three demand ranges |1,
5], [6,10], [11,15] and then five realizations in each range are observed accordingly to the
probabilities {0.1,0.2,0.4,0.2,0.1}.

Asymmetric Instances: In the second set of instances, customer locations are the same as
symmetric instances. Each customer is randomly (i.e., with equal probability) assigned
to one of the five demand ranges [1,5], [6,10], [11,15], [4,7], and [9, 12]. Each of the first
three demand ranges has five possible demand values, the occurrence of each which (in
ascending order) is expressed with the following probabilities {0.1,0.2,0.4,0.2,0.1}. Each
of the last two demand ranges has four possible demand values, the occurrence of each
which (in ascending order) is expressed with the following probabilities {0.4,0.3,0.2,0.1}.

In what follows, all settings are considered in both symmetric and asymmetric in-
stances. The traveling cost c;; is set as the Euclidean distance between each pair v; and

v; and rounded to the nearest integer. The filling coefficient f is equal to 2,’;731—15(51) Four

filling coefficients f = 0.90,0.92,0.94, and 0.96 are considered. The capacity of each vehi-
cle is directly inferred from f. We consider 11 combinations of (1, m) for each of the four
filling coefficients, as detailed in Table 1. We generated 10 instances for each entry of the
table. Thus, our generated test bed contains 440 instances, overall 880 runs for symmetric
and asymmetric instances.
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Table 1: Combinations of parameters to generate instances.

nom f
20 2 0.90,0.92,0.94,0.96
30 2 0.90,0.92,0.94,0.96

40 2,3,4 0.90,0.92,0.94,0.96
50 2,3,4 0.90,0.92,0.94,0.96
60 2,3,4 0.90,0.92,0.94,0.96

In our computational result, a fixed cost denoted by b = Y. ¢;1/(n — 1) is incurred
i=2,...n
when experiencing route failures. We recall that b primarily penalizes disruption at a

customer location caused by the second vehicle visit.

The Instances Generated by Louveaux and Salazar-Gonzdilez (2017): The instances of
Louveaux and Salazar-Gonzalez (2017) are selected from benchmark instances E031-09h,
E051-05e, E076-07s, and E101-08e, see http:/ /neo.lcc.uma.es/vrp/vrp-instances/. How-
ever, the expected demand of all customers is set to 1 = 5. Parameter K denotes the num-
ber of possible demand realizations for each customer, for each instance a single value of
K is applied to all customers. Namely, K = 3 or K = 9. Then, forall j € V \ {v1} and
k =1,...,K, stochastic demands are generated by (f;-‘ = u — |K/2] + k — 1. The proba-

bility of each demand realization ¢} is then computed by p§ = k/[K/2]* for k < [K/2]?
and p;-‘ = (K—k+1)/[K/2]? otherwise. The number of vehicle denoted by m is set to

2 and 3. The vehicle capacity is obtained by Q = max{[(nu)/(mf)]; [n/m]u} in which
the filling rates f = 0.90, 0.95 are considered for m = 2 and in the case of m = 3 the filling
rates f = 0.85,0.90. Also, Louveaux and Salazar-Gonzélez (2017) a fixed cost of A = 0,
10,100 as loading /unloading cost is considered for both BF and PR trips. In our recourse
function, we denote by b a fixed cost as the customer dissatisfaction in the failure events.

The Integer L-shaped algorithm and the bounding scheme are coded in C++ using
ILOG CPLEX 12.6. The subtour elimination and capacity constraints (4) are identified
using the CVRPSEP package of Lysgaard et al. (2004). The general branch-and-cut frame-
work as the Integer L-shaped algorithm is implemented using the OOBB package devel-
oped by Gendron et al. (2005). Computational experiments were conducted on a cluster
of 27 machines, each having two Intel(R) Xeon(R) X5675 3.07 GHz processors with 12
cores and 96 GB of RAM running Linux. An integer feasible solution with a relative op-
timality gap less than 0.01% is assumed optimal. Also, a maximum CPU run time of 10
hours is imposed on all runs. If the maximum allotted time is reached, we then report the
best integer solution obtained.

In subsection 4.1, the performance of the Integer L-shaped algorithm as an exact solu-
tion method is evaluated in terms of various quality measures. We further compare the
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results of our optimal restocking policy by pricing the optimal solutions under the classi-
cal policy. In subsection 4.2, we report the results obtained by the proposed algorithm on
the specialized instances generated by Louveaux and Salazar-Gonzélez (2017), in which
all customer demands follow identical distributions.

4.1 Quality of the Integer L-Shaped Algorithm

We now present the computational result, expressing the performance of the proposed
exact algorithm in Tables 2 and 4 for symmetric and asymmetric instances. The con-
ducted experiments are aggregated according to the pair (1, m) and the filling coefficient
f. Tables 2 and 4 report the following information: 1) the “Solved” columns present the
number of instances (out of ten for each aggregated category) that were solved to opti-
mality by the algorithm; 2) the “< 1%” columns present the number of instances (out of
ten for each aggregated category) that were solved with an optimality gap < 1%; 3) the
“Run(sec)” columns refer to the average running times in seconds that were needed by
the algorithm to solve those instances to optimality; 4) the “Gap” columns present the av-
erage optimality gap obtained by the algorithm over all instances solved (i.e., both those
solve optimally and those for which only a feasible solution was obtained).

By analyzing the computational results in Tables 2 and 4, we observe similar trends
that were reported by Gendreau et al. (1995), Laporte et al. (2002), and Jabali et al. (2014)
for the classical recourse policy. These trends indicate that an increase in the filling rate
and/or the number of vehicles results in a reduction of the optimally solved instances, an
increase in the running time to solve instances optimally, and an increase in the optimality
gap, which shows overall an increase in the overall complexity of the VRPSD instances.
Moreover, when compared to the filling rate, the number of vehicles seems to have a
more substantial impact on the complexity of the instances. As reported in Tables 2 and 4,
the Integer L-shaped algorithm implemented in this paper optimally solves 227 and 242
out of the 440 runs using the symmetric and asymmetric instances, respectively; which
correspond to 51.6% and 55.0% of the generated instances. The overall average optimality
gaps are 0.83% and 0.80%, respectively. Moreover, the proposed algorithm solves 285 and
297 instances with an optimality gap < 1% of the symmetric and asymmetric instances,
respectively.

In order to qualify the magnitude of savings obtained by performing the optimal
restocking policy, we execute the optimal solutions under the classical recourse. Ta-
bles 3 and 5 illustrate the comparisons of two recourse policies with respect to the to-
QClass'(x;pt)fQOPt(x:;pt)

tal cost denoted by “Savl”= X+ QT (37 )

class. (2% \_ )opt (¥
“Sav2'= 2 g;;i;f‘ (x(?pt)(x”f”) x 100, in which Q< (x?

optimal routing decision x,,, (which is obtained by solving each VRPSD instance opti-

x 100 and the expected recourse cost as

) is the expected recourse cost of
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Table 6: Average savings vs rule-based recourse 17&]. ., for 7 =1, with respect to total cost.

n m f Sav3 f Sav3 f Sav3 f Sav3
20 2 090  0.056% 092  0.034% 094 0.083% 096  0.153%
30 2 090  0.015% 092  0.007% 094  0.042% 096  0.100%
40 2 090  0.004% 092  0.005% 094 0.033% 096  0.088%
40 3 090  0.016% 092  0.009% 094 0018% 096  0.068%
40 4 090  0.000% 092  0.000% 094  0.000% 096  0.000%
50 2 0.90 0.006% 0.92 0.011% 0.94 0.019% 0.96 0.075%
50 & 0.90 0.010% 0.92 0.011% 0.94 0.015% 0.96 0.089%
50 4 0.90 0.000% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.007% 0.92 0.011% 0.94 0.015% 0.96 0.057%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.033%
60 4 090  0.000% 092  0.000% 094  0.000% 096  0.000%

Average 0.015% 0.013% 0.034% 0.096%

Table 7: Average savings vs hybrid recourse policy for 6-0 : 0.35 — 0.65, with respect to
total cost.

n m f Sav4 f Sav4 f Sav4 f Sav4
20 2 0.90 0.119% 0.92 0.165% 0.94 0.809% 0.96 1.259%
30 2 0.90 0.041% 0.92 0.007% 0.94 0.153% 0.96 3.076%
40 2 0.90 0.004% 0.92 0.141% 0.94 0.499% 0.96 0.397%
40 3 0.90 0.016% 0.92 0.076% 0.94 0.501% 0.96 0.954%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.032% 0.92 0.074% 0.94 0.296% 0.96 0.854%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.734% 0.96 0.741%
50 4 0.90 0.052% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.027% 0.92 0.057% 0.94 0.030% 0.96 0.679%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.000%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
Average 0.039% 0.086% 0.378% 1.296%

mally under optimal restocking policy with the expected recourse cost Q°? t(x;‘pt)) under

the classical recourse policy. It should be noted that the classical recourse policy consists
of following the planned route and performing BF and restocking trips at failures and
exact stockouts, respectively. The weighted average savings in terms of “Sav1” are 0.65%
and 0.61% for symmetric and assymetric instances, respectively. In terms of “Sav2”, the
weighted average savings are 49.46% and 48.70%, respectively.

Also, in order to qualify the magnitude of savings obtained by performing the opti-
mal restocking policy we compare the total cost of the optimal solutions obtained under
optimal restocking policy with optimal solutions under both the best rule-based policy
presented by Salavati-Khoshghalb et al. (2017b) and the best hybrid policy recourse pre-
sented by in Salavati-Khoshghalb et al. (2017a). Tables 6 and 7 express the latter com-
Q5 =@ (o) 100 and “Sav4”—

* i *
meleJer ¢ (xrule)

parisons with respect to the total cost as “Sav3”=

thbrid (nybrid) _ Qopt (x;pt)
Cnybrid +thbrid (nyhrid)
mal routing decisions obtained by solving the VRPSD instances under optimal restocking
policy, best rule-based and hybrid recourse policies, respectively. As presented in Tables 6
and 7, the best rule-based policy displays less deviation from the optimal restocking pol-
icy. The latter observation provides insights in the structure of the optimal restocking
policy, which further imply that this policy can be approximated more efficiently in terms
of the quality (here the total costs) of the optimal routing solution by rule-based policies

x 100, respectively. In Sav3 and Sav4, x;,, x;,,,,, and nybri ; are opti-
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designed by Salavati-Khoshghalb et al. (2017b).

4.2 The instances Generated by Louveaux and Salazar-Gonzalez (2017)

We have compared the solutions that we obtain with those of Louveaux and Salazar-
Gonzélez (2017) for the instances that both methods are able to solve. This comparison
confirmed that our method provides valid results. Regarding computational times, Lou-
veaux and Salazar-Gonzélez’s implementation seems to be more effective than ours: if
one accounts for differences between the machine that they have used and ours, their
code runs faster and it is able to solve to optimality more instances than our algorithm
for a given CPU time allowance. This result is not surprising given the fact that their
approach uses specialized procedures for instances with identical demand distributions,
which is not the case of our method.

Furthermore, it is observed from Tables 8-10 that the LBF cuts developed in this paper
can significantly reduce the number of branch-and-cut nodes explored by the Integer L-
shaped algorithm. The number of B&C nodes explored in the proposed method in this
paper is much smaller than in Louveaux and Salazar-Gonzalez’s implementation.

5 Conclusions

In this paper, we developed an exact solution methodology to solve the VRPSD under an
optimal restocking policy. To do so, the Integer L-shaped algorithm was adapted. To en-
hance the efficiency of the Integer L-shaped algorithm, various lower bounding schemes
were developed. The key element for successfully employing such bounding procedures
is to provide effective lower approximation of the expected recourse cost of partial routes.
In addition, a general lower bound enhancing the Integer L-shaped algorithm was also
developed.

Using the exact method proposed in this paper, we were able to optimally solve prob-
lems with up to 60 customers and a fleet of four vehicles. It should be noted that the
proposed exact method is the first to solve the VRPSD under an optimal restocking policy
when considering instances where customer demands follow arbitrary discrete distribu-
tions. The numerical results presented in this paper show that the resulting routes from
the optimal restocking policy yield a appreciable amount of savings when compared to
executing the classical policy on the same routes.

Further research in this area could focus on the exploration of the potential of applying
column generation and branch and price to the considered problem. It would also be in-

CIRRELT-2017-61 19



An Exact Algorithm to Solve the Vehicle Routing Problem with Stochastic Demands under an Optimal Restocking Policy

00000 Y& SYa'l  LVSS'6 849 0T€£9C || 0000000 94¥988'999  8C/¥SG999  8ELYAS'6 £99 9¢'l  US <L18 6 060 € 980-101H
00000 ¢¥'e0l 0 1786’1 £99 876¢6¢C || 0000000 TST1LCS'699  L81E8Y 699  /81E8T'Y 999 650 YS €878 6 980 € 980-101H
00000 206 0 696C'1 £99 C¥¥0¥ || 0000000 S0088E'899  84896C899  84896C°1 £99 G600 4§ 81¥9¢ € 060 € 980-1014
00000 860 0 raeo G99 G206 0000000 Z¥PSSE'SS9  6CCHSEGSY  6CCYSED G99 000 0F'6 9¢€0C € 980 € 980-1014
00000 Y& 168°0 T6119 0%9 619¢/1 || 0000000 1¥L6S69%9 TI06L1L9%9  ¢906119 0%9 €80 1S £€29¢ 6 S60 ¢ °80-101H
00000 <O€l 0 0v0e'T 0%9 9e¥¥E || 0000000 TECEST' IV 610V0C V9 610V0C'T 0%9 000 99691 (Ydag 6 060 ¢ 980-101H
00000 TE'6C 0 91eL’l 0%9 G9/€8 || 000000°0 S90808°1¥9  9191ELTF9  9191€L'L 0%9 £00 YS T4 € 960 ¢ 980-101H
00000 610 0 01000 0%9 618¢ 0000000 €00100°0%¥9  0001L00°0¥9  000TO00 0%9 000 000 1 € 060 ¢ 980-101H
00000 4v& 6¢0'l  220¢°€ 145 000645 || 0000000 CEVBCL€LS  L966VCELS  L966VCE 045 050 4S 6€00¢ 6 060 € S209404
00000 ¢¥'Z01 0 Tecse'l 894 1¢/Z0¥¥ || 0000000 £S0100°045  ¥¥1CS6'69S ¥¥Iicse'l 894 ¥I°0 4s 048¢¢ 6 980 €  sS209404
00000 ¥19¢ 0 0991 894 9¥SEIT || 0000000 69874699  CTF099C69S  CF099C' 1 894 000 694C €e0¥ € 060 € s209404
00000 SZ¢ 0 65¢1°0 £94 €FEEY || 0000000 68YPET’2Z99  ¥E6SCT'L9S  ¥€65C10 £94 000 990 19¢ € 4980 € 8209404
00000 927¢aC 0 666LY 099 €195¢Y || 0000000 679900998 0C6664F9S  0C666LF 099 ge0  U4sg L9CLY 6 960 ¢ S209404
00000 £2°0 0 0S18°0 095 4] 0000000 6¥91¥8°095 T10S18°095 110S18°0 099 000 £20 £68 6 060 ¢ sS£0-9404
00000 ¥€0 0 6€91°0 099 698/ 0000000  ¥€0991°09S  ¢88€91°09S  T88EIT'0 099 000 900 £81 € 90 T 209404
00000 €00 0 S¥00°0 6¥S yASYA 0000000  6C5500°67S  8¢SS00°6¥S  8CSF00°0 6¥< 000 000 1 € 060 ¢ sS209404
00000 ¥¥cL 0 06¢9°9 09% £62€0€ || 0000000 ¥91422°99%  9006¢9°99F%  9006C9°S 09% 120 "4s 64208 6 060 € 990-1504
00000 290 0 €059°T 6S¥ GZace || 0000000 £86CLS°09F  0TE0S5°09F  0CC09S'T 65Y 000 ¥¥¢ 6871 6 980 € 990-1904
00000 £0°0 0 16¥0°0 657 6vve 0000000 9686%0'657  8606¥0°65F7  8606¥0°0 657 000 100 L € 060 € 9G0-150d
00000 910 0 00000 65Y 2999 0000000 88€C00'65Y  88€C00'65Y 88000 65¥ 000 100 L1 € 680 €  990-1504
00000 49 0€1'0 92802 Iy 86/¥1¢ || 0000000 Z6¥109°87y 085¢80°8YY  085¢80°ZL vy 650 YS (47489 6 960 ¢ 990-1904
00000 0¢0 0 1900C vy 60401 || 0000000 6C¢S680°CHy  TL0900°cHy  €20900°C 84 000 6C1 £96€ 6 060 T 990-1504
00000 0T0 0 €L1e0 Iy 688¢ 0000000 qLEOEE' VY  POCLIETVY  ¥ICLLE0 Iy 000 100 o€l € 960 ¢ 990-1504
0000°0 900 0 <0000 Iy 09¢e 0000000  6€£C000'T¥Y  ¥E€C000'T¥Fy  ¥€C000°0 1y 000 000 €l € 060 ¢ 990-1904
00000 4v¢ Geec vocl'0l  €9¢ C0¥09 || 0000000 €6S¥8I'cLE  816€847CLE  816E8LTL 19¢ ¥9°0 Us ££CT6 6 060 € Ye0-1c0d
00000 Z1'81 0 ¢qs19 19¢ ¥08%C || 0000000 698€vE’29¢  F1Caql’'Z9¢  ¥1¢Gsl9 19¢ 000 80°1¢ 14144 6 980 € Ye0-1c0d
00000 207 0 §590°0 ¥9¢ 8LS¥6 || 0000000 86699019  F¥9S90Y9c  F¥59590°0 ¥9¢ 000 060 €0ee € 060 € Ye0-1c0d
00000 820 0 w60 86¢ 09641 || 0000000 09696689  LETLV6'8SE  LECLY6'0 8G¢ 000 €00 S0€ € 680 € Ye0-1c0d
00000 0¢'T 0 19¢s0l  vee $999¢ || 0000000 SeoseCSve  0Clacavve  0C1SCS 0L yee 000 8¢9 €aoll 6 960 ¢ Ye0-1c0d
00000 %00 0 8€L9°C yee °€9e 0000000 96¥VCI8LEE 8YBLLILEE 8F8ELIE yee 000 Z1°0 VA a4 6 060 ¢ Ye0-1c0d
00000 <00 0 956¢'1 yee Ge0e 0000000 6¥9T8E'GEE  19996C°9€€  19996C°T yee 000 000 188 € G960 ¢ 4e0-1c0d
00000 000 0 0€s2°0 [439 Gce 0000000 099€24'CEE  686CSL'CEE  686CSL0 439 000 000 cl € 060 ¢ 4e0-1c0d
1 (unuyuny  den  esmodey Supnoy opoN | 1 [eoisse[)  poysaypdy esmooay  Sunnoy den (uww)uny spoN || 'usds f  ysp  Sduesup
(£107) ZaTezUOD)-TeZETEG PUE XNEBIANOT] Jnsar mQ due)sSuT

‘0 = V YNM (£107) Z3[eZuor)-Ieze[eg pue XNeaAno :§ d[qe],

CIRRELT-2017-61

20



An Exact Algorithm to Solve the Vehicle Routing Problem with Stochastic Demands under an Optimal Restocking Policy

6/5CT 1§ 6€0'C 0ccov 899 SY46€T || SPPSIT'0  6906¥0°'1L9  9STLCE0L9  9STLTEEL £99 6v'1  US <911 6 060 € 980-101H
81¢1'0 U¢ 910 G208¢C £99 CS61LY || 890000 6999€9C99  T9896CC99  FOVS6C L 999 o ‘us 86801 6 980 € 980-101H
0000 ¢SLl 0 L1C6'L £99 Geco6 || 0000000 S8ITIE'6S9  8691C6'899  8691C6'L £99 000 891¢ L1¢E € 060 € 980-1014
00000 SZ°0 0 SLLLO G99 6¢C0L || 0000000 €£€€€0999  09¥8LL'GS9  09VLLLO G99 000 €61 69¢ € 980 € 980-1014
£0s2'c 1S €80'l ¥v6Cc 0l  0¥9 9LLE91 || S66¥9V'T  18809Y°199  9¢¥¥6C 099  9¢Fy6C 01 0%9 9¢'l  US 18741 6 S60 ¢ 980-101H
¥€6€0 VETY 0 9€€€C 0%9 901011 || 09CFZ0°0 994TI9CY9  8E9ECLCV9  8E9EECT 0%9 ¥1'o0 4s ¢s0cs 6 060 ¢ °80-101H
£1€00 'Usg 6Cc0  L8YS0 €79 G0SZICT || ¥£48C00°0 OPPSILCY9  GL98FSCr9  GL98YS0 €79 9€0 4 ¢L10€ € 960 ¢ 980-101H
00000 €0 0 c000 0%9 G88¢ 0000000  G£9€00°0%9  S€CC00°0¥9 9000 0%9 000 000 1 € 060 ¢ 980-101H
¥886'T 'U§ 9901 0O¥ICS 145 G6969S || 0610CY'0  CSGE69'9LS  L66CTCILS  L66E1C'S 144 6’0 1S 8LLL1 6 060 € S209404
€8yc0 U¢ €¢9'0 796’0 149 076€L9 || 9665000 €9€19%°CLS  L6ILYCTLS  L61LYVT'C 045 ge0 Y 00561 6 980 €  sS209404
€000'0 8289 0 92900 045 F9€€ae || 0000000 9SYL6€7CLS  TLTVOL1LS  TLTVOL'T 045 ¥¢0 s 0eLcl € 060 € s209404
00000 ¢6C 0 140 £94 0¥¥Z¥ || 0000000 8¢£€00899 168100895 1681000 894 000 ¥0¢C 04€1 € 4980 €  s209404
Lviy'e €¥°0C 0 §564°8 099 9€116 || 194180°C 6V¥8YC69S  11996989S  119964°8 099 680 YS 44¥44 6 960 ¢ S209404
06020 6C°0 0 1€09'T 095 Gar8 €1¢L61°0 CE9SLL'169S  180€09°19S  180€09°'T 09s 000 ¥9¢C LEVY 6 060 ¢ sS£0-9404
6€€C0 8C0 0 LETY0 09g ¥€€9 §04¢c00  9C1S09°09S  SCLECY'09S  SCLECY 0 0ss 000 910 09¢ € 960 ¢ sS209404
00000 €00 0 06000 6¥S 6¢8 0000000 ¥89510°6¥S  €€0010'6¥S  €€0600°0 6¥< 000 000 1 € 060 ¢ sS209404
09v1e 67901 0 6CEL’6 09% CT8oe || ¢9¢Tc6’0  ¢G0998°¢Ly 80900814y 809008CL 65Y 680 Y4S S1087 6 060 € 990-1504
10240 €¥°0 0 ¥60%'C 6S¥ 189CL || Z18190°0 <C¥689'19% ¥8C60V'19¥  ¥8C60¥'C 65¥ 000 ¢€€0 €¢S 6 980 € 990-1904
¥9200 ¥1°0 0 ¥820°0 657 8629 900000 Tceorl'6SY  6¥F8L0°6SY 6778200 657 000 000 €1 € 060 € 990-1504
00000 610 0 00000 65Y SLVL 0000000 £50Cc0'65y  ¥S€800°65F  ¥9E800°0 65¥ 000 000 L1 € 680 € 9290-1504
¥880F% U9 ¥6¥'0 88991l  I¥¥ SIVILE || CLECI8'C TSPB99'CSy  £G/899°Cay  £G/899'11 vy gl Ys 09119 6 960 ¢ 990-1904
96ee’l 0%0 0 016¥'c vy LVEEL || €69C19°0 69¥€98FFy  Ce0lev ¥7y  ¢eOlev e 844 000 ¢CTs 1e6ccl 6 060 T 990-1504
946¢°0 900 0 £6€9°0 Iy £90€ 0196410 COV6LO'IVY  9996€9'TFF  9996€9°0 Iy 000 €00 61¢ € 960 ¢ 990-1504
<0000 S0°0 0 S000°0 Iy 8€6¢ G00000°0 T¥FLI00'T¥FY  CL¥000'T¥¥  ¢L¥000°0 1y 000 000 €l € 060 ¢ 990-1904
ceery Us 691'c 009191  €9¢ 8G/¥6G || GOL0T8C 0660V1'6Lc CTELL09°LLE  CETLO9EL ¥9¢ 8T'T "4S 18446 6 060 € Ye0-1c0d
0208l 6464 0 LTEL’S ¥9¢ 1€900¥ || 89¥998°0 TLLOIS0LE  €99TEL'69E  €99CEL'S ¥9¢ 000 <990¢ q9L9Y 6 980 € Ye0-1c0d
8¥€00 66C 0 8¥01°0 ¥9¢ CVOVZ || 09C410°0  £9evvev9e  08ZV01¥9¢  084¥01°0 ¥9¢ 000 990 qq¢e € 060 € Ye0-1c0d
00000 920 0 9tIT’l 86¢ P8L1C || 0000000 ¢91999'69c 98911C6GE  98S1ICL 8G¢ 000 €00 €ee € 680 € Ye0-1c0d
19906 6C°¢ 0 €65C91  ¥ee €I¥6G || 084879'F 666€9L°19C  T6C6SC0SE  C6C6GCIL yee 000 147l 691¥¢ 6 960 ¢ Ye0-1c0d
8886'L V00 0 00¢6'S yee ¢56€ 6660091 C¥80SS'0¥E  996616'6EC  S96616'G yee 000 <10 YAV 6 060 ¢ Ye0-1c0d
9888°0 T00 0 6C8C'C yee 9841 COV080'L  ¥EGL8ELEE  TCOHC8LIEE  TCOHT8T'C yee 000 000 66 € G960 ¢ 4e0-1c0d
62000 100 0 6€0€'T [439 109 ¢16000°0 96C098°cEE  016€0€°€EE  0L6E0ET 439 000 000 ¥e € 060 ¢ 4e0-1c0d
1 (unuyuny  den  esmodey Supnoy opoN | 1 [eoisse[)  poysaypdy esmooay  Sunnoy den (uww)uny spoN || 'usds f  ysp  Sduesup
(£107) ZaTezUOD)-TeZETEG PUE XNEBIANOT] Jnsar mQ due)sSuT

0T = V YIM (£107) Zo[eZuor)-Teze[eg pue XNeaANno] :g d[qeL

21

CIRRELT-2017-61



An Exact Algorithm to Solve the Vehicle Routing Problem with Stochastic Demands under an Optimal Restocking Policy

89¢8'¢T 'US LIy ¥vce9l 789 0F0SYT || ZC10€9°0  08%469°G0Z 8C0969°10L  8T0969°1¥ 099 G8'e 49 98.¢c1 6 060 ¢ 980-10TH
66cc’l  US €L8'C LEVSIT 699 PECLIT || G69200°0  €9V8LELL9  L96¥0S°SL9  L96W0S'TL 799 €eC Y9 42518 6 980 ¢ °80-10TH
ca000  ug €eC’0 91¥9°0 199 L6L¥EEC || 0000000  £29%%9°€99  TZ00¥C€99  T1L00¥E0 €99 990 HS P81 € 060 ¢ 980-10TH
00000 899 0 91000 £99 96101 || 0000000  C0LSTI'C99  ¥CS/89°699  FE9989F 999 100 '4s gq091 € 980 ¢ °80-10TH
GL5T0E 1S9 L9%'1  qeev'ae a9 0T¢981 || 87LIIS0T  L618%0°989 88cCICT8Y  88ECIT8E 779 9% He G99¢€1 6 960 ¢ °80-10TH
QLeey  us ¥99'0 60959 €¥9 088Y81 || YCLI8Y'0 8666557099 168095679 1680959 €79 (4 S660C 6 060 ¢ °80-10TH
a@.ye0 Ug £99°0  1¥8€°0 S¥9 0091 || 00C8T00  6S1969°S¥9  SEIFBE'GHY  SEIVBE0 S¥9 990 'HS ¥€691 € 90 ¢ °80-10TH
00000 010 0 $€10°0 0%9 96¢1 0000000 8T4420°0¥9 SSEEIO0F9  SSecl00 0¥%9 000 000 I € 060 ¢ 9°80-10TH
CeL8'TC US £89°C 1901T'SC  64S 694E1¢€ || €VC900°C  ¥65C69°0T9 9896109  989C6Y 1€ Y.LS 196 '4s qgegt 6 060 ¢  S40-9404
9reL’c  Us 96¥'0 1080 149 009€8¢G || £996C0°0  8¥ESYS'64S  LTSLYE'8LS  LTSLYVE'S €4S LET YS 109¢C 6 980 €  S40-940d
Ge00'0 84681 0 1v1v0 048 89¢CCLY || 0000000  CPI8TOTLS G86VEY VLS  G86¥EY 0 Y.L9 690 US 6581 € 060 ¢  S40-940d
00000 616 0 86000 899 88106 || 0000000  Z€89€€'69S L008ET89S  L008EC'T £99 000 68¢ LI¥T € 980 ¢  s40-9/0d
1299°2¢ 600 0 CeITey L89S 6£0T LITLEC YL €GLLEC66S  8L699LT6S  8C699L°CY 199 8¢S 49 (43904 6 960 T S40-940d
686LL 1670 0 £969°8 09s GQeeLl || €8909T°T  64¥081°09S ¥14969'89S  ¥14569°8 099 96’0 'HS y1ece 6 060 T  S40-940d
yaLsc  LT0 0 €094C 0sS 4l 1206C1°0 096999795  ¥1€C94CeS  ¥1€C9L°C 095 000 0z'Z6l §00s¢ € 960 ¢  s40-9.0d
20000 900 0 96¥0°0 6¥S c€evl 0000000 980Z01°6¥S  8450S0°6¥S  8296¥0°0 6¥9 000 000 I € 060 ¢ S40-940d
Ga09ve 86'LIL 0 20090y 097 £09SLE || TLS0T6'E  86VIBLCIS 918cce’'G0S  918€EC 0¥ Q9% ¥9'L HS |FA VA4 6 060 € °90-1904
904¥'8 460 0 SYIT0T  6S¥ 8G10C || 92€¢€C’0  896¥0€LLY  1TCL69TLY  1CEL696 9% 99T 49 LLE6Y 6 980 ¢ °90-1904
906C0 TC0 0 9T¥e0 (%4 0148 1420000  €¥I¥S6'6SY  Q19CHE6SY  S19TPE0 69¥ 000 €00 201 € 060 ¢ °90-1904
00000  ¢€0 0 00000 6S¥ 1228 0000000 980661657  €50C90°65F  €50C90°0 657 000 100 0¢ € 980 ¢ °90-1904
€LY US 09’0 1989Cs  T¥¥ P8I89¢C || €99184°81 TLYPI9°00S 8489466V 848946719 444 0L YS 6¥89¢ 6 S60 ¢ 9°90-1504
SI8S¥L €¥70 0 809491  1¥¥ S0V || 948€8E'C  €C68C8°09F  80809L°ZSF 80809291 vy 6CC YS 1¥¢9y 6 060 ¢ 2901904
11sce 00 0 2965 18474 45414 69€CIL0  O8TIC8LYY 8L1G6S¥PY  8L1S6S°C 1844 000 ¥e9c 99.L¥1 € 960 ¢ 9°90-1504
2000 900 0 92000 844 €€LT 9200000  092600°1¥y  0C9C00'TF¥  0C9200°0 17y 000 000 L1 € 060 ¢ 2901904
qQov'sy ‘u¢ 045°C ¥8€1'9S  ¥9¢ 090848 || 0€v6¥CCL  €6¥68Y'CEy  0¥8C9C0Cy  0F8EICTTS 99¢ 896 U9 68.8L 6 060 ¢ Ye0-1€0d
GTT8'61  €1'8ST 0 0€e8’ce  v9¢ €8CIVG || TLBCYT'C  TEOCI8T6E  €P0CT8L8E  €F0ET8'ET ¥9¢ Ve HS LLTLTT 6 980 ¢ Ye0-1€0d
£28¢°0  L99 0 £2S¥°0 ¥9¢ GGOTOT || €870S0°0  £896£8°99€  CS9CST¥9¢ 99Tt 0 ¥9¢ 000 €IT 128¢ € 060 ¢ Ye0-1€0d
€0000 €91 0 °eLSE 86¢ £9%CS || T00000°0  886889°99¢  LITCLS19¢  LITELS'E 89¢ 000 €20 |¥44! € 980 ¢ Ye0-1€0d
¢LTLSS 81T 0 80C1'Z9  ¥ee 91L9% || £10966°0¢ ¥£991S°0TF 8080CL'10¥ 80801 L9 pee SL'6  HS 9EY¥L 6 960 ¢ Ye0-1€0d
£9/8'1¢ 900 0 ¢q998'ae vee 686Y 9€T86G'8  G96981'99¢  81CG98'65€  81CGS8'SC Tee ORI 11969 6 060 ¢ Ye0-1€0d
05226 100 0 €EOT'TL  ¥ee 6¢C11 €6¥061'S  TOVICY'See  997691°GFE 9969111 pee 000 <4€0 qQ9ce € 960 ¢ Ye0-120d
¢ce0’0 100 0 0£€0°0 yee 699 866€00'0  6€9LVLVEC  TLE9E0OFEE  TL69E00 Pee 000 100 691 € 060 ¢ Ye0-1€0d
1 (muwjuny den ssmodsy Sunnoy spoN | 1 [eotssey  spoysypdQ  esmodsy  Supnoy des (wwjuny SpoN || 'ueds S yap  aduelsul
(£107) Zo[eZUOD)-IRZE[EG PUR XNEIANO] J[nsa1 QO doueysuf

‘001 = V YHM (£107) Zo[gZU0D-1eZe[eS PUR XNeaANnoT (O dqeL

CIRRELT-2017-61

22



An Exact Algorithm to Solve the Vehicle Routing Problem with Stochastic Demands under an Optimal Restocking Policy

teresting to investigate how more collaborative recourse policies (where several vehicles
coordinate to react to high demand situations) could be applied to the VRPSD.
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